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Incompressible Turbulence Theory

1. Relied in a central way on an empirical observation: 
     The “Zeroth Law” of Turbulence [G. I. Taylor (1935)]

3. Inertial Range: 
     Assuming self-similarity (scale-invariance), and scale-locality [Kolmogorov 
(1941, 1946), Onsager (1945)]

2. The 4/5-th Law
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Zeroth Law of Turbulence

𝐶! =
𝜀"#$$#%
𝑈&'$( /𝐿

G.I. Taylor,
Proc. Roy. Soc. Lond., (1935)

Empirical Observation1:

Dissipation is independent of 
microphysical viscosity.

Pearson et al., 2004
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Zeroth Law of Turbulence

1. Eyink & Drivas, 2018, Phys. Rev. X.
2. A voyage through Turbulence, 2011 

Pearson et al., 2004

A. Kolmogorov AM. Obukhov W. Heisenberg CF Weizsacker

L. Onsager

“turbulent fluids could be described by singular (weak) 
solutions of incompressible Euler equations whose kinetic-
energy balance would be afflicted with an anomaly due to 

the nonlinear cascade mechanism1.”
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Incompressible Turbulence Theory

1. Relied in a central way on an empirical observation: 
     The “Zeroth Law” of Turbulence [G. I. Taylor (1935)]

3. Inertial Range: 
     Assuming self-similarity (scale-invariance), and scale-locality [Kolmogorov 
(1941, 1946), Onsager (1945)]

2. The 4/5-th Law
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Kolmogorov’s 4/5-th Law

𝜕!	𝒖 + 𝒖 ⋅ ∇𝒖 = −∇𝑝 + 𝜈∇"𝒖 + 𝒇

Traditional derivation (e.g. Frisch’s 1995 book)

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) = #
$∇𝒓 ⋅ 𝛿𝒖 𝒓 "𝛿𝒖 𝒓  −Dissipation + Forcing

Point-splitting KE budget (a form of scale decomposition)
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Kolmogorov’s 4/5-th Law

Traditional derivation (e.g. Frisch’s 1995 book)

Point-splitting KE budget (a form of scale decomposition) Assuming homogeneity

𝜕!	𝒖 + 𝒖 ⋅ ∇𝒖 = −∇𝑝 + 𝜈∇"𝒖 + 𝒇

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) = #
$∇𝒓 ⋅ 𝛿𝒖 𝒓 "𝛿𝒖 𝒓  −Dissipation + Forcing
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Kolmogorov’s 4/5-th Law

Traditional derivation (e.g. Frisch’s 1995 book)

Point-splitting KE budget (a form of scale decomposition)

𝛿𝒖 𝒓;𝒙 = 𝒖 𝒙+𝒓 −𝒖(𝒙)
Increments:

Galilean Invariant

Scaling Conditions 
𝒓

𝜕!	𝒖 + 𝒖 ⋅ ∇𝒖 = −∇𝑝 + 𝜈∇"𝒖 + 𝒇

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) = #
$∇𝒓 ⋅ 𝛿𝒖 𝒓 "𝛿𝒖 𝒓  −Dissipation + Forcing
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Kolmogorov’s 4/5-th Law

Traditional derivation (e.g. Frisch’s 1995 book)

Point-splitting KE budget (a form of scale decomposition)

Scale-local1

Galilean Invariant

Scaling Conditions 
𝒓

1. G. Eyink, 2005, Physica D.

𝛿𝒖 𝒓;𝒙 = 𝒖 𝒙+𝒓 −𝒖(𝒙)
Increments:

𝜕!	𝒖 + 𝒖 ⋅ ∇𝒖 = −∇𝑝 + 𝜈∇"𝒖 + 𝒇

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) = #
$∇𝒓 ⋅ 𝛿𝒖 𝒓 "𝛿𝒖 𝒓  −Dissipation + Forcing
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Kolmogorov’s 4/5-th Law

Traditional derivation (e.g. Frisch’s 1995 book)

Point-splitting KE budget (a form of scale decomposition)

