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Outline

 Motivation: Needs and challenges for accurately modeling Neutrino physics cross section

 Machine Learning Approach to model cross section

Witchcraft or Math, unclear boundary?

* Results: Preliminary results and future plans

.




Why do we Need Accurate Neutrino Cross-Section Modeling?
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The next-generation experiments, such as DUNE and Hyper-Kamiokande, will achieve an
unprecedented level of accuracy in measuring neutrino oscillation parameters.
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Neutrino experiments have detected compelling evidence of oscillations through the
examination of fluxes from both near and far detectors.
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* Jo establish a connection between the detector fluxes, it will be crucial to have precise
predictions for the cross-section.

* The errors In cross-sections directly lead to errors in oscillation probabilities, potentially
resulting in distorted signatures of new physics.
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Challenges we currently face
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Each energy region is dominated by
certain production mechanism which is
important for theory calculations



Challenges we currently face

Acero et al [NOvA] Eur. Phys. J. C 80 (2020)
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Challenges we currently face

These differences are commonly addressed through tuning.

Input parameters
« 20, GENIE (truth)
20, GENIE (tuned)
20, NuWro (untuned)
—— 20, NuWro (tuned)

e 5.0 5.5
Amﬁl [eV?]
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Challenges we currently face

Yet, tuning for one process does not guarantee accurate predictions for other processes or

energy levels.

: - ) Coyle, L1, and Machado, JHEP 12 (2022)

nput parameters

« 20, GENIE (truth)
20, GENIE (tuned)
20, NuWro (untuned)
20, NuWro (tuned)

X  Input parameters
===+ 20, GENIE (truth)
20, GENIE (tuned)
—— 20, NuWro (untuned)
—— 20, NuWro (tuned)

In other words, tuning the near detector alone may not always be adequate for accurately extracting new
physics signals, primarily due to assumptions made in cross-section models.
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How are we trying to address this problems?

No ad hoc theory assumptions
Use Fundamental theory plus parametrization of our ignorance

Pure data driven approach (Machine Learning)

d*c"Y(E,,E', cosb)
dFE'd cos @

> 0 Probability distribution

Part I: No Fundamental Theory Assumptions

Part Il: Some FTA, in particular Structure Functions q’" «.‘
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Normalizing Flows




Part I: No Fundamental Theory Assumptions
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Normalizing Flows in a Nutshell

The core idea of normalizing flows is to apply a series of invertible transformations to the samples drawn
from the base (simple) distribution. These transformations are typically parameterized by neural networks.
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Normalizing Flows in a Nutshell

 Normalizing Flows involves a series of
reversible steps, enabling retrieval of the
original distribution.

e Several transformations are applied
sequentially to progressively approximate
the desired distribution.

* The transformation parameters are learned
from data, usually parametrized by Neural
Networks, allowing adaptation to specific
(complicated) distributions.
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Change of Variables Formula in Normalizing Flows context

X =f(Z) and Z = f1(X)

0 (X)
detT
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Change of Variables Formula in Normalizing Flows context

X =f(Z) and Z=fHX)

Py(X) = Py(f () |det LK)

\ :

base distribution
(uniform, gaussian)
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Change of Variables Formula in Normalizing Flows context

X =f(Z) and Z=fHX)

Py (X) = BRI | et 2K

K \ 8X
target distribution

base distribution
(uniform, gaussian) exp.data
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Change of Variables Formula in Normalizing Flows context

X =f(Z) and Z=fHX)

Px(X) = Pz(f (X))

\

N

D —
Of —1 (X) Jacobian matrix
det ————mM= parameterized with NN
Ox

base distribution
(uniform, gaussian)

target distribution

exp.data
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Normalizing Flows in a Nutshell
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Near Detector
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1 d2o(t4)

