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We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = max
t̂

∑
i |t̂ · "pi|∑
i |"pi|

, (1)

where the sum i is over all final-state hadrons with mo-
menta "pi. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH # Q is set by the e+e− c.m. energy Q. The jet
scale, µJ # Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS # Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q& τ ! 1/3 , (2)

far-tail region: 1/3 ! τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ & 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS # ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ( ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition
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ations of the second soft function moment parameter
Ω2. Our default choice for the parametrization of the
soft function Smod

τ uses c0 = 1 and cn>0 = 0 with
∆̄(R∆, µ∆) = 0.05 GeV. In this case λ is the only vari-
able parameter of the soft model function Smod

τ , and Ω2

is predetermined by Eq. (57) with c2 = 0. As explained
in Sec. IV we modify Ω2 by setting c2 to nonzero val-
ues. It is instructive to discuss the Ω2 values one should
consider. From the Cauchy-Schwarz inequality one can
show that Ω2/Ω2

1 ≥ 1, giving a strict lower bound on
Ω2. This bound can only be reached if Smod

τ is a delta-
function. Moreover, if Smod

τ is positive definite, vanishing
at k = 0, has a width of order ΛQCD, has its maximum at
a k value of order ΛQCD, and has an exponential fall-off
for large k, then one finds Ω2/Ω2

1 < 1.5. We therefore
adopt the range 1 ≤ Ω2/Ω2

1 ≤ 1.5 as a conservative Ω2

variation to carry out an error estimate. For our default
parametrization we have Ω2/Ω2

1 = 1.18 and changing c2
between ±0.5 gives a variation of Ω2/Ω2

1 between 1.05
and 1.35. We find that the best fit values for αs and Ω1

are smooth linear functions of Ω2/Ω2
1 which allows for a

straightforward extrapolation to the conservative range
between 1.0 and 1.5. The results for the variations of the
best fit values for αs(mZ) and Ω1 for Ω2/Ω2

1 = 1.18+0.32
−0.18

read (δαs(mZ))Ω2 =+0.00017
−0.00013 and (δΩ1)Ω2 =+0.011

−0.015 and
are also shown in Fig. 16. The symmetrized version of
these errors are included in our final results. For our final
results for αs(mZ) we add the uncertainties from Ω1 and
the one from Ω2 quadratically giving the total hadroniza-
tion error. For Ω1(R∆, µ∆) we quote the error due to Ω2

separately.

Final Results

As our final result for αs(mZ) and Ω1(R∆, µ∆), obtained
at N3LL′ order in the R-gap scheme for Ω1, including
bottom quark mass and QED corrections we obtain

αs(mZ) = 0.1135 ± (0.0002)exp

± (0.0005)hadr ± (0.0009)pert,

Ω1(R∆, µ∆) = 0.323 ± (0.009)exp ± (0.013)Ω2

± (0.020)αs(mZ) ± (0.045)pert GeV, (68)

where R∆ = µ∆ = 2 GeV and we quote individual 1-
sigma errors for each parameter. Eq. (68) is the main
result of this work. In Fig. 15 (blue dashed line) and
Fig. 11a (thick dark red line) we have displayed the cor-
responding combined total (experimental+theoretical)
standard error ellipse. To obtain the combined ellipse we
take the theory uncertainties given in Tabs. IV and V to-
gether with the Ω2 uncertainties, adding them in quadra-
ture. The central values in Eq. (68) are determined by
the average of the respective maximal and minimal val-
ues of the theory scan, and are very close to the central
values obtained when running with our default theory
parameters. The fit has χ2/dof = 0.91 with a variation
of ±0.03 for the displayed scan points. Having added the

theory scan and Ω2 uncertainties reduces the correlation
coefficient in Eq. (65) to ρtotalαΩ = −0.212. As a compar-
ison we have also shown in Fig. 11b the combined total
(experimental+theoretical) error ellipse at N3LL′ in the
MS scheme for Ω̄1 where the O(ΛQCD) renormalon is not
subtracted.
Since our treatment of the correlation of the system-

atic experimental errors is based on the minimal over-
lap model, it is instructive to also examine the results
treating all the systematic experimental errors as uncor-
related. At N3LL′ order in the R-gap scheme the re-
sults that are analogous to Eqs. (68) read αs(mZ) =
0.1141 ± (0.0002)exp ± (0.0005)hadr ± (0.0010)pert and
Ω1(R∆, µ∆) = 0.303±(0.006)exp±(0.013)Ω2±(0.022)αs±
(0.055)pert GeV with a combined correlation coefficient of
ρtotalαΩ = −0.180. The results are compatible with the re-
sults of Eqs. (68) and indicate that the ignorance of the
exact correlation of the systematic experimental errors
does not crucially affect the outcome of the fit.

Data Set Choice

We now address the question to which extent the results
of Eqs. (68) depend on the thrust ranges contained in the
global data set used for the fits. Our default global data
set accounts for all experimental thrust bins for Q ≥ 35
in the intervals [τmin, τmax] = [6/Q, 0.33]. (See Sec. VI
for more details.) This default global data set is the
outcome of a compromise that (i) keeps the τ interval
large to increase statistics, (ii) sets τmin sufficiently large
such that the impact of the soft function moments Ωi

with i ≥ 2 is small and (iii) takes τmax sufficiently low
to exclude the far-tail region where the missing order
αsΛQCD/Q corrections potentially become important.
In Fig. 17 the best fits and the respective experimen-

tal 39% and 68% CL error ellipses for the default values
of the theory parameters given in Tab. III are shown for
global data sets based on different τ intervals. The re-
sults for the various τ intervals are each given in different
colors. The results for our default global data set is given
in red color, and the subscript “strict” for some intervals
means that bins are included in the data set if more than
half their range is contained within the interval. For in-
tervals without a subscript the criterion for selecting bins
close to the boundaries of the τ interval is less strict and
generically, if the τmin and τmax values fall in such bins,
these bins are included. The numbers in superscript for
each of the τ intervals given in the figure refers to the to-
tal number of bins contained in the global data set. We
observe that the main effect on the outcome of the fit
is related to the choice of τmin and to the total number
of bins. Interestingly all error ellipses have very similar
correlation and are lined up approximately along the line

Ω1

50.2GeV
= 0.1200− αs(mZ) . (69)

Lowering τmin increases the dependence on Ω2 and leads
to smaller αs and larger Ω1 values. On the other hand,
increasing τmin leads to a smaller data set and to larger
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We present a global fit for ↵s(mZ), analyzing the available C-parameter data measured at
center-of-mass energies between Q = 35 and 207GeV. The experimental data is compared to a
N3LL0 + O(↵3

s) + ⌦1 theoretical prediction (up to the missing four-loop cusp anomalous dimen-
sion), which includes power corrections coming from a field theoretical nonperturbative soft func-
tion. The dominant hadronic parameter is its first moment ⌦1, which is defined in a scheme which
eliminates the O(⇤QCD) renormalon ambiguity. The resummation region plays a dominant role
in the C-parameter spectrum, and in this region a fit for ↵s(mZ) and ⌦1 is su�cient. We find
↵s(mZ) = 0.1123 ± 0.0015 and ⌦1 = 0.421 ± 0.063GeV with �2/dof = 0.988 for 404 bins of data.
These results agree with the prediction of universality for ⌦1 between thrust and C-parameter within
1-�.

I. INTRODUCTION

In order to study Quantum Chromodynamics (QCD)
accurately in the high-energy regime, it is useful to ex-
ploit the wealth of data from previous e

+
e
� colliders

such as LEP. Here the final states coming from the under-
lying partons created in the collisions appear as boosted
and collimated groups of hadrons known as jets. Event
shapes have proven to be very successful to study these
collisions quantitatively. They combine the energy and
momenta of all of the measured hadrons into an infrared-
and collinear-safe parameter which describes the geomet-
ric properties of the whole event by a single variable dis-
tribution. Due to their global nature event shapes have
nice theoretical properties, making it possible to obtain
very accurate theoretical predictions using QCD. Most
e
+
e
� event shape variables quantify how well the event

resembles the situation of two narrow back-to-back jets,
called dijets, by vanishing in this limit. Because the dijet
limit involves restrictions that only allow collinear and
soft degrees of freedom for the final-state radiation, such
QCD predictions involve a number of theoretical aspects
that go beyond the calculation of higher-order pertur-
bative loop corrections. These include factorization, to
systematically account for perturbative and nonpertur-
bative contributions, and the resummation of large log-
arithmic corrections by renormalization group evolution.
Comparisons of predictions for event shapes with experi-
mental data thus provide non-trivial tests of the dynam-
ics of QCD.