Scale-local

Galilean Invariant

Scaling Conditions 
𝒓

𝛿𝒖 𝒓;𝒙 = 𝒖 𝒙+𝒓 −𝒖(𝒙)
Increments:

𝜕!	𝒖 + 𝒖 ⋅ ∇𝒖 = −∇𝑝 + 𝜈∇"𝒖 + 𝒇

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) = #
$∇𝒓 ⋅ 𝛿𝒖 𝒓 "𝛿𝒖 𝒓  −Dissipation + Forcing

The Cascade Term
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Kolmogorov’s 4/5-th Law

Traditional derivation (e.g. Frisch’s 1995 book)

Point-splitting KE budget (a form of scale decomposition)

𝜕!	𝒖 + 𝒖 ⋅ ∇𝒖 = −∇𝑝 + 𝜈∇"𝒖 + 𝒇

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) = #
$∇𝒓 ⋅ 𝛿𝒖 𝒓 "𝛿𝒖 𝒓  −Dissipation + Forcing

The Cascade Term

This is just conservation of 
kinetic energy at each scale, r!
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Kolmogorov’s 4/5-th Law

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) =
1
4
∇𝒓 ⋅ 𝛿𝒖 𝒓 #𝛿𝒖 𝒓 −Dissipation + Forcing

For r in the inertial range:
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Kolmogorov’s 4/5-th Law

𝑆= 𝑟 = 𝛿𝑢∥ 𝑟
=
= −

4
5
𝜀	𝑟

For r in the inertial range:

𝑆? 𝑟 = 𝛿𝑢∥ 𝑟
?
= 𝐶? 𝜀	𝑟 ?/=

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) =
1
4
∇𝒓 ⋅ 𝛿𝒖 𝒓 #𝛿𝒖 𝒓 −Dissipation + Forcing

Assuming self-similarity, no intermittent 
event!
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Kolmogorov’s 4/5-th Law

𝑆= 𝑟 = 𝛿𝑢∥ 𝑟
=
= −

4
5
𝜀	𝑟

For r in the inertial range:

𝑆? 𝑟 = 𝛿𝑢∥ 𝑟
?
= 𝐶? 𝜀	𝑟 ?/=

𝑆A 𝑟 = 𝛿𝑢∥ 𝑟
A
	~	𝑟A/= 𝐸 𝑘 	~	𝑘BC/=

𝜕! 𝒖 𝑥 ⋅ 𝒖(𝒙 + 𝒓) =
1
4
∇𝒓 ⋅ 𝛿𝒖 𝒓 #𝛿𝒖 𝒓 −Dissipation + Forcing

Assuming self-similarity, no intermittent 
event!

Works fine for p = 3 ± 1!
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Incompressible Turbulence Theory

1. Relied in a central way on an empirical observation: 
     The “Zeroth Law” of Turbulence [G. I. Taylor (1935)]

3. Inertial Range: 
     Assuming self-similarity (scale-invariance), and scale-locality [Kolmogorov   
(1941, 1946), Onsager (1945)]

2. The 4/5-th Law
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We have a relatively clear picture of the dynamics in incompressible 
turbulent systems.

𝑘BC/=
𝐸 𝑘

𝑘ℓ

Inertial Range
Dissipation 

Scales Integral Scales

• Forcing and Boundary Conditions at integral scales.

• Viscous Dissipation at smallest scales.

• Inertial range

Decaying, isotropic, 
homogeneous turbulent 
system (Saadat, et al., 2021)

L. Richardson 
(1922)

A. Kolmogorov 
(1941)

L. Onsager
(1945)
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We have a relatively clear picture of the dynamics in incompressible 
turbulent systems.
𝐸 𝑘

𝑘ℓ

Inertial Range
Dissipation 

Scales Integral Scales

L. Richardson 
(1922)

A. Kolmogorov 
(1941)

• Scale-locality:

• Different modes exchange energy with 
neighbors mostly.

• Justifies expectation of universal statistics.

• Implicit assumption in LES Modeling. 