P(E,,E' cos;)\) = J(E,, E',cos 0; \)B(z', 2°, 2°) ~
(E,, E",cosf;\) (E,,E ,cos0;\)B(z", 2%, 2°) N o dE'dcos 6
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1 d? o t4)
— J(E,, E' 0:- \\B(z'. 2%. 2°) ~ S —
* (B, B, cos G\ B2, 2% 2) ~ S — s

Probability distribution
(target)

23



1 d2 O.(EA)

:JEV,E', Q.AB 1 2 3 ~ o 77
( COS U, ) (Z ¢ K 9 R ) Nflow dE,dCOSO

Probability distribution
(target) Jacobians

0(E,, E’', cosb)
0(zt, 2%, z3)

J(E,,E', cosf;\) =
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Trainable network parameters

1 d2 O.(EA)

:JEV,E', Q;AB 1 2 3 ~ - -
( COS ) (Z ¢ K 9 R ) Nflow dE,dCOSO

Probability distribution
(target) Jacobians

0(E,, E’', cosb)
0(zt, 2%, z3)

J(E,,E', cosf;\) =
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. Base distribution
Trainable network parameters

(simple)

1 d2ot4)

:JEV,E" Q;AB 1 2 3 ~ - @
( COS ) (Z ¢ K g R ) Nflow dE,dCOSO

Probability distribution
(target) Jacobians

0(E,, E’', cosb)

, . —
J(E,,E',cosf;\) = 82122 29)
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Trainable network parameters

Probability distribution
(target)

= J(E,,E', cos6; )\)B(Zl; 2':2, 23) =

Jacobians

J(E,,E', cosf;\) =

27

Base distribution

(simple)

1 d?ot4)
N 10w dE'd cos 0

N

expressively parameterized
functions like NNets

0(E,, E’', cosb)

0(zt, 22, 23)



Near Detector

| d*c“(E,, E', cos 6)

QND(E,, COS 9) —

/dEV(PND(EV) dE'd cos 0

NND
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Near Detector

| d*c(E,, E', cos0)

QND(EI, COS 9) —

/dEV(I’ND(Eu)

Nnp dE'd cos 0

2D distribution
(GENIE Data)
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Near Detector

Qnp(E', cosf) =

2D distribution
(GENIE Data)

1
NnbD

Normalization
factor

/dEV(I)ND(Eu)
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Near DeteCtor Near detector Neutrino-Flux
(GENIE Data)

|

26¢A)(E,, E', cos 6)

d
Qnp(E', cosf) = ! /dE,,(I)ND(E,,)

Nnp dE'd cos6

2D distribution
(GENIE Data)

Normalization

factor
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Near Detector

Qnp(E', cosf) =

2D distribution
(GENIE Data)

(GENIE Data)

Near detector Neutrino-Flux

|

Cross-section

2 (£4) (E,,, E', cos0)

| / d
dE,@np(E,
N (Ev)

Normalization
factor
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Near Detector Near detector Neutrino-Flux
(GENIE Data) Cross-section

{ d’c"Y(E,, E', cos )

1
E' 0) = dE, ® E,
Qnp(E, cosb) Nnp / np(Ey) dE'd cos 6

2D distribution
(GENIE Data)

Normalization

factor

We aim to estimate the unknown 3D probability distribution, which is proportional to the cross
section, by employing normalizing flows.
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Note that the normalization factors between the 2D and 3D distributions differ as follows
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Note that the normalization factors between the 2D and 3D distributions differ as follows

d2 5 (t4) Normalization factor for near
Nnp = /dE'd cos 0dE, P np(E)) ST, 3 detector depending on
COS neutrino flux
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Note that the normalization factors between the 2D and 3D distributions differ as follows

, 2 O.(EA) Normalization factor for near
Nnp = /dE dcosO0dE,®np(E,) dE'd cos 0 detector depending on

neutrino flux

d20.(€A) Normalization factor for
Nflow — / dEVdE,d COS 0,— estimated probability without
dE'd cos @ neutrino flux dependence
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We then marginalize the probability distribution over the neutrino energy weighted by neutrino flux