Due to the high sensitivity of event shapes to jets
induced by gluon radiation they are an excellent tool
to measure the strong coupling ↵s. For more inclusive
hadronic cross sections (like e

+
e
�

! hadrons) the ↵s

dependence is subleading because it only occurs in cor-
rections to a leading order term, while for event shapes
the ↵s dependence is a leading-order e↵ect. For this rea-
son, the study of event shapes for determining ↵s has
a long history in the literature (see the review [1] and
the workshop proceedings [2]), including recent analyses

which include higher-order resummation and corrections
up to O(↵3

s
) [3–12].

Several previous high-precision studies which deter-
mine ↵s(mZ) [4, 5, 9–11] focus on the event shape called
thrust [13],

⌧ = 1� T = min
~n

 
1�

P
i
|~n · ~pi|P
j
|~pj |

!
, (1)

where ~n is called the thrust axis and it follows from the
above equation that 0  ⌧  1/2. Another event shape,
known as C-parameter [14, 15], can be written as:

C =
3

2

P
i,j

|~pi||~pj | sin
2
✓ij

(
P

i
|~pi|)

2 , (2)

where ✓ij gives the angle between particles i and j. It
is straightforward to show that 0  C  1. In a pre-
vious paper [12] we computed the C-parameter distribu-
tion with a resummation of large logarithms at N3LL0

accuracy, including fixed-order terms up to O(↵3
s
) and

hadronization e↵ects using a field-theoretic nonperturba-
tive soft function. These results were achieved by using
the Soft Collinear E↵ective Theory (SCET) [16–20]. Our
results for C are valid in all three of the peak, tail, and
far-tail regions of the distribution, and are the most ac-
curate predictions available in the literature, having a
perturbative uncertainty of ' 3% at Q = mZ for the re-
gion relevant for ↵s(mZ) and ⌦1 fits. The same accuracy
was previously achieved for thrust, where the remaining
perturbative uncertainty in the ⌧ distribution is ' 2% in
this region [9]. In this paper we make use of these new
C-parameter theoretical results [12] to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.
Since both ⌧ and C vanish in the dijet limit, it is worth-

while to contrast them in order to anticipate di↵erences
that will appear in the analysis. Di↵erences between C

and ⌧ include the following:
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FIG. 9. Global fit results for di↵erent choices of
dataset, using our best theory setup at N3LL0 with
power corrections in the Rgap scheme. Consider-
ing the central values from left to right, the datasets
read [Cmin, Cmax ]# of bins: [ 29/Q, 0.7 ]371, [ 22/Q, 0.75 ]453,
[ 23/Q, 0.7 ]417, [ 0.24, 0.75 ]403, [ 24/Q, 0.7 ]409, [ 25/Q, 0.7 ]404
(default), [ 25/Q, 0.6 ]322, [ 25/Q, 0.75 ]430, [ 27/Q, 0.7 ]386,
[ 25/Q, 0.65 ]349, [ 22/Q, 0.7 ]427. We accept bins which are
at least 50% inside these fit regions. The ellipses correspond
to total 1-� uncertainties (experimental + theory) for two
variables (↵s and ⌦1), which are suitable for a direct compar-
ison of the outcome of two-parameter fits. The center of the
ellipses are also shown.

correlation and are lined up approximately along the line

⌦1

41.26GeV
= 0.1221� ↵s(mZ) . (33)

As expected, the results of our fits depend only weakly on
the C range and the size of the global datasets, as shown
in Fig. 9. The size and tilt of the total uncertainty el-
lipses is very similar for all datasets (with the exception of
[ 22/Q, 0.7 ], which clearly includes too much peak data).
Since the centers and the sizes of the uncertainty ellipses
are fully statistically compatible at the 1-� level, this
indicates that our theory uncertainty estimate at N3LL0

really reflects the accuracy at which we are capable of de-
scribing the di↵erent regions of the spectrum. Therefore
a possible additional uncertainty that one could consider
due to the arbitrariness of the dataset choice is actually
already represented in our final uncertainty estimates.

G. Final Results

As our final result for ↵s(mZ) and ⌦1, obtained at
N3LL0 order in the Rgap scheme for ⌦1(R�, µ�), we get

↵s(mZ) = 0.1123 ± 0.0002exp (34)

FIG. 10. C-parameter distribution at N3LL0 order for Q =
mZ showing the fit result for the values for ↵s(mZ) and ⌦1.
The blue band corresponds to the theory uncertainty as de-
scribed in Sec. VB. Experimental data is also shown.

± 0.0007hadr ± 0.0014pert,

⌦1(R�, µ�) = 0.421 ± 0.007exp

± 0.019↵s(mZ) ± 0.060pert GeV,

where R� = µ� = 2 GeV and we quote individual 1-�
uncertainties for each parameter. Here �

2
/dof = 0.99.

Equation (34) is the main result of this work.

Equation (34) accounts for the e↵ect of hadron mass
running through an additional (essentially negligible) un-
certainty. Also, it neglects QED and finite bottom-mass
corrections, which were found to be small e↵ects in the
corresponding thrust analysis in Ref. [9].

Given that we treat the correlation of the system-
atic experimental uncertainties in the minimal overlap
model, it is useful to examine the results obtained when
assuming that all systematic experimental uncertain-
ties are uncorrelated. At N3LL0 order in the Rgap
scheme the results that are analogous to Eq. (34) read
↵s(mZ) = 0.1123±0.0002exp±0.0007hadr±0.0012pert and
⌦1(R�, µ�) = 0.412 ± 0.007exp±0.022↵s

±0.061pert GeV
with a combined correlation coe�cient of ⇢

total
↵⌦ =

� 0.091. The results are compatible with Eq. (34), in-
dicating that the ignorance of the precise correlation of
the systematic experimental uncertainties barely a↵ects
the outcome of the fit.

In Fig. 10 we show the theoretical fit for the
C-parameter distribution in the tail region, at a center-
of-mass energy corresponding to the Z-pole. We use the
best-fit values given in Eq. (34). The band corresponds to
the perturbative uncertainty as determined by the scan.
The fit result is shown in comparison with experimental
data from DELPHI, ALEPH, OPAL, L3 and SLD. Good
agreement is observed for this spectrum, as well as for
spectra at other center of mass values.
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be published in a peer-reviewed journal…
include O(𝛼s3) fixed-order perturbative results…
include `reliable’ error estimates, including NP effects…
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Event shape distributions and 

𝛼s in SCET

Thrust fits revisited 

Towards generalized angularity fits

Warning!  This is not a formalism talk.  This is barely a pheno talk….

This is really a talk on fitting.
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Event shapes @ e+e- colliders
The strong interaction provides the dominant contribution to collider processes involving 
colored objects.

As QCD exhibits asymptotic freedom, high-energy colliders probe the interaction at weaker 
coupling, thereby permitting a perturbative description in QFT.

However, as an event evolves, many scales are probed, including the non-perturbative.  As a 
result, QCD spans a rich array of physical phenomena! 

QCD is ‘simpler’ in electron-positron collisions, as one avoids the messy initial state physics of 
bound protons (PDFs, ISR, multi-pardon scattering, etc.).  This facilitates precision QCD studies, 
e.g. extractions of the strong coupling constant.

Today we will focus on event shapes, which are geometric observables characterizing the 
‘shape’ of final-state momentum distributions of hadronic objects.  The dominant channel is 
e+e- -> JJ, as soft and collinear enhancements via gluon emission primarily lead to dijet events.

So, a given event shape would assign a number to these geometric configurations, depending 
on what is actually getting measured…

Resummation II:  thrust 

5

Thrust is an e+e- event shape—a geometric, dimensionless physical observable 
characterizing the momentum distribution of particles

•  One can intui:vely see why SCET may be appropriate to treat the T1 
limi:ng case.  We some:mes then prefer the variable τ = 1‐T. 

BUSSTEPP, September 2013 

II.I  Defini:on, Kinema:cal Endpoints, and Fixed Order Result 

12 

II.I:  THRUST 

•  Thrust is an event shape.  Event shapes are geometric, physical 
observables (dimensionless) that characterize the momentum 
distribu:on of outgoing par:cles.   