R. Kraichnan 
(1959)

G. Eyink (1994, 
2005)

L. Onsager
(1945)

𝑘BC/=
𝐸 𝑘

𝑘ℓ
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Method: Coarse-graining Approach

>𝒖ℓ 𝒙 = ∫𝑑𝒓	𝒖 𝒓 𝐺ℓ	(𝒙+𝒓)

𝐺ℓ 𝒓  should be:
• Homogeneous,
• Normalized, 
• Spatially localized.

ℓ

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ
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Method: Coarse-graining Approach

F𝒖ℓ 𝒙 = ∫𝑑𝒓	𝒖 𝒓 𝐺ℓ	(𝒙+𝒓)

ℓ

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕! B𝑢 	+ B𝑢 ⋅ 𝜵B𝑢 = −𝜵�̅� − ∇ ⋅ 𝜏ℓ + 𝜇∇"B𝑢
Sub-scale Stress:
𝜏ℓ =	 (𝑢𝑢ℓ − M𝑢ℓ M𝑢ℓ)

Coarse Cons. of Momentum:

G. Eyink
(1994)

…

A. Leonard
(1974)

M. Germano
(1992)

C. Meneveau
(1994)

H. Aluie
(2011)

∇ ⋅ B𝑢 = 0
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With the incompressible Turbulence Theory, we can explain:
Ocean Dynamics Terrestrial Flows

Credit: NASA

Credit: STLPR

Atmospheric Dynamics

Credit: NASA
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But compressible turbulence theory is essential to understand:

Supernovae Explosions

Crab Nebula, NASA NASA

Supersonic Flight Inertial Confinement Fusion
NIF, Lawrence Livermore National Laboratory
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Energy Transfer Across Scales: Compressible

Mass Cons. 𝜕"𝜌+𝛁⋅ 𝜌𝒖 = 0

Momentum Cons. 𝜕" 𝜌𝒖 +𝛁⋅ 𝜌𝒖𝒖 =𝛁𝑃+𝛁⋅ 2𝜂𝑺 ⋅𝒖+𝜁𝜃𝒖

Total Energy Cons. 𝜕"
1
2𝜌𝑢

#+𝑒 +𝛁⋅ 𝑒+𝑃+
1
2𝜌𝑢

# 𝒖−𝜅𝛁𝑇	−2𝜂𝑺 ⋅𝒖	−𝜁𝜃𝒖 = 0

+ Equation of State
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Energy Transfer Across Scales: Compressible

Kinetic Energy 
Budget 𝜕N

1
2
𝜌𝑢A + 𝛁 ⋅ 𝐽OP = 𝑝 𝛁 ⋅ 𝒖 	− 2𝜂 𝑺 A − 𝜁𝜃A

Internal Energy 
Budget 𝜕N 𝑒 + 𝛁 ⋅ 𝐽QP = −𝑝 𝛁 ⋅ 𝒖 + 2𝜂 𝑺 A + 𝜁𝜃A

Pressure-Dilatation Viscous Dissipation

Pressure-Dilatation Viscous Dissipation

Mass Cons. 𝜕"𝜌+𝛁⋅ 𝜌𝒖 = 0

Momentum Cons. 𝜕" 𝜌𝒖 +𝛁⋅ 𝜌𝒖𝒖 =𝛁𝑃+𝛁⋅ 2𝜂𝑺 ⋅𝒖+𝜁𝜃𝒖

Total Energy Cons. 𝜕"
1
2𝜌𝑢

#+𝑒 +𝛁⋅ 𝑒+𝑃+
1
2𝜌𝑢

# 𝒖−𝜅𝛁𝑇	−2𝜂𝑺 ⋅𝒖	−𝜁𝜃𝒖 = 0

+ Equation of State
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Modify the Coarse-graining Method

F𝒖ℓ 𝒙 = ∫𝑑𝒓	𝒖 𝒓 𝐺ℓ	(𝒙+𝒓)

�̅��̃�ℓ = �̅�ℓ(U𝒖𝒖ℓ 	− V𝒖ℓV𝒖ℓ)

Coarse Cons. of Momentum:

G. Eyink
(1994)

…

A. Leonard
(1974)

M. Germano
(1992)

C. Meneveau
(1994)

My PhD Work 
(2022-Present)

H. Aluie
(2011)

V𝒖ℓ 𝒙 ≡
𝜌𝒖ℓ
𝜌ℓ

Favre Averaging (Favre, 1965)

Why Favre Averaging?
The Scale-decomposition must satisfy the Inviscid 
Criterion [Aluie Physica D (2013)].

