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Outline

• Motivation: Needs and challenges for accurately modeling Neutrino physics cross section 


• Machine Learning Approach to model cross section


• Results: Preliminary results and future plans

Witchcraft or Math, unclear boundary?



Why do we Need Accurate Neutrino Cross-Section Modeling? 
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Why do we Need Accurate Neutrino Cross-Section Modeling? 

The next-generation experiments, such as DUNE and Hyper-Kamiokande, will achieve an 
unprecedented level of accuracy in measuring neutrino oscillation parameters. 
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• To establish a connection between the detector fluxes, it will be crucial to have precise 
predictions for the cross-section.

Neutrino experiments have detected compelling evidence of oscillations through the 
examination of fluxes from both near and far detectors.

• The errors in cross-sections directly lead to errors in oscillation probabilities, potentially 
resulting in distorted signatures of new physics.
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Challenges we currently face 

Each energy region is dominated by 
certain production mechanism which is 

important for theory calculations
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Challenges we currently face 

Each energy region is dominated by 
certain production mechanism which is 

important for theory calculations

There are discrepancies between generators 
and data. 
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Challenges we currently face 

These differences are commonly addressed through tuning. 
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Challenges we currently face 

Yet, tuning for one process does not guarantee accurate predictions for other processes or 
energy levels.

In other words, tuning the near detector alone may not always be adequate for accurately extracting new 
physics signals, primarily due to assumptions made in cross-section models.
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How are we trying to address this problems?

• No ad hoc  theory assumptions


• Use Fundamental theory plus parametrization of our ignorance 


• Pure data driven approach (Machine Learning)


• Normalizing Flows
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Probability distribution

Part I: No Fundamental Theory Assumptions


Part II: Some FTA, in particular Structure Functions



Part I:  No Fundamental Theory Assumptions
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Normalizing Flows in a Nutshell

The core idea of normalizing flows is to apply a series of invertible transformations to the samples drawn 
from the base (simple) distribution. These transformations are typically parameterized by neural networks.

Flow-based Deep Generative Models
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Normalizing Flows in a Nutshell

Flow-based Deep Generative Models
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• Normalizing Flows involves a series of 
reversible steps, enabling retrieval of the 
original distribution.


• Several transformations are applied 
sequentially to progressively approximate 
the desired distribution.


•  The transformation parameters are learned 
from data, usually parametrized by Neural 
Networks, allowing adaptation to specific 
(complicated) distributions.
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Change of Variables Formula in Normalizing Flows context



base distribution 
(uniform, gaussian)
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Change of Variables Formula in Normalizing Flows context



base distribution 
(uniform, gaussian)

target distribution 
exp.data
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Change of Variables Formula in Normalizing Flows context



Jacobian matrix 
parameterized with NN

base distribution 
(uniform, gaussian)

target distribution 
exp.data
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Change of Variables Formula in Normalizing Flows context



Normalizing Flows in a Nutshell
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Near Detector
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Probability distribution

(target)



Jacobians
Probability distribution


(target)
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Jacobians
Probability distribution


(target)

Trainable network parameters
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Jacobians
Probability distribution


(target)

Base distribution

(simple)

Trainable network parameters
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Jacobians
Probability distribution


(target)

Base distribution

(simple)

Trainable network parameters
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expressively parameterized 
functions like NNets



Near Detector
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Near Detector

2D distribution

(GENIE Data)
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Near Detector

2D distribution

(GENIE Data)

Normalization 

factor
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Near Detector

2D distribution

(GENIE Data)

Normalization 

factor

Near detector Neutrino-Flux

(GENIE Data)
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Near Detector

2D distribution

(GENIE Data)

Normalization 

factor

Near detector Neutrino-Flux

(GENIE Data) Cross-section
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Near Detector

2D distribution

(GENIE Data)

Normalization 

factor

Near detector Neutrino-Flux

(GENIE Data) Cross-section

We aim to estimate the unknown 3D probability distribution, which is proportional to the cross 
section, by employing normalizing flows.
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Note that the normalization factors between the 2D and 3D distributions differ as follows
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Note that the normalization factors between the 2D and 3D distributions differ as follows

Normalization factor for near 
detector depending on 

neutrino flux
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Note that the normalization factors between the 2D and 3D distributions differ as follows

Normalization factor for near 
detector depending on 

neutrino flux

Normalization factor for 
estimated probability without 

neutrino flux dependence
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 We then marginalize the probability distribution over the neutrino energy weighted by neutrino flux
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 We then marginalize the probability distribution over the neutrino energy weighted by neutrino flux
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Where the normalization factor ratio is
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Where the normalization factor ratio is