•  Thrust is perhaps the simplest, and is defined: 

•  n runs over unit vectors, so that (e.g.) in a dijet, “pencil‐like” event the 
numerator and denominator cancel (T=1).  The n‐vector which gives 
the maximum also defines the “thrust axis”=axis of max momentum 
flow 

BUSSTEPP, September 2013  11 

Canonical event shape

Thrust:

I T =
1
Q

max
~n

⇣X

i

|~pi · ~nT |
⌘

two-jet like: T ' 1 spherical: T ' 1/2

Thrust distribution precisely measured at LEP (⌧ = 1 � T )MEASUREMENTS OF THRUST

Will later use ALEPH and OPAL LEP I & II results
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Event shape distributions:  thrust

• The fixed-order distribution can readily be computed in QCD, while the current state of 
the art is a N3LL’ + O(𝜶s3) resummation performed with EFT (SCET) techniques:

• The classic example is Thrust:

2. Event shapes 8

Note that while sphericity is dimensionless, and nontrivially so, since
q

i |p̨i|
2 depends

non-trivially on the event geometry, thrust looks like an observable that’s artificially

made dimensionless, by dividing out the event independent physical scale Q, set by

the experiment parameters.

Let’s take a quick look at what we’re measuring here: A particle contributes signi-

ficantly to T if the projection of its momentum onto the thrust axis is close to its total

momentum, so we identify high-thrust events as those for which this is true for all particles

in the final state. The thrust axis is the same for all particles, therefore pencil-like events as

shown on the left in figure 2.1 have T ¥ 1, ’messier’ events are assigned lower thrust values.

Sphericity is almost complementary, since for ideally pencil-like events the trans-

verse momentum vanishes completely (i.e. S = 0), whereas an ideally isotropic event

corresponds to S = 1.

T = 1

S = 0

T =
2
3

S =
3
4

T Ø
2
fi

S Æ
3
4

T Ø
1
2

S Æ 1

Figure 2.1: Thrust and sphericity values for various event geometries.

2.3 Fixed order calculations

So far the definition of our two event shapes only allows us to classify final state geometries,

which obviously does not yet promote our understanding.

But as we have a precise definition in terms of momenta, we can easily start perturbative

calculations of expected distributions for event shape observables, given a theory that

allows us to compute S-matrix elements.

Starting with a matrix element, the di�erential cross section is proportional to the

matrix element’s square: d‡ ≥ |M|
2 d�n, which can be integrated to an event
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.
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6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
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(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
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(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod
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• Event shapes can be predicted with SCET, an effective theory describing collinear and soft 
degrees of freedom (light, energetic particles) occurring alongside main channel collider scale 
Q

6

• SCET permits the precision resummation of large logs of these scales via renormalization 
group evolution!

Soft-Collinear Effective Theory [Bauer, Fleming, Pirjol, Stewart 00;
Beneke, Chapovsky, Diehl, Feldmann 02]

Effective field theory for light energetic particles

I

split into two energetic
collinear partons

I emit soft gluons that
I do not deflect the
I energetic quark

jet

) jet of collinear particles m2
J
⌧ E2

J

I soft large-angle radiation Es ⌧ EJ
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Two versions of SCET

SCETI: E2
s ⌧ m2

J
⌧ E2

J

I

EJ ⇠ Q

mJ

Es ⇠ m2
J

Q

d� ' H(Q, µ) · J(mJ , µ) · S(m2
J
/Q, µ)

ln2 Q
2

m2
J

= 1
2 ln2 Q

2

µ2 � ln2 m
2
J

µ2 + 1
2 ln2 m

4
J
/Q

2

µ2

) resum Sudakov logarithms with RG techniques

SCETII: E2
s ⇠ m2

J
⌧ E2

J

I

d� ' H(Q, µ) · J(mJ , µ) · S(mJ , µ)

ln2 Q
2

m2
J

= ln2 Q
2

µ2 � ln2 m
2
J

µ2 + ?

) new type of logarithms that cannot be resummed with RG techniques
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Introducing SCET:  intuition

Brief Article

The Author

March 6, 2015
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Introducing SCET:  factorization
• Begin with fundamental QCD fields and split into soft and collinear components:

• Further project collinear fermion into two components, and determine scaling of correlators:
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• After multipole expansion, hard-collinear factorization, and soft decoupling (achieved with 
Wilson lines), one can factorize the Sudakov form factor (schematically):

observables that do not reject any final-state hadrons and are some of the oldest and
most e�cient probes of strong processes. Event shapes can be studied at hadron or e

+
e

≠

colliders, where for the latter a wealth of experimental data already exists thanks to the
operation of the Large Electron-Positron Collider (LEP) between 1989 and 2000 at CERN.
As uncertainties regarding the initial state composition of hadrons are not present in e

+
e

≠

physics, studying event-shapes in these environments amounts to an ideal testing ground
for high-precision QCD.

Yet, like other QCD observables that depend on widely separated energy scales, event
shapes are a�ected by logarithmic enhancements to the perturbative QCD (pQCD) expan-
sion, which must be resummed to all orders. Many studies have been performed to this
end with standard pQCD and also with Soft-Collinear E�ective Theory (SCET) [2–5], an
e�ective theory of QCD in the infrared (IR). SCET formally separates the relevant scales
present in collider processes and therefore provides an elegant means to establish factor-
ization theorems. For example, the dijet event shapes we are presently concerned with
factorize into a hard function H(µ, µH) that encodes the matching of SCET to QCD, two
jet functions J(µ, µJ) describing the evolution of the coloured partons into collimated jets,
and a soft function S(µ, µS) describing low-energy, wide-angle background radiation, all of
which live at an associated scale µH ∫ µJ ∫ µS [6–10]:

1
‡tot

d‡

de
= H(Q; µ)

⁄
den den̄ des Jn(en; µ) Jn̄(en̄; µ) S(es; µ) ”(e ≠ en ≠ en̄ ≠ es) (1.1)

where n, n̄ indicate opposite directions on the light-cone (n ·n̄ = 2). Each of these functions
is separately calculable order-by-order in perturbation theory, and systematic treatments
of non-perturbative e�ects can also be consistently employed. Furthermore, the depen-
dence of H, J , and S on the factorization scale µ is controlled by renormalization group
(RG) equations, which can be used to resum large logarithms present in each function. In-
deed, many of the most precise event-shape resummations have been achieved with SCET
techniques. For example, thrust [11], C-Parameter [], and (total) jet broadening [12] are
currently resummed to N3LL [13, 14], N3LL [15], and NNLL [16, 17] accuracy, respec-
tively.1

In this paper we focus on a class of event shapes generically defined as [19]:

e(X) = 1
Q

ÿ

iœX

|pi
‹| fe(÷i) (1.2)

where ÷i is the rapidity of the i’th final state particle with respect to the thrust axis and
pi

‹ its transverse momentum. fe determines a specific observable. For example, for thrust
T © 1≠· and (total) jet broadening BT , one has f· (÷) = e

≠|÷| and fBT
(÷) = 1, respectively.

These can be generalized to observables known as angularities [6, 20, 21]:

f·a
(÷) = e

≠|÷|(1≠a) (1.3)
1
For a thorough elaboration of the logarithmic enhancements captured in a N

k
LL (k œ {0, 1, ...}) resum-

mation and the subtle di�erences between primed and unprimed accuracies, see [18].

– 2 –

e = 𝜏 (Thrust)

• Obviously, dijet event shape factorization in e+e- closely related, with addition of explicit 
measurements on soft and collinear momenta:

p l

F (Q2, L2, P 2)

=

C̃V (Q2)

J (P 2) J (L2)

S(Λ2
s)

+O
(
λ2
)

Figure 4.2. Diagrammatic representation of the Sudakov form factor in QCD; the diagram illustrates
the separation of the different scales present in the problem. The soft scale is Λ2

s = L2P 2/Q2.

4.7 Factorization and Collinear Anomaly

In the case analyzed in Section 2.3, in which the virtual propagator carrying momentum k

in the vertex correction has a small but non vanishing mass m, the integral over the soft

region vanishes. One could naively think that this implies a factorization in d = 4 of the

kind illustrated in Fig. 3.3. However, for m2 ∼ λ2 the hard function is the same as in the

massless case and is given by Eq. (2.39). This function has an infrared divergence which

depends on Q. Such a divergence cannot be canceled if the jet functions do not depend

on Q as well. In Section 2.3 we have shown that this dependence is indeed present, and

originates from the need to use an additional regulator to define in a proper way the collinear

region integrals. Here we want to study how the factorization is modified in this case. At all

orders in perturbation theory, the product of the two jet functions must be independent of

the analytic regulator, and therefore also independent of the corresponding ’t Hooft scale ν.