𝜕! *𝜌ℓ,𝒖ℓ + ∇ ⋅ *𝜌ℓ,𝒖ℓ,𝒖ℓ = −𝛻 *𝑃ℓ 	− 𝛻 ⋅ *𝜌�̃�ℓ + 𝜇∇ ⋅ *𝜎ℓ + *𝜌ℓ:𝑭

Zhao, Aluie, 2019, PRF

𝑘

𝐷 ℓ
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Coarse-grained KE Budget

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)
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Coarse-grained KE Budget

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Temporal Change 
of Coarse KE
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Coarse-grained KE Budget

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Spatial Transport
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Coarse-grained KE Budget

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Spatial Transport

No transfer in scale.
Zero on average for spatially 

homogeneous flows. 
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Coarse-grained KE Budget

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Viscous Dissipation

Zhao, Aluie, 2019, PRF

Plays role at 
Smallest Scales1

1. Aluie, 2013, Physica D
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Coarse-grained KE Budget

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Pressure-Dilatation

Acts as a large-scale forcing
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Coarse-grained KE Budget

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕N �̅�ℓ
?𝑢ℓ A

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − C𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖YZ[

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Πℓ x = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA
Deformation Work

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

Baropycnal Work

̅𝜏ℓ x = 𝑝	∇ ⋅ 𝑢 ℓ − �̅�ℓ∇ ⋅ 𝑢ℓ
Pressure-Dilatation Defect
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Coarse-grained KE Budget

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕N �̅�ℓ
?𝑢ℓ A

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − C𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖YZ[

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Sub-scale Flux Mechanisms
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There is an unrefined intuition about shocks …

1. McKee & Ostriker, 2007, Ann. Rev. Fluid. Mech.
2. Ferrand et al., 2020, ApJ.

Messier 42: Orion Nebula [Source: NASA]

Bow shock near young star, LL Ori
[Source: NASA]

… some portion of the energy at a given scale 
must be directly dissipated via shocks, rather 
than cascading conservatively through 
intermediate scales until dissipation scales is 
reached. [McKee & Ostriker (2007)]



35

Not just in the astrophysics community, …

Lake Superior, US [Source: UCAR]

… spectrally nonlocal pathway for 
downscale energy transfer that is 
phenomenologically distinct from 
traditional concepts of turbulent 
cascades and can contribute 
substantially to total kinetic energy 
dissipation.
[Samelson & Skyllingstad (2016)]
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Kraichnan and Locality

Kraichnan (1974):
A generally unappreciated point is that the inertial-range 
energy cascade is local in wavenumber, even when the 
inertial-range spectrum is the spectral tail of coherent 
discontinuous structures,… .
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𝜕!𝑢 + 𝑢𝜕@𝑢 = 𝜈𝜕@@,

Take Burgers Shock — A Clean Toy Model

𝑢 𝑥, 0 = −𝑠𝑖𝑛 "A
B 𝑥 .



38

𝜕!𝑢 + 𝑢𝜕@𝑢 = 𝜈𝜕@@,

Take Burgers Shock — A Clean Toy Model

K = 14
𝑢 𝑥, 0 = −𝑠𝑖𝑛 "A

B 𝑥 .
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𝜕!𝑢 + 𝑢𝜕@𝑢 = 𝜈𝜕@@,

Take Burgers Shock — A Clean Toy Model

K = 5
𝑢 𝑥, 0 = −𝑠𝑖𝑛 "A

B 𝑥 .
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𝜕!𝑢 + 𝑢𝜕@𝑢 = 𝜈𝜕@@,

𝑢 𝑥, 0 = −𝑠𝑖𝑛 "A
B 𝑥 .

Take Burgers Shock — A Clean Toy Model

K = 2
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Even in 1D, shock is a multiscale structure!