To compute the integral we can sample over a flat distribution

where

Therefore



We have everything to compute the Loss Function to train our ND Network
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We have everything to compute the Loss Function to train our ND Network

Loss Function: KL-Divergence
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Metric function encoding distance between probability distributions



Loss Function: KL-Divergence
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Loss Function: KL-Divergence
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Irrelevant constant term



Loss Function: KL-Divergence
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Irrelevant constant term Loss function we minimize



Loss Function: KL-Divergence
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Expanding the terms in the loss
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Expanding the terms in the loss
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Expanding the terms in the loss
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If we take                  to be a uniform distribution it can be reabsorbed in the overall constant
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If we take                  to be a uniform distribution it can be reabsorbed in the overall constant

Straightforward to compute using Monte Carlo ensemble averages over data / flux / flat distributions
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Far Detector
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Far Detector
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Far Detector

￼53

Multiplying and dividing by the ND normalization factor and ND flux we get 
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Far Detector
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Multiplying and dividing by the ND normalization factor and ND flux we get 

The oscillation probability
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Far Detector
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Multiplying and dividing by the ND normalization factor and ND flux we get 

Fixed network parameters 
after ND training (best cross-

section approximation)The oscillation probability
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Substituting all together 
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Substituting all together 
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Substituting all together 
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Substituting all together 

We have everything to compute the Loss Function to train our FD Model
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Irrelevant constant term Loss function we minimize
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Doing some math and averaging over a flat distribution (as in ND)



Preliminary Results

Near Detector simulated data Uniform distribution
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Training
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Training

￼67



Preliminary Results

Far Detector simulated data 

with oscillations
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Prelim
inary 

Resu
lts



Preliminary Results

Far Detector simulated data 

with oscillations

Far Detector simulated data 

without oscillations
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Prelim
inary 

Resu
lts

Prelim
inary 

Resu
lts



What could go wrong?
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• 3D cross section model trained to learn one 2D marginalization (near detector), then 
used to predict results for another 2D marginalization (far detector)


• Generalization to out of training data generic challenge for machine learning


• Can we encode cross section physics in a 2D distribution?
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Part II: Fundamental Theory Assumptions 

(Structure Functions)



= incoming lepton momentum

= nucleus with momentum

= hadronic remnant X momentum
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= incoming lepton momentum

= nucleus with momentum

= hadronic remnant X momentum
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= incoming lepton momentum

= nucleus with momentum

= hadronic remnant X momentum
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= incoming lepton momentum

= nucleus with momentum

= hadronic remnant X momentum
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-> Basis tensors
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known kinematic functions



Structure Functions
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known kinematic functions

Parameterizing our ignorance



Difference between I and II

Loss ParametrizationPositive

KL-Divergence

KL-Divergence

-

Normalizing Flows
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Neural Networks

-
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NNPDF determines PDFs using as an unbiased  modeling 

tool Neural Networks, trained using Genetic Algorithms, 

and used to construct a Monte Carlo representation of 

PDFs and their  uncertainties: a probability distribution in a 

space of functions



Loss Function



Preliminary Results
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Prelim
inary 

Resu
lts



Uncertainties
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Uncertainties

Bootstrap
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Training and data uncertainties can be calculated simultaneously using 



Uncertainties

Bootstrap
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1. Bootstrap sample from ND data and ND flux

2. Sample over random network initializationsNear Detector

Training and data uncertainties can be calculated simultaneously using 



Uncertainties

Bootstrap
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1. Bootstrap sample from ND data and ND flux

2. Sample over random network initializations

1.  Bootstrap sample from FD data and ND flux

2.  Sample over random initializations of PMNS matrix converting ND to FD flux

Near Detector

Far Detector

Training and data uncertainties can be calculated simultaneously using 



Uncertainties

Bootstrap
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1. Bootstrap sample from ND data and ND flux

2. Sample over random network initializations

1.  Bootstrap sample from FD data and ND flux

2.  Sample over random initializations of PMNS matrix converting ND to FD flux

Statistical error from generated/obtained data

Near Detector

Far Detector

Training and data uncertainties can be calculated simultaneously using 



Conclusions

•  We have developed a method to perform neutrino oscillation analysis without a microscopic 
model of the neutrino-nucleus cross section


• Normalizing Flow model of cross section fit to near detector data and neutrino flux used to 
extract oscillations from far detector data


• Data driven complement to theory driven modeling efforts


• Work in progress: Understand network training uncertainties and incorporate microscopic 
theory training  

• We’re still figuring out the best way to do this and especially how to quantify all of the 
uncertainties in our modeling, and we are open to suggestions
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fin.
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Thanks!
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Backup