= flow

P(E' cos@; \) =
( ) Nor

/dEl,(I)ND(E,,)P(E,,,E',cos 0;\) ~ Qnp(E', cosb)
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We then marginalize the probability distribution over the neutrino energy weighted by neutrino flux

= flow

P(E' cos@; \) =
( ) N

/dE,,CI)ND(E,,)P(E,,,E',COS 0; \) ~ Qnp(E', cos6)

Where the normalization factor ratio is

NND
Nflow

— /dE,,dE'd cos 0P np(E,)P(E,, E’, cos6; A)
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Where the normalization factor ratio is

NND
Nflow

— /dE,,dE’d cos 0@ np(E,)P(E,, E', cosb; \)

To compute the integral we can sample over a flat distribution

1 e ]
F(E',cos6) = —  whw A= / / dcosd — 2B
F 0 —1

Therefore

NND

W = <<P(E,,, E' cos®: )\)>(I)ND>F
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We have everything to compute the Loss Function to train our ND Network
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We have everything to compute the Loss Function to train our ND Network

Loss Function: KL-Divergence

Metric function encoding distance between probability distributions

D(py||p) = / dz py(z) In [m("”)]

p2(z)

KL =0 < if p1 = p
KL >0 if p1 # po
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Loss Function: KL-Divergence

~ I , —_
D(Q@npl|P) = /dE’dCOSH Qnp(E', cosf)In CiND(E , cos 0)
- P(E’',cos6;\)
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Loss Function: KL-Divergence

~ N E, 9 —
D(Qnp||P) = /dE'dcosé? Qnp(E', cosh)In QND( , cos 0)
- P(E’',cos6;\)

= C(E',cos0) — L(E', cos0; \)

lrrelevant constant term
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Loss Function: KL-Divergence

~ I El 0 )
D(Qnp||P) :/dE'dcosé? Qnp(E',cosb)In QND( , cos 6)
. P(E',cosO;\)

= C(E",cos@) — L(E', cos; \)

lrrelevant constant term | oss function we minimize
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Loss Function: KL-Divergence

D(Qnpl||P) = /dE’dcosO Qnp(E’,cosf)In

- Qnp(E'’, cosb) -

- P(E’,cos0;\)

= C(E',cos) — L(E',cos6; \)

L=— /dE'dcosH Qnp(E', cos)In _P(E',cos 0; \)
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P(E', cos 6; )\)} >Q

Expanding the terms in the loss
(E,)P(E,,E', cos;\)

p 1  [dE,®Np(E,)P(E,,E',cos6;\)
— —( In
((P(E,, E', cos 6; /\)><1>ND> o

F .
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P(E', cos 6; )\)} >Q

Expanding the terms in the loss
(E,)P(E,,E', cos;\)

[dE,@xp(E,)P(E,, E',cos6; \)
L=—(In P(E,,E',cos0;\) = J(E,,E’, cos9; \)B(z', 2%, z°)
QND

((P(E,,E',cos0;\))g. )

F .

(J(By, B',cos6; B4, 22, 28) )

<l _de,,CI)ND(E,,)J(EV,E’,cos 0; \)B(z!, 2%, 2°) _ >
—( In
QnND
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P(E', cos 6; )\)} >Q

Expanding the terms in the loss

/dE,,é[)ND(E,,)P(E,,, E', cosf; \)

P(E,,E',cos0;\) = J(E,,E’, cos9; \)B(z', 2%, z°)

p 1  [dE,®Np(E,)P(E,,E',cos6;\)
— —( In
((P(E,, E', cos 6; A)>(I,ND> o

F .