𝜕!𝑢 + 𝑢𝜕@𝑢 = 𝜈𝜕@@,

𝑢 𝑥, 0 = −𝑠𝑖𝑛 "A
B 𝑥 .

Take Burgers Shock — A Clean Toy Model
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?

?

𝜕!𝑢 + 𝑢𝜕@𝑢 = 𝜈𝜕@@,

𝑢 𝑥, 0 = −𝑠𝑖𝑛 "A
B 𝑥 .

Take Burgers Shock — A Clean Toy Model

Even in 1D, shock is a multiscale structure!
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Cascade in Burgers Shock

Πℓ x = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA

𝜕N𝑢 + 𝑢𝜕\𝑢 = 𝜈𝜕\\,

𝜕N
F]ℓ #

A
= −Πℓ 	− 𝐷ℓ,

The mechanism that represents 
vortex stretching or energy cascade.
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Cascade in Burgers Shock

Πℓ x = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA

𝜕N𝑢 + 𝑢𝜕\𝑢 = 𝜈𝜕\\,

𝜕N
F]ℓ #

A
= −Πℓ 	− 𝐷ℓ,

The mechanism that represents 
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Cascade in Burgers Shock

Πℓ x = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA

𝜕!𝑢 + 𝑢𝜕%𝑢 = 𝜈𝜕%%,

𝜕!
&'ℓ #

#
= −Πℓ 	− 𝐷ℓ,

M𝑢ℓ 𝑥 = ∫ 𝑑𝑟	𝑢 𝑟 𝐺ℓ	(𝑥 + 𝑟)For ℓ = 0.15𝐿

𝑢ℓ( 𝑥 = 𝑢 𝑥 − M𝑢ℓ 𝑥
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Deformation Work in Burgers Shock: 𝜫ℓ 𝒙

Πℓ x = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA

𝜕!𝑢 + 𝑢𝜕%𝑢 = 𝜈𝜕%%,

𝜕!
&'ℓ #

#
= −Πℓ 	− 𝐷ℓ,

M𝑢ℓ 𝑥 = ∫ 𝑑𝑟	𝑢 𝑟 𝐺ℓ	(𝑥 + 𝑟)For ℓ = 0.15𝐿

𝑢ℓ( 𝑥 = 𝑢 𝑥 − M𝑢ℓ 𝑥

∇
G𝑢 ℓ
(𝑥
)
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Πℓ x = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA
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Deformation Work in Burgers Shock: 𝜫ℓ 𝒙
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Deformation Work in Burgers Shock: 𝜫ℓ 𝒙
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𝛱ℓ 𝑥 = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA

𝜕!𝑢 + 𝑢𝜕%𝑢 = 𝜈𝜕%%,

𝜕!
&'ℓ #

#
= −Πℓ 	− 𝐷ℓ,

M𝑢ℓ 𝑥 = ∫ 𝑑𝑟	𝑢 𝑟 𝐺ℓ	(𝑥 + 𝑟)For ℓ = 0.15𝐿

𝑢ℓ( 𝑥 = 𝑢 𝑥 − M𝑢ℓ 𝑥

∇G𝑢ℓ(𝑥) 𝑢#ℓ 	− G𝑢ℓ#

Deformation Work in Burgers Shock: 𝜫ℓ 𝒙
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𝛱ℓ 𝑥 = −𝜕\ C𝑢ℓ 𝑢A ℓ 	− C𝑢ℓA

𝜕!𝑢 + 𝑢𝜕%𝑢 = 𝜈𝜕%%,

𝜕!
&'ℓ #

#
= −Πℓ 	− 𝐷ℓ,

M𝑢ℓ 𝑥 = ∫ 𝑑𝑟	𝑢 𝑟 𝐺ℓ	(𝑥 + 𝑟)For ℓ = 0.15𝐿

𝑢ℓ( 𝑥 = 𝑢 𝑥 − M𝑢ℓ 𝑥

∇G𝑢ℓ(𝑥) 𝑢#ℓ 	− G𝑢ℓ# 𝛱ℓ 𝑥

Deformation Work in Burgers Shock: 𝜫ℓ 𝒙
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Scale Locality of the cascade in Burgers Shock: 𝛱ℓ 𝑥
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Scale Locality of the cascade in Burgers Shock: 𝛱ℓ 𝑥