Consequently, the quantity

P = Jc

(
p2,m2, ln

ν2

m2
, µ

)
Jc̄

(
l2,m2, ln

ν2

Q2
, µ

)
, (4.66)

should satisfy the differential equation

d

d ln ν
lnP =

d

d ln ν

[
lnJc

(
p2,m2, ln

ν2

m2
, µ

)
+ lnJc̄

(
l2,m2, ln

ν2

Q2
, µ

)]
= 0 . (4.67)

This implies that the two terms in the square brackets in the equation above should be linear

in ln(ν2/m2) and ln(ν2/Q2), respectively, and that the coefficients multiplying the logarithms

should be independent from p2 and l2 [23]. One can then extract the terms depending on ν

by defining two new jet functions J as follows:

lnP ≡ ln Jc
(
p2,m2, µ

)
+ lnJc̄

(
l2,m2, µ

)
− F (m2, µ) ln

Q2

m2
. (4.68)

Thus one can re-factorize [11, 23] the product of the two jet functions as follows

P = e−F (m2,µ) ln Q2

m2 Jc
(
p2,m2, µ

)
Jc̄
(
l2,m2, µ

)
, (4.69)
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Introducing SCET:  power-counting

• Separation of scales in EFTs characterized by power counting expansion parameter 
which changes depending on observable, e.g.:

7

• Momentum modes then designated for the type of particle in consideration.  
Consider back-to-back light jets on the light cone, with background soft radiation:
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Dissecting dijets — constructing the curve

‘Peak’ Region: non-perturbative, soft region. NON-PERTURBATIVE MODELING 

‘Tail’ Region: resummation region.  PERTURBATIVE SCET PREDICTIONS

‘Far Tail’ Region: fixed-order, multi-jet region. QCD MATCHING 
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Figure 8: Angularity distributions at Q = 100 GeV. The full, NLL/NLO resummed, renormalon-
subtracted distributions in Fig. 7 are here shown all on the same scale. The parameters are chosen
the same as in Fig. 7. From highest to lowest peak value, the curves are for a = �2,�1,� 1
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Figure 9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = �1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
values given in Eq. (6.1) and twice these values.
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SCETching thrust:  resummation

• We evaluated H, Ji, and S at a common scale.  Yet there are ‘natural’ scales at which the logarithms are 
no longer large:
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• We thus wish to RG run our functions up to their natural scales.  Take H as a simple example:

• Where the function U is a solution to the RG equation for the hard function:
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Thrust w/ SCET:  resummation

• We evaluated H, Ji, and S at a common scale.  Yet there are ‘natural’ scales at which the logarithms are no 
longer large:
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• Similar for jet and soft functions…
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Thrust w/ SCET:  resummation

• We evaluated H, Ji, and S at a common scale.  Yet there are ‘natural’ scales at which the logarithms are no 
longer large:
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• We thus wish to RG run our functions up to their natural scales.  Take H as a simple example:

• Where the function U is a solution to the RG equation for the hard function:
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• Similar for jet and soft functions…

• H, Ji, and S contain logs of the form (respectively):
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h(x, y, {✓j}) = ĝ(x, y, {✓j}) [f̂(y, {✓j})]
2✏+↵

e
�x

(34)

Z
dx

Z
dy x

�1�n✏
y
�1�m✏

f(x.y) =

Z
dx

Z
dy x

�1�n✏
y
�1�m✏

{f(x, y)�f(0, y)�f(x, 0)+ add terms back}

H(Q
2
, µ) = H(Q

2
, µh) Uh(µh, µ)

dH(Q
2
, µ)

d lnµ
=


2�cusp ln(

Q
2

µ2
) + 4�(↵s)

�
H(Q

2
.µ)

� =
pT

MH

� =
p
⌧

LQCD =  ̄i /D ) Lcollinear = ⇣̄

✓
in ·D + i /D?

1

in ·D
i /D?

◆
/̄n

2
⇣

H(Q
2
, µ) = exp


4⇡�0

�
2
0

1

↵s(Q)

✓
1�

1

µ
� lnµ

◆�
= 1�

�0

2

↵s(Q)

4⇡
ln

2

✓
Q

2

µ2

◆
+O(↵

2
s) (35)

ln
µ
2

Q2
, ln

µ
2

⌧Q2
, ln

µ
2

⌧2Q2
(36)

4

SCET Talk Workbook

JT

March 19, 2015

X

d� ⇠ H · J ⌦ J ⌦ S (1)

1

�0

d�

d⌧
= �(⌧ )+

↵sCF

4⇡
[(�2+

2⇡2

3
)�(⌧ )�6[

1

⌧
]+�8[

ln ⌧

⌧
]+] (2)

F̂ (a, b, y) = a
p
y{

b

a(a+ b) + (1 + ab)y
+

1

a+ b+ a(1 + ab)y
} (3)

F̂ (a, b, y) = 1 + y (4)

p p ! l
+

l
�

X (5)

C =
3

2

⌃i,j |~pi||~pj | sin
2
✓ij

(⌃i|~pi|)
2

(6)

S̃
2
✏ = S̃

2
� � S̃

2
div

=
↵
2
s(µ)

(4⇡)2
{CACF

✓
0

✏4
+

3.33333⇥ 10
�6

✏3
+

.0000169792

✏2
+

.0000180711

✏

◆

+ CFTFnf

✓
�
3.33333⇥ 10

�6

✏3
�

2.22222⇥ 10
�6

✏2
+

.00000247395

✏

◆
}

(7)

⇠ �
1

n✏
(8)

S̃
2
0 =

↵
2
s(µ)

(4⇡)2

�
5.41162C

2
F + 6.81281CACF � 10.6857CFTFnf

�
(9)

1

See e.g. ‘Intro to SCET’ Becher, Broggio, & Ferroglia 
or EFT Lecture Notes, I. Stewart



10

• Evolving all scales to/from their ‘natural’ settings, one arrives at, for the SCETI cumulant:

Contents
1 Introduction 1

2 Resummed Cross Section 1
2.1 Evolution Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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4 Conclusions 8
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1 Introduction

The definition of the angularities [1–3] in e
+

e
≠ collisions to a hadronic final state X is

·a(X) = 1
Q

ÿ

iœX

Ei |sin ◊i|
a (1 ≠ |cos ◊i|)1≠a

, (1.1)

where Q is the center-of-mass collision energy, Ei is the energy of the ith particle in the
final state, and ◊i is its angle with the thrust axis. The parameter a can range between
≠Œ < a < 2 for infrared safety. For a = 0, Eq. (1.1) is the thrust ·0 = 1 ≠ T [4], and for
a = 1, it is the broadening ·1 = B [5].

2 Resummed Cross Section

The resummed cumulative distribution in ·a is given by [6, 7]
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where ‡0 is the Born cross section,
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SCETching thrust:  resummation and profiles
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Figure 10. Profile functions implemented in our resummation, shown for a = {≠1.0, ≠0.5, 0.0, 0.5}

and Q = mZ . Left: Band method. Right: Scan method. Each set of profiles µH,J,S actually has a
di�erent absolute vertical scale set by µH = eHQ, which has been rescaled for this illustration to
eH = 1. Also, for each individual set of scales, it is the case that µS < µJ , although the overall
bands from the scan overlap.

– 40 –

• Note that there also is freedom in scale-
setting choices -> ‘profiles’

Accuracy �cusp “F , “µ
�, “R — H, J̃, S̃, ”a

LL –s 1 –s 1

NLL –
2
s –s –

2
s 1

NNLL –
3
s –

2
s –

3
s –s

N3LL –
4
s –

3
s –

4
s –

2
s

Accuracy H, J̃, S̃, ”a

NLLÕ
–s

NNLLÕ
–

2
s

N3LLÕ
–

3
s

Matching r
n(·a)

+O(–s) –s

+O(–2
s) –

2
s

+O(–3
s) –

3
s

Table 6. Ingredients we include at various orders of unprimed NkLL (Left), primed NkLLÕ (Middle),
and matched (Right) accuracies, up to a given fixed order O(–n

s
). The tables apply to the inte-

grated distribution in Eq. (4.38) and the Laplace-transformed distribution, but not, for unprimed
accuracies, directly to the di�erential form in Eq. (2.1)—see [35] for details. We have included
a counting for the renormalon subtractions terms ”a in Eq. (4.12) and the µ- and R-evolution
anomalous dimensions “

µ

�, “R in Eqs. (4.15) and (4.18) as described in the text.