_ <1n

<1 _deV(I)ND(EV)J(EV,E,,COSH; )\)B(zl,zz,z?’)- >
—( In
<<J(EV,E,,COSQ; )\)B(zl7227’z3><I)ND>F QnND

®Np

((J(Ey,, E',cos 0; \) B(z1, 22, Z3><I>ND>F _

(J(E,, E',cos0; \)B(z', 2%, 2°) ) ) >
QnND
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If we take B(z', 2%, 2°) to be a uniform distribution it can be reabsorbed in the overall constant

(J(Ey,, E' ,cosb;\)) 4
L=—{(1In Ak
<<J(E,,,E’,cos 0: )‘)><I>ND>

F QnND
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If we take

(J(E,, E',cos0; \))

L=—(1n

®Np

<<J(E,,, E’, cos6; >‘)><I>ND>

<<J(E,,, E' cos®: )\)>(I)ND>

F_

_ <ln

F QnND

(J(E,,E',cos6;\))

B(z',2%,2°) to be a uniform distribution it can be reabsorbed in the overall constant

®NDp

Straightforward to compute using Monte Carlo ensemble averages over data / flux / flat distributions
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Far Detector

1 d*c"(E,, E', cos8))

Qrp(E', cos ) =

/dEV(I)FD(EV) dE'd cos 6

NFD



Far Detector

Qrp(E', cos ) =

1
NFp

d*c"(E,, E', cos8))

/dEu‘I’FD(Eu)

dFE'd cos @

Multiplying and dividing by the ND normalization factor and ND flux we get

QFD(EI,

i (I)FD(EV)

Pnp(EY)

P(E,,E', cos; \*)



Far Detector

Qrp(E', cos ) =

1
NFp

d*c"(E,, E', cos8))

/dEu‘I’FD(Eu)

dFE'd cos @

Multiplying and dividing by the ND normalization factor and ND flux we get

QFD(EI,

i (I’FD(EV)

PnD(E))

P(E,,E', cos; \*)



Far Detector

Qrp(E', cos ) =

1
NFp

/dEV(I)FD(EV)

d’c(E,, E', cosh))

dFE'd cos 6

Multiplying and dividing by the ND normalization factor and ND flux we get

QFD(Ela

i (I)FD(EV)

| PN (EY)

P(E,,E',cos0; \")

Fixed network parameters
after ND training (best cross-
section approximation)



i (I)FD(EV) ]

PnD(EY)

P(Em UPMNS) ~

P(E,,E’, cos0; \*)

¢ rp(L,)

(I)ND(EV)



P(E,,E', cos; \*)




Substituting all together

dEI/(:p Ez/ P EV7E,, 9, )\* P EI/7U
Qrp(E’,cosf) ~ J ND(Ey) P( cos 0; A" ) P( PMNS)

<f dE'dcosd P(E,,E', cos 0; \*)P(E,; UPMN5)>

®ND

o8



Substituting all together

deV(I)ND(EV)P(Ew Ela COS 07 )‘*)P(EV? UPMNS)

E',cosf) ~
B ) e P(Ew rvcosts NP (B Urans)

®ND

<P(EV, E', COS 9; )\*)P(E,,; UPMNS)> BN

<f dE'dcos@ P(E,, E', cos0; \*)P(E,; UPMN5)>

®ND



Substituting all together

deV(I)ND(EV)P(Ew Ela COS 07 )‘*)P(EV? UPMNS)

E',cosf) ~
B ) e P(Ew rvcosts NP (B Urans)

®ND

(P(E,,E', cos0; \*)P(E,; UpmNs))s,,

<f dE'dcos@ P(E,, E', cos0; \*)P(E,; UPMN5)>

®ND

R(E',cos0; \*, Upyns)
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Substituting all together

deV(I)ND(EV)P(Ew Ela COS 07 )‘*)P(EV? UPMNS)

E',cosf) ~
QFD( ) <de,dCOSHP(EV7E,7COSO; )‘*)P(EV7UPMNS)>

®ND

(P(E,, E',c0s 6; \*)P(Ey; Upains)) o,
<f dE'dcos@ P(E,, E', cos0; \*)P(E,; UpMN5)>

®ND

R(E',cos0; \*, Upyns)