𝛱ℓ! G𝑢ℓ" , 𝑢, 𝑢 / 𝛱ℓ! 𝑢, 𝑢, 𝑢  → 0 As 𝑄 → 0

Deformation work is infrared local.
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Scale Locality of the cascade in Burgers Shock: 𝛱ℓ 𝑥
𝛱ℓ! 𝑢, 𝑢′, 𝑢 / 𝛱ℓ! 𝑢, 𝑢, 𝑢  → 0 As 𝑄 → ∞

Deformation work is ultraviolet local.
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Coarse-grained KE Budget

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Deformation Work is scale-local.
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Coarse-grained KE Budget

𝑘ℓ = 1/ℓ : Wavenumber0 𝑘ℓ

𝜕! �̅�ℓ
$𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − /𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ + 𝜖$%&

K𝑓ℓ 𝒙 ≡
𝜌𝑓ℓ
𝜌ℓ

̅𝑓ℓ 𝒙 = ∫ 𝑑𝒓	𝐺ℓ 𝒓 𝒇(𝒙 + 𝒓)

Baropycnal Work
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Normal Shock: A Real Compressible System

1. Johnson, 2014, J. Fluid. Mech.

Analytical Solutions1 for 1D, Normal Shock, Ma = 1.7

Velocity Spectrum

Velocity

𝜕"ρ+𝜕𝒙 ρ𝑢% = 0,

𝜕" ρ𝑢 +𝜕% ρ𝑢%𝑢% =−𝜕%𝑃+µ𝜕% 𝜕%𝑢% +
1
3𝜕&𝑢&δ'(

𝑥

K = 5
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Normal Shock: A Real Compressible System

1. Johnson, 2014, J. Fluid. Mech.

Analytical Solutions1 for 1D, Normal Shock, Ma = 1.7

Velocity Spectrum

Velocity

𝜕"ρ+𝜕𝒙 ρ𝑢% = 0,

𝜕" ρ𝑢 +𝜕% ρ𝑢%𝑢% =−𝜕%𝑃+µ𝜕% 𝜕%𝑢% +
1
3𝜕&𝑢&δ'(

K = 2

𝑥
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Normal Shock: A Real Compressible System

1. Johnson, 2014, J. Fluid. Mech.

Analytical Solutions1 for 1D, Normal Shock, Ma = 1.7

Velocity Spectrum

Velocity

𝜕"ρ+𝜕𝒙 ρ𝑢% = 0,

𝜕" ρ𝑢 +𝜕% ρ𝑢%𝑢% =−𝜕%𝑃+µ𝜕% 𝜕%𝑢% +
1
3𝜕&𝑢&δ'(

K = 1

𝑥

A normal shock is a multiscale 
structure, even in 1D!



60

Baropycnal Work in Normal Shock: 𝚲ℓ 𝒙

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝜕! �̅�ℓ
b𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − F𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ Heavy

Light

𝑝(𝑥)

𝜌(𝑥)
𝑢(𝑥)
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Baropycnal Work in Normal Shock: 𝚲ℓ 𝒙

For ℓ = 0.15𝐿

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝑥/ℓ)

𝜕%�̅�ℓ
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Baropycnal Work in Normal Shock: 𝚲ℓ 𝒙

For ℓ = 0.15𝐿

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝑥/ℓ) 𝑥/ℓ)

𝜕%�̅�ℓ
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Baropycnal Work in Normal Shock: 𝚲ℓ 𝒙

For ℓ = 0.15𝐿

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝑥/ℓ) 𝑥/ℓ)

𝜕%�̅�ℓ
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Baropycnal Work in Normal Shock: 𝚲ℓ 𝒙

For ℓ = 0.15𝐿

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝑥/ℓ) 𝑥/ℓ)

𝜕%�̅�ℓ
1
�̅�ℓ

𝜌𝑢 ℓ 	− �̅�ℓ G𝑢ℓ
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Baropycnal Work in Normal Shock: 𝚲ℓ 𝒙