In practice we expand out the shape function terms to the order we work in –s,

e
≠2”a(µS ,R)

d

dk fmod(k ≠ 2�a(µS , R)) = f
(0)

mod
(k ≠ 2�a(µS , R)) + f

(1)
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(k ≠ 2�a(µS , R))

+ f
(2)

mod
(k ≠ 2�a(µS , R)) , (4.35)

where

f
(0)

mod
(k ≠ 2�a(µS , R)) = fmod(k ≠ 2�a(µS , R)) , (4.36a)

f
(1)
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4fi
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a(µS , R)Re
“E f

Õ
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(2)

mod
(k ≠ 2�a(µS , R)) =
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4fi
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≠2”
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“E )2

f
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mod(k ≠ 2�a(µS , R))

È
,

with ”
1,2
a (µS , R) from Eq. (4.13). The order to which these terms are kept at each accuracy

are included in Table 6.

4.3 Final resummed, matched, and renormalon-subtracted cross section

We now collect all pieces described above, giving our final expressions for the resummed
cross section, matched to fixed-order and convolved with a renormalon-free shape function.

In evaluating the convolution in Eq. (4.34), we must truncate the product of the
fixed-order perturbative pieces contained in Eqs. (2.11) and (3.13) along with the non-
perturbative pieces in Eq. (4.35) to the appropriate order in –s for NkLL(

Õ
) accuracy.

Namely, starting with Eq. (2.11) for the integrated distribution, we expand the fixed-order
coe�cients in powers of –s:

‡c,PT(·a)
‡0

= ‡
LO

c (·a) + ‡
NLO

c (·a) + ‡
NNLO

c (·a) , (4.37)

– 32 –

This cookbook changes at ‘primed’ 
accuracies, and of course when 
considering matching to QCD!

[0901.3780]
[0801.4569]
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SCETching thrust: matching to QCD

QCD distribution SCET distribution

At O(𝑎s), for example, the matching 
restricts the distribution to the domain    

Ʈ ∈ {0, Ʈmax }:

0.00 0.05 0.10 0.15 0.20 0.25

0

50

100

150

200

�Unmatched Remainder Matched
hep-ph/0901.3780
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Eq. (3.6), is in momentum space), whose extraction from EVENT2 will be described in the
next subsection.
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to O(–2
s). The cnm coe�cients should agree with the SCET prediction in Eq. (3.4) for the

singular terms. The r
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c functions are the nonsingular remainders that vanish as ·a æ 0 and
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which we will use in the next subsection to obtain the nonsingular remainder functions r
n
c

from the di�erence of the EVENT2 output and the SCET prediction. To do this, however,
we must know all the cnm coe�cients in Eq. (3.8), including the constants in c20 © c

(2) in
Eq. (3.7). But we do not yet know c
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J̃
.

In the limit of zero bin size, EVENT2 is generating an approximation to the di�erential
distribution, which takes the form:

1
‡0

d‡

d·a

= A ”(·a) + [B(·a)]+ + r(·a) , (3.10)

where A is the constant coe�cient of the delta function, B is a singular function, turned into
an integrable plus-distribution, and r = drc/d·a is nonsingular, that is, directly integrable
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SCETching thrust: non-perturbative corrections
A treatment of non-perturbative effects is critical in e+e- -> hadrons…

When dominant power corrections come from the soft function, NP effects can be parameterized 
into a shape function fmod:

the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
is convolved with the perturbative distribution [38, 39, 50]:

S(k, µ) =
⁄

dk
Õ
SPT(k ≠ k

Õ
, µ) fmod(kÕ

≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
functions [56]:

fmod(k) = 1
⁄

C Œÿ

n=0

bn fn

3
k

⁄

4D2

, (4.2)

where
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Û
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!
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"
, (4.3)

g(x) = 2
3

1
3 ≠ e

≠4x
1
3 + 12x + 24x

2 + 32x
3
22

≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b

2
n = 1. In practice, we only keep one term in the sum (4.2),

setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a

(·a) ≠æ
NP

d‡

d·a

1
·a ≠ c·a

�1

Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a

is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a

= 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function fmod(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �1, as described in [26].

5The expression for c·a diverges in the broadening limit a æ 1, where the SCETI factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].
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The leading impact of this shape function correction is to shift the overall perturbative 
distribution:
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4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with

2�1

1 ≠ a
= 2�a +

⁄
dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.
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However, both the gap parameter Δ and the soft function S_PT have a renormalon ambiguity!
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the domain of ·a considered. For angularities with a < 1, power corrections from the
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which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
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first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4
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However, both the perturbative soft function and gap parameter suffer renormalon ambiguities. 
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the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
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first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a

(·a) ≠æ
NP

d‡

d·a

1
·a ≠ c·a

�1

Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a

is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a

= 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function fmod(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �1, as described in [26].

5The expression for c·a diverges in the broadening limit a æ 1, where the SCETI factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].
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However, both the perturbative soft function and gap parameter suffer renormalon ambiguities. 

4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with

2�1

1 ≠ a
= 2�a +

⁄
dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.
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the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
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The subtraction and its evolution equations are easier to formulate in Laplace space
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where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
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Our collaboration’s goals
We want to surgically review the extraction of {𝛼s, } from e+e- event shapes, focusing on thrust.Ω1

This includes (1) a dedicated, independent crosscheck of prior work, but also (2) looking at all of 
the assumptions made in prior literature:

Furthermore, we do so at the highest order achievable with current theory inputs:

Time allowing, I’ll comment on the missing three-loop ingredient, cs3

5

Accuracy �cusp “F , “µ
�, “R — H, J̃, S̃, ”

LL –s 1 –s 1

NLL –
2
s –s –

2
s 1

NNLL –
3
s –

2
s –

3
s –s

N3LL –
4
s –

3
s –

4
s –

2
s

Accuracy H, J̃, S̃, ”

NLLÕ
–s

NNLLÕ
–

2
s

N3LLÕ
–

3
s

Matching r
n(·)

+O(–s) –s

+O(–2
s) –

2
s

+O(–3
s) –

3
s

TABLE I: Ingredients included in our O(–n

s
) computations at unprimed NkLL (Left), primed NkLLÕ (Middle), and

matched (Right) accuracies. The tables apply to the matched, renormalon-corrected integrated distribution in (12),
including the renormalon subtraction terms ” and the µSUB- and µR-evolution anomalous dimensions “

µ

�
, “R.

into account NP physics in electron-positron annihilation
due to the presence of extremely soft radiation and sub-
sequent hadronization of colored partons. To do so we
employ the following formula []:

1
‡0

‡(·) =
⁄

dk ‡PT

1
· ≠

k

Q
; µH , µJ , µS , µns

2

◊

Ë
e

≠2”(µS ,µR)
d

dk fmod

!
k ≠ 2�(µS , µR)

"È
, (12)

Here the total perturbative cross section is convolved
with a gapped shape function fmod(k) given by

fmod(k) = 1
⁄

C Œÿ

n=0

bn fn

3
k

⁄

4D2

, (13)

where fn form a complete orthonormal basis composed of
Legendre polynomials. For the present analysis we take
bn = 0 for n > 0. In the absence of the NP ‘gap’ pa-
rameter � [], which accounts for the minimum value of
· that can be registered in a physical detector (which of
course measures hadronic, and not partonic, events), (13)
recovers the leading shift from (1) when convolved with
the perturbative cross section. With a non-zero �, how-
ever, the relationship between �1 and the shape function
is modified to

2�1 = 2� +
⁄

dk k fmod(k) , (14)

with � ≥ �QCD, and where it is clear that the ⁄ param-
eter of (13) is defined by ⁄ = 2

!
�1 ≠ �

"
. Note however

that our notation in (14) has slightly changed from (1),
as the presence of the barred notation (�1, �) indicates
objects defined in an MS-like perturbative scheme, where
the soft function has been calculated. However, both the
perturbative soft function and the gap parameter � ex-
hibit renormalon ambiguities [] which must be cancelled
to obtain stable, well-defined predictions.5 To do so we
redefined the gap parameter in (12) as

� = � + ”(µSUB), (15)

5 For a review of renormalon theory, see [25].

where � is renormalon free and ” is chosen to cancel the
ambiguity in the soft function. Both of these parameters
enter the final cross section (12) and depend jointly on
new subtraction µSUB and renormalon µR scales, which
we will present in Section IV. There is also scheme de-
pendence in choosing how to arrange the renormalon can-
cellation between ” and S̃, which we discuss in Section
III A.