We have everything to compute the Loss Function to train our FD Model
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I E’, cos )
D R)= [ dE'dcosf E’,cosf)1 LETLca
(QFp||R) / 080 Grp(E,coad)In R(E',cos0; \*,Upmns)




I /
D(Qrp||R) = /dE'dcosé’ QFD(E,,COSH) In Qrp(E’, cosb)
R(E',cos0; \*,Upyns)

=Cpp(E',cos80) — Lrp(E,,E', cos0; \*,Uppyns)

lrrelevant constant term | oss function we minimize



D(Qrp||R) = /dE'dcosH Qrp(E’, cosf)In

QFD(E,7 COS 9)
] R(E', cos 0; \*, UPMNS) ]

=Cpp(E',cos80) — Lrp(E,,E', cos0; \*,Uppyns)

Doing some math and averaging over a flat distribution (as in ND)

(J(Ey, E',cos0; \*YP(E,; Upmns))

—<<J(E,,, E,, COS 9; )\*)P(E,,; UPMNS)>F>

PND_

®ND_ >QFD

64
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Preliminary Results

Target distribution

Initial Base distribution
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cosbB

Near Detector simulated data Uniform distribution
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Training
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Training

Predicted distribution at epoch 1150 Target distribution
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Preliminary Results

== True sinfx3 ~0.75

Far Detector simulated data
with oscillations A
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Preliminary Results

Far Detector simulated data
without oscillations ¥

== True sinfz;3; ~0.75

Far Detector simulated data
with oscillations A

-= non-oscillated sin ;s
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What could go wrong?

* 3D cross section model trained to learn one 2D marginalization (near detector), then
used to predict results for another 2D marginalization (far detector)

* (Generalization to out of training data generic challenge for machine learning

 Can we encode cross section physics in a 2D distribution?
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Part ll: Fuhdamental Theory Assumptions

(Structure Functions)

/1



g=k—k'

k = incoming lepton momentum

—

P = nucleus with momentum (M, 0)

P, = hadronic remnant X momentum p' = k+p — k'

(2



/3

g=k—k'

k = incoming lepton momentum

—

P = nucleus with momentum (M, 0)

P, = hadronic remnant X momentum p' = k+p — k'




g=k—k

k = incoming lepton momentum

—

P = nucleus with momentum (M, 0)

P, = hadronic remnant X momentum p' = k+p — k'

V2Gr [_ 1 —« ]
(vA) — I \/ 5 m / TR
MO = R [tk ) (52 )t V| (XY, 47 40)
d20‘(VA) /Y W'LW K (E 9 W 9
dE'dcos® " — Z i(Ev,z,Q°)W;(z,Q7) |

74



=

k

P = nucleus with momentum

p

/

= Incoming lepton momentum

(MA’6)

v \/§G —— I \/ 1 — - /
M) — 1+q2/§42 U(k,/\)< 275)7“’&(16,)\) (X, — A A(p))
W L |
d20.(1/A) )
dE'dC059: CK,LLVWM ZK by, x, Q ) ( 7Q )
! Ki(waan) — K;LI/BQW1 WHV ( Q ZW L Q BW/

75

J

= hadronic remnant X momentum p' =k +p — k'

pv .
B." -> Basis tensors



1% -— ]-_ ]
oA %Z u(k', \" ( 275>’yuu(k, )

:ﬂ(k, A) ( ! _275 )’y,,u(k', )\’):

= kK, + KKy — (k- ) + i€k K

/6

known kinematic functions



known kinematic functions

va) 1 o (1= 1= 1 — s ——
) =5 3 [0, x) (S22 ) | [t ) (522 )ulw', X)

AN L

= kuk, +k k, — gu (k- k') + i€k K

Structure Functions

v 1 % PuPv vA : ppqa VA
WIEVA) — _guvwl( A)(xqu) + ( - )Wz( )(xaqz) +26MVP0( 2 )WB( )(w7q2)

T Mi q
Ay (wA), 9y, 2 Z\
| qu W4 (.:z:,q ) | q2 (p,uQV + Q,upz/)WE, (CU,q )