For ℓ = 0.15𝐿

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝑥/ℓ) 𝑥/ℓ)

𝜕%�̅�ℓ
1
�̅�ℓ

𝜌𝑢 ℓ 	− �̅�ℓ G𝑢ℓ Λℓ x
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Coarse-grained KE Budget For Normal Shock

𝛁 ⋅ 𝑱ℓ = −Πℓ − Λ ℓ − 2𝜏ℓ 𝑝, 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	 − 𝐷ℓ
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Scale Locality of the Sub-scale Flux: Λℓ 𝑥

Infrared Locality

Λℓ! �̅�ℓ" , 𝜌, 𝑢 / Λℓ! → 0	𝑎𝑠	 Zℓ* ℓ+ → 0

Ultraviolet Locality

Λℓ! 𝑃, 𝜌′, 𝑢 / Λℓ! → 0	𝑎𝑠	 Zℓ+ ℓ* → 0
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Scale Locality of the Sub-scale Flux: Λℓ 𝑥

Infrared Locality

Λℓ! �̅�ℓ" , 𝜌, 𝑢 / Λℓ! → 0	𝑎𝑠	 Zℓ* ℓ+ → 0

Ultraviolet Locality

Λℓ! 𝑃, 𝜌′, 𝑢 / Λℓ! → 0	𝑎𝑠	 Zℓ+ ℓ* → 0
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Coarse-grained KE Budget For Normal Shock

𝛁 ⋅ 𝑱ℓ = −Πℓ − Λ ℓ − C𝜏ℓ 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ ) 	 − 𝐷ℓ

∇ ⋅ 𝐽ℓ = ∇ ⋅ ( >𝜌
W𝑢 "

2
W𝑢 + >𝑝>𝑢 + W𝑢 >𝜌W𝜏 𝑢 , 𝑢 − W𝑢 >𝜎)

∇
⋅𝐽
ℓ

𝐸
∇⋅
[ ℓ
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Coarse-grained KE Budget For Normal Shock

𝛁 ⋅ 𝑱ℓ = −Πℓ − Λ ℓ − C𝜏ℓ 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ ) 	 − 𝐷ℓ

∇ ⋅ 𝐽ℓ = ∇ ⋅ ( >𝜌
W𝑢 "

2
W𝑢 + >𝑝>𝑢 + W𝑢 >𝜌W𝜏 𝑢 , 𝑢 − W𝑢 >𝜎)

0.014

-0.035
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Coarse-grained KE Budget For Normal Shock

𝛁 ⋅ 𝑱ℓ = −Πℓ − Λ ℓ − C𝜏ℓ 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ ) 	 − 𝐷ℓ

Machine Precession
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Baropycnal Work in Rayleigh-Taylor: 𝚲ℓ 𝒙

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝜕! �̅�ℓ
b𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − F𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ

G. Boffetta

∇𝑝

Heavy

Light
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Baropycnal Work in Rayleigh-Taylor: 𝚲ℓ 𝒙
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2
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𝑝(𝑥)
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Baropycnal Work in Rayleigh-Taylor: 𝚲ℓ 𝒙

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝜕! �̅�ℓ
b𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − F𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ

G. Boffetta

∇𝑝

Heavy

Light

𝑝(𝑥)

𝜌(𝑥)

𝑢(𝑥)

+
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Baropycnal Work in Rayleigh-Taylor: 𝚲ℓ 𝒙

Λℓ x =
1
�̅�ℓ
𝜕@�̅�ℓ 𝜌𝑢 ℓ 	− �̅�ℓ B𝑢ℓ

𝜕! �̅�ℓ
b𝑢ℓ #

2
+ 𝛁 ⋅ 𝑱ℓ = −Πℓ − Λℓ − F𝜏 𝑝 , 𝛁 ⋅ 𝒖 − (−𝑃𝛁 ⋅ 𝑢ℓ) 	− 𝐷ℓ

G. Boffetta

∇𝑝

Heavy

Light

𝑝(𝑥)

𝜌(𝑥)

𝑢(𝑥)

+
Zhao, Betti, Aluie (2022)