Independent of the renormalon cancellation scheme,
however, is the practical approach to calculating (12).
We do so perturbatively, such that the total cross sec-
tion necessary for N3LL accuracy can be expanded as

‡P T (·)
‡0

= ‡
[0]

c
(·) + ‡

[1]

c
(·) + ‡

[2]

c
(·) + +‡

[3]

c
(·) , (16)

whose components are given order-by-order by

‡
[i]

c
(·) =

⁄
dk

C
iÿ

n=0

‡
N

n
LO

c

1
· ≠

k

Q

2
f

(i≠n)

mod
(k ≠ 2�)

D
,

(17)
where we have suppressed additional scale dependence in
both ‡

N
n

LO
c

(the purely perturbative and matched cross
section from (11) check, computed to NnLO accuracy)
and fmod for brevity, and where the component notation
of f

(i≠n)

mod
represents the fact that in practice we expand

out the renormalon-corrected shape function as

e
≠2�

d

dk fmod(k ≠ 2�) =
ÿ

i

f
(i)

mod
(k ≠ 2�) . (18)

Explicit expressions for the f
(i)

mod
(k ≠ 2�) can be found

order-by-order in Appendix B, where it is clear that these
terms are dependent on the particular renormalon can-
cellation scheme chosen. It should also be clear that, in
the presence of a gapped and renormalon-corrected soft
function, the shift of the di�erential distribution will no
longer be a constant, as in (1). Indeed, the scale depen-
dence of both � and ”, which is discussed in upcoming
sections, leads to a · -dependent ‘e�ective’ shift, which
can be calculated as

’eff ©

⁄
dk k

C
ÿ

i

f
(i)

mod
(k ≠ 2�)

D
, (19)

non-perturbative physics

theory uncertainty estimation

MC event generation

missing three-loop ingredients
(perturbative) power corrections

fit windows
binning techniques

observables & datasets+ …
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Renormalon corrections and 𝛼s

We have estimates of the effects of the shape function and renormalon corrections from prior 
analyses:

11

order ↵s(mZ) (with ⌦1) ↵s(mZ) (with ⌦1(R�, µ�))

NLL0 0.1071(60)(05) 0.1059(62)(05)

N2LL0 0.1102(32)(06) 0.1100(33)(06)

N3LL0 (full) 0.1117(16)(06) 0.1123(14)(06)

TABLE IV. Central values for ↵s(mZ) at various orders with
theory uncertainties from the parameter scan (first value
in parentheses), and experimental and hadronic uncertainty
added in quadrature (second value in parentheses). The bold
N3LL0 value is our final result.

B. Perturbative Uncertainty from the Scan

To examine the robustness of our method of determin-
ing the perturbative uncertainty by the random scan, we
consider the convergence and overlap of the results at
di↵erent perturbative orders. Fig. 5 shows the spread of
best-fit values at NLL0, N2LL0 and N3LL0. The left panel,
Fig. 5(a), shows results from fits performed in the Rgap
scheme, which implements a renormalon subtraction for
⌦1, and the right-panel, Fig. 5(b), shows results in the
MS scheme without renormalon subtractions. Each point
in the plot represents the outcome of a single fit, and dif-
ferent colors correspond to di↵erent orders in perturba-
tion theory. Not unexpectedly, fits in the Rgap scheme
show generally smaller theory uncertainties.

In order to estimate correlations induced by theoreti-
cal uncertainties, each ellipse in the ↵s-2⌦1 plane is con-
structed following the procedure discussed in Sec. IV.
Each theory ellipse constructed in this manner is inter-
preted as an estimate for the 1-� theoretical uncertainty
ellipse for each individual parameter (39% confidence for
the two parameters), and is represented by a dashed el-
lipse in Fig. 5. The solid lines represent the combined
(theoretical plus experimental) standard uncertainty el-
lipses at 39% confidence for two parameters, obtained
by adding the theoretical and experimental error matri-
ces from the individual ellipses, where the experimental
ellipse corresponds to ��

2 = 1. Fig. 5 clearly shows
a substantial reduction of the perturbative uncertainties
when increasing the resummation accuracy, and given
that they are 39% confidence regions for two parameters,
also show good overlap between the results at di↵erent
orders.

The results for ↵s(mZ) and ⌦1 from the theory scan at
di↵erent perturbative orders are collected in Tabs IV and
V. Central values here are determined from the average
of the maximal and minimal values of the theory scan,
and are very close to the central values obtained when
running with our default parameters. The quoted per-
turbative uncertainties are one-parameter uncertainties.

In Tab. III above we also present ↵s(mZ) results with
no power corrections and either using resummation or
fixed-order perturbative results. Without power correc-
tions there is no fit for ⌦1, so we take the central value
to be the average of the maximum and minimum value
of ↵s(mZ) that comes from our parameter scan. Our

order ⌦1 [GeV] ⌦1(R�, µ�) [GeV]

NLL0 0.533(154)(18) 0.582(134)(16)

N2LL0 0.443(119)(19) 0.457(83)(19)

N3LL0 (full) 0.384(91)(20) 0.421(60)(20)

TABLE V. Central values for ⌦1 at the reference scales
R� = µ� = 2GeV and for ⌦1 and at various orders. The
parentheses show theory uncertainties from the parameter
scan, and experimental and hadronic uncertainty added in
quadrature, respectively. The bold N3LL0 value is our final
result.

estimate of the uncertainty is given by the di↵erence be-
tween our result and the maximum fit value. For the
fixed order case, since there is only one renormalization
scale, we know that the uncertainties from our parame-

ter variation for eH , s
eC
2 , ✏

low
2 and ✏

low
3 are uncorrelated.

So, we take the fit value for ↵s(mZ) with the default
parameters as our result and add the uncertainties from
variations of these parameter in quadrature to give the
total uncertainty.
An additional attractive result of our fits is that the ex-

perimental data is better described when increasing the
order of the resummation and fixed-order terms. This
can be seen by looking at the minimal �

2
/dof values

for the best-fit points, which are shown in Fig. 5. In
Figs. 5(c) and 5(d) we show the distribution of �2

min/dof
values for the various ↵s(mZ) best-fit points. Figure 5(c)
displays the results in the Rgap scheme, whereas Fig. 5(d)
shows the results in the MS scheme. In both cases we
find that the �

2
min values systematically decrease with

increasing perturbative order. The highest-order analy-
sis in the MS scheme leads to �

2
min/dof values around

unity and thus providing an adequate description of the
whole dataset, however one also observes that account-
ing for the renormalon subtraction in the Rgap scheme
leads to a substantially improved theoretical description
having �

2
min/dof values below unity essentially for all

points in the random scan. Computing the average of
the �

2
min values we find at N3LL0 order for the Rgap

and MS schemes 0.988 and 1.004, respectively (where the
spread of values is smaller in the Rgap scheme). Likewise
for N2LL0 we find 1.00 and 1.02, and for NLL0 we find
1.09 and 1.14. These results show the excellent descrip-
tion of the experimental data for various center-of-mass
energies. They also validate the smaller theoretical un-
certainties obtained for ↵s and ⌦1 at N2LL0 and N3LL0

orders in the Rgap scheme.