Parameterizing our ignorance

i’



Difference between | and li

. oss

Parametrization

Positive
0>
72 5(7A) Q
dE'd cos 6

W, X,

KL-Divergence

KL-Divergence

/8

Normalizing Flows

Neural Networks



The collaboration ~ - v Documents ~ . For the public

NNPDF determines PDFs using as an unbiased modeling
tool Neural Networks, trained using Genetic Algorithms,

The NNPDF collaboration performs research In the field of high-energy physics. The collaboration Is not for profit, and funded by and used 'to ConStrUCt a Monte Carlo repl’esentathn Of

national and International educational and research Institutions and funding agencles, such as Universities, Research counclls, and
The sclentific output of the collaboration Is mostly In the form of sclentific and canditis
all freely avallable to the public, to sclentists, and to Interested partles, through the ., Jo repositories, and PDF d .th " .t " t . b blt d .t b t "
software repositories. The NNPDF collaboration also effectively acts as an educational and trainin vice, through the affiliation of S an elr uncertainties. a pro ablll y ISTribution In a
everal of Its members with various undergraduate and g 2 schools: a f been performed In the

framework of the

- e

space of functions

The NNPDF collaboration determines the structure of the proton using contemporary methods of artificial Intelligence.
A precise knowledge of the so-called Parton Distribution Functions (PDFs) of the proton, which describe their structure

In terms of thelr quark and gluon constituents, Is a crucial Ingredient of the physics program of the Large Hadron
Collider of CERN. It has played an Important role In the discovery of the Higgs boson. Its Incomplete knowledge Is one
of the main limitations In searches of new physics.

PDFs cannot be computed from first principles: they have to be extracted from the data, through a careful comparison
of theoretical predictions and experimental results. NNPDF determines PDFs using as an unblased modeling tool Neura
Networks, tralned using Genetic Algorithms, and used to construct a Monte Carlo representation of PDFs and their

uncertainties: a probabllity distribution In 2 space of functions.

This site provides Information on NNPDF for the general public, for physicists, and for PDF users. Among others, a
description of our main research tools, user manuals and documentation, talks and publications, Including theses, and
links to analysis tools. The NNPDF code, Including extensive documentation, Is avallable . All NNPDF PDF
sets are publicly avallable from
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Loss Function
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Preliminary Results

Target distribution
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Uncertainties
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Uncertainties

Training and data uncertainties can be calculated simultaneously using BOOtstrap

::H v,
N
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Uncertainties

Training and data uncertainties can be calculated simultaneously using BOOtstrap

_.:H ne
N

1. Bootstrap sample from ND data and ND flux
Near Detector 2. Sample over random network initializations
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Uncertainties

Training and data uncertainties can be calculated simultaneously using BOOtstrap

Near Detector
1. Bootstrap sample from ND data and ND flux

2. Sample over random network initializations

Far Detector 1. Bootstrap sample from FD data and ND flux

2. Sample over random initializations of PMNS matrix converting ND to FD flux
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Uncertainties

Training and data uncertainties can be calculated simultaneously using BOOtstrap

Near Detector

1. Bootstrap sample from ND data and ND flux
2. Sample over random network initializations

1. Bootstrap sample from FD data and ND flux
Far Detector 2. Sample over random initializations of PMNS matrix converting ND to FD flux

Statistical error from generated/obtained data
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Conclusions

We have developed a method to perform neutrino oscillation analysis without a microscopic
model of the neutrino-nucleus cross section

Normalizing Flow model of cross section fit to near detector data and neutrino flux used to
extract oscillations from far detector data

Data driven complement to theory driven modeling efforts

Work In progress: Understand network training uncertainties and incorporate microscopic
theory training

uncertainties in our modeling, and we are open to suggestions
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Thanks!

Presentation of the research

fin.
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CC Single pion

nucleon excites to
resonance state

CC Quasi-elastic

nucleon changes,
but doesn’t break up
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