C. Experimental Fit Uncertainty

Next we discuss in more detail the experimental un-
certainty in ↵s(mZ) and the hadronization parameter ⌦1

as well as the combination with the perturbative uncer-
tainty done to obtain the total uncertainty.
Results are depicted in Fig. 6 for our highest order
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Below error bars & ! " perturbative error
All errors: Αs!mZ" $ 0.1123 ! 0.0015O!Αs3" fixed%order

0.1317 ! 0.0052

& '3LL' summation
0.1219 ! 0.0028

& Power Correction
0.1117 ! 0.0016

& R%scheme
0.1123 ! 0.0014

& hadron mass effects
0.1119 ! 0.0013

0.110

0.115

0.120

0.125

0.130
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Αs!mZ" from global C%parameter tail fits

FIG. 4. The evolution of the value of ↵s(mZ) adding components of the calculation. An additional ⇠ 8% uncertainty from not
including power corrections is not included in the left two points.

by ⇠ 50%. Due to this smaller perturbative uncertainty
it becomes clear that the theoretical cross section has
a di↵erent slope than the data, which can be seen, for
example, at Q = mZ for 0.27 < C < 0.35. This leads
to the increase in the �

2
/dof for the “N3LL0 no power

corr.” fit, and makes it quite obvious that power correc-
tions are needed. When the power correction parameter
⌦1 is included in the fit, shown by the third entry in
Tab. III and the result just to the right of the vertical
dashed line in Fig. 4, the �

2
/dof becomes 1.004 and this

issue is resolved. Furthermore, a reduction by ⇠ 50%
is achieved for the perturbative uncertainty in ↵s(mZ).
This reduction makes sense since some of the perturba-
tive uncertainty of the cross section is now absorbed in
⌦1, and a much better fit is achieved for any of the vari-
ations associated to estimating higher order corrections.
The addition of ⌦1 also caused the fit value of ↵s(mZ) to
drop by another 8%, consistent with our expectations for
the impact of power corrections and the estimate made in
Ref. [12]. Note that the error bars of the first two purely
perturbative determinations, shown at the left hand side
of the vertical thick dashed line in Fig. 4 and the last two
entries in Tab. III, do not include the ⇠ 8% uncertainties
associated with the lack of power corrections.

The remaining corrections we consider are the use of
the R-scheme for ⌦1 which includes the renormalon sub-
tractions, and the inclusion of the log-resummation ef-
fects associated to the hadron mass e↵ects. Both of these
corrections have a fairly small impact on the determi-
nation of ↵s(mZ), shifting the central value by +0.5%
and � 0.3% respectively. Since adding the � 0.3% shift
from the hadron mass corrections in quadrature with the
' 1.2% perturbative uncertainty does not change the
overall uncertainty we will use the R-scheme determi-

↵s(mZ) �2/dof

N3LL0 + hadron 0.1119(13)(06) 0.991

N3LL0 with ⌦1(R,µ) 0.1123(14)(06) 0.988

N3LL0 with ⌦1 0.1117(16)(06) 1.004

N3LL0 no power corr. 0.1219(28)(02) 2.091

O(↵3
s) fixed order

no power corr.
0.1317(52)(03) 1.486

TABLE III. Comparison of C-parameter tail fit results for
analyses when we add various components of the theoreti-
cal result (from the bottom to top). The first parentheses
gives the theory uncertainty, and the second is the experi-
mental and hadronic uncertainties added in quadrature for
the first three rows, and experimental uncertainty for the last
two rows.

nation for our main result. This avoids the need to fully
discuss the extra fit parameter ✓(R�, µ�) that appears
when hadron masses are included. Further discussion
of the experimental uncertainties and the perturbative
uncertainty from the random scan are given below in
Secs. VB and VD, and a more detailed discussion of
the impact of hadron-mass resummation is given below
in Sec. VE.

The values of ⌦1 obtained from the fits discussed above
can be directly compared to the ⌦1 power correction ob-
tained from the thrust distribution. Values for ⌦1 from
the C-parameter fits are given below in Secs. VB and VD
and the comparison with thrust is considered in Sec. VII.
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This matters!  So let’s perhaps look here first to see what’s happening…
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R scheme

4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with

2�1

1 ≠ a
= 2�a +

⁄
dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.
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Laplace space

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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with an initial condition at some scale µ�, and where ŸS = 4/(1≠a) was given in Eq. (2.8)
and the kernel ÷� was defined in Eq. (2.7).

The evolution of the gap parameter �a(µ, R) in R is a bit more involved, and was
solved in [85] for quark masses and applied to the soft gap parameter in [76]. We follow
this derivation here (in our own notation). Since from Eq. (4.16) we know how to evolve
�a(µ, R) in µ, we just need to derive the evolution of �a(R, R) in R. Since �a in Eq. (4.7)
is also R-independent, we can derive from the perturbative expansion of ”a in Eq. (4.13)
the “R-evolution” equation:

d

dR
�a(R, R) = ≠

d

dR
”a(R, R) © ≠“R[–s(R)] , (4.17)

where “R has a perturbative expansion,

“R[–s(R)] =
Œÿ

n=0

1
–s(R)

4fi

2n+1

“
n

R , (4.18)

whose first two coe�cients we read o� from Eqs. (4.12) and (4.13),

“
0

R = 0 , “
1

R = e
“E

2
#
“

1

S(a) + 2c
1

ÂS—0

$
. (4.19)

Even though “
0

R
= 0 for the soft gap parameter (since “

0

S
(a) = 0), we will keep it symboli-

cally in the solution below for generality (and for direct comparison with the quark mass
case in [85]).

To solve Eq. (4.17), we integrate:

�a(R1, R1) ≠ �a(R�, R�) = ≠

⁄
R1

R�

dR

R
R “R[–s(R)] , (4.20)

multiplying and dividing by R in the integrand, anticipating using Eq. (2.21) to change
integration variables to –s. But first we need to invert –s(R) to express R. To this end,
we write Eq. (2.21) in the form

ln R

R�

=
⁄

–s(R)

–s(R�)

d–

—[–] = G[–s(R)] ≠ G[–s(R�)] , (4.21)

where G[–] is the antiderivative of 1/—[–],

G
Õ[–] = 1

—[–] = ≠
2fi

—0

1
–2

1
1 + –

4fi

—1
—0

+
!

–

4fi

"2 —2
—0

+ · · ·

. (4.22)

This determines G up to a constant of integration (we e�ectively choose it such that
G[–] æ 0 as – æ Œ). If R, R� are scales for which –s is perturbative, we can determine
G explicitly order by order,

G[–] = 2fi

—0

5 1
–

+ —1

4fi—0

ln – ≠
B2

(4fi)2
– + · · ·

6
, (4.23)
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and accounting for R and μ evolution, 

Then, choosing the R scheme to cancel the leading renormalon,
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
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Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives
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dk
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SPT
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" Ë
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≠2”a(µ,R)
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≠ 2�a(µ, R)
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. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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Final cross section is expanded order-
by-order in bracketed term

Recall that we reorganize the soft sector via a redefinition of the gap parameter:

one obtains the final soft function -> cross section:

All of these objects can be defined 
perturbatively!
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R scheme removes unphysical effects in cross-section predictions and gives good qualitative 
agreement with data:
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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How non-perturbative effects are implemented (clearly) affects the extraction of the strong 
coupling!

 R Scheme phenomenologyRgap scheme

Choosing the Rgap scheme to cancel the leading renormalon,

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
k

Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
, µ

" Ë
e

≠2”a(µ,R)
d

dkÕ fmod

!
k

Õ
≠ 2�a(µ, R)

"È
. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
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which, after integrating by parts, gives
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In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,
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which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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Gapped and renormalon free soft function

Final cross section is expanded order-
by-order in bracketed term

Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.
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Improves small  behavior and perturbative convergence:τa

14

[1808.07867]

[1006.3080]

[0803.4214] 
[0806.3852]

5

Strong coupling extractions
• Many groups have utilized high-precision event-shape results to extract a value for !s.  

Recently, N3LL resummations for multiple observables have been achieved.  

What can break the !s - ��degeneracy?  

!s

• However, the value of !s is highly correlated to non-perturbative physics.

A. Hoang, 2015 workshop 
on precision !s extractions

Workshop on High Precision Alpha_s Measurements, Oct 12 - 13, 2015 

Strong Coupling Determination 

C-parameter versus Thrust Tail Global Fit  

Very good agreement at N3LL + O(αs
3) with renormalon subtraction. 

2016 world 
average: 

.1181 +- .0013 

Workshop on High Precision Alpha_s Measurements, Oct 12 - 13, 2015 

Size of Non-Perturbartive Effects 

Monte-Carlo estimate vs. fits of non-perturbative powercorrection: 

• Simultaneous fit of power corrections and 
the strong coupling. 

• Sizeable power correction and strong 
coupling smaller than world average. 

• Power corrections taken from difference 
MCparton level - MChadron level 

•   Small power correction and strong 
generically larger than world average. 

• Problem: MCparton level  is only LO/LL 
description:                                     
MCparton level - MChadron level is LO/LL ! 

• Should not be used in event shape 
averages. 

�

Although we cannot compute these nonperturbative matrix elements at the scale µc ∼ Qλ4,
we can estimate their dependence on λ from dimensional analysis. Matrix elements of powers
of the operator ET (η) in collinear states in SCETII should vary as corresponding powers of
Qλ2. Similarly, each rapidity integral should behave as λ2(1−a). Combined with the factor
1/Q in front of the rapidity integral, power corrections to the collinear jet function occur
as powers of λ4−2a/τa = (1/τa)(ΛQCD/Q)2−a. Correspondingly, in Laplace moment space,
this becomes a power series in ν(ΛQCD/Q)2−a. The latter is also the only argument for the
jet function that serves as a boundary condition in the perturbative QCD resummation of
Ref. [15].5 As long as a < 1, we may consider these to be subleading compared to the power
corrections of the soft function, which are powers of ΛQCD/Q. For a ! 1, we must take them
into account, along with the recoil corrections mentioned above [16, 17, 41].

From now on, we consider only observables that pick out jets with typical transverse
momenta well above the nonperturbative scale. In the language of SCET, this allows us to
work in the theory SCETI and consider power corrections only from the soft function.

VI. MOMENTUM FLOW OPERATORS, UNIVERSALITY AND SCALING

A. Nonperturbative Universality from Perturbative QCD

A striking prediction from the analysis of event shapes in perturbation theory, including
those given in Eq. (3), is the universality of power corrections to their mean values [5, 6, 7,
9, 15, 16, 17, 21, 42, 43, 44],

〈e〉 = 〈e〉PT + ce

A

Q
. (51)

In this expression, A a universal parameter and ce is a calculable coefficient that depends on
the observable, as we shall see below. The same reasoning that leads to (51), when applied to
the event shape distributions, produces a shift in the resummed perturbative cross section,

dσ

de
(e)

∣

∣

∣

∣

PT

−→
NP

dσ

de

(

e − ce

A

Q

)
∣

∣

∣

∣

PT

. (52)

These relations were derived in Refs. [6, 7, 42] from the assumption of a “dispersive” repre-
sentation for αs(µ2) considered as an analytic function of the scale µ, and in Refs. [5] they
were abstracted directly from the form of resummed perturbation theory.

A more general approach [9, 16, 17] replaces the shift of Eq. (52) by a convolution with
a shape function defined as above, which reduces to a product in Laplace moment space,
Eq. (10). As we have noted, these shape functions are all different, but for the angularities
a generalization of the universality of Eq. (51) has been suggested, in the form of a scaling
relation. The Laplace-transformed shape function for angularity distributions arising from
resummed perturbation theory at next-to-leading logarithm (NLL) [16, 17] displays a simple
scaling with the parameter a:

ln Sa(ν) =
1

1 − a

∞
∑

n=1

λn

(

−
ν

Q

)n

, (53)

5 See, for example, Eqs. (67) and (74) of [15].
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Before considering gapped renormalons, the leading-order NP effect is a constant shift:

But what is the ‘effective shift’ of the distribution in the R scheme?

 Effective non-perturbative shifts

Accuracy �cusp “F , “µ
�, “R — H, J̃, S̃, ”a

LL –s 1 –s 1

NLL –
2
s –s –

2
s 1

NNLL –
3
s –

2
s –

3
s –s

N3LL –
4
s –

3
s –

4
s –

2
s

Accuracy H, J̃, S̃, ”a

NLLÕ
–s

NNLLÕ
–

2
s

N3LLÕ
–

3
s

Matching r
n(·a)

+O(–s) –s

+O(–2
s) –

2
s

+O(–3
s) –

3
s

Table 6. Ingredients we include at various orders of unprimed NkLL (Left), primed NkLLÕ (Middle),
and matched (Right) accuracies, up to a given fixed order O(–n

s
). The tables apply to the inte-

grated distribution in Eq. (4.38) and the Laplace-transformed distribution, but not, for unprimed
accuracies, directly to the di�erential form in Eq. (2.1)—see [35] for details. We have included
a counting for the renormalon subtractions terms ”a in Eq. (4.12) and the µ- and R-evolution
anomalous dimensions “

µ

�, “R in Eqs. (4.15) and (4.18) as described in the text.

In practice we expand out the shape function terms to the order we work in –s,

e
≠2”a(µS ,R)

d

dk fmod(k ≠ 2�a(µS , R)) = f
(0)

mod
(k ≠ 2�a(µS , R)) + f

(1)

mod
(k ≠ 2�a(µS , R))

+ f
(2)

mod
(k ≠ 2�a(µS , R)) , (4.35)

where

f
(0)

mod
(k ≠ 2�a(µS , R)) = fmod(k ≠ 2�a(µS , R)) , (4.36a)

f
(1)

mod
(k ≠ 2�a(µS , R)) = ≠

–s(µS)
4fi

2”
1

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) , (4.36b)

f
(2)

mod
(k ≠ 2�a(µS , R)) =

1
–s(µS)

4fi

22Ë
≠2”

2

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) (4.36c)

+ 2(”1

a(µS , R)Re
“E )2

f
ÕÕ
mod(k ≠ 2�a(µS , R))

È
,

with ”
1,2
a (µS , R) from Eq. (4.13). The order to which these terms are kept at each accuracy

are included in Table 6.

4.3 Final resummed, matched, and renormalon-subtracted cross section

We now collect all pieces described above, giving our final expressions for the resummed
cross section, matched to fixed-order and convolved with a renormalon-free shape function.

In evaluating the convolution in Eq. (4.34), we must truncate the product of the
fixed-order perturbative pieces contained in Eqs. (2.11) and (3.13) along with the non-
perturbative pieces in Eq. (4.35) to the appropriate order in –s for NkLL(

Õ
) accuracy.

Namely, starting with Eq. (2.11) for the integrated distribution, we expand the fixed-order
coe�cients in powers of –s:

‡c,PT(·a)
‡0

= ‡
LO

c (·a) + ‡
NLO

c (·a) + ‡
NNLO

c (·a) , (4.37)
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All-Orders Flavour Invariants, Quark Masses, and CKM Elements in

the Geometric SM-EFT

JT

Draft Created: May 27, 2020
Last Updated: April 15, 2021

Z
dk k e�2�a(µS ,R) d

dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

1

Shape function expanded order-by-order depending on logarithmic accuracy:

All-Orders Flavour Invariants, Quark Masses, and CKM Elements in

the Geometric SM-EFT

JT

Draft Created: May 27, 2020
Last Updated: April 16, 2021

Z
dk k e�2�a(µS ,R) d

dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

d�

d⌧a
(⌧a) �!

NP

d�

d⌧a

✓
⌧a � c⌧a

⌦1

Q

◆
(2)

1

All-Orders Flavour Invariants, Quark Masses, and CKM Elements in

the Geometric SM-EFT

JT

Draft Created: May 27, 2020
Last Updated: April 16, 2021

Z
dk k e�2�a(µS ,R) d

dk fmod (k � 2�a (µS , R)) =

Z
dk k

"
X

i

f (i)
mod (k � 2�a (µS , R))

#
(1)

d�

d⌧a
(⌧a) �!

NP

d�

d⌧a

✓
⌧a � c⌧a

⌦1

Q

◆
(2)

⌦1 =
1

NC
Tr h0|Y †

n̄Y
†
nET (0)YnY n̄ |0i (3)

1
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Distributional shifts at NNLL’ accuracy (central profile scales):

 Effective non-perturbative shifts
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a
=
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5

Figure 10. Profile functions implemented in our resummation, shown for a = {≠1.0, ≠0.5, 0.0, 0.5}

and Q = mZ . Left: Band method. Right: Scan method. Each set of profiles µH,J,S actually has a
di�erent absolute vertical scale set by µH = eHQ, which has been rescaled for this illustration to
eH = 1. Also, for each individual set of scales, it is the case that µS < µJ , although the overall
bands from the scan overlap.

– 40 –

μS

R

Why does the effect grow as one moves toward the fixed-order regime?
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A naive way to limit the shift…Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax

Limiting the growth of the shift

18
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dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax

Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax

Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax

Potentially large logs of μ/R ! (bad)Turns off the R-scale at a given (fixed) Rmax (good)

Obvious solution is to simply limit the growth of the renormalon scale:

Simple solution is to simply set a max value for the R scale:
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 R*:  a new scheme
Generalized renormalon cancellation schemes can be defined: [2012.12304]

�3a and �2
R with generic ⇠ and µSUB

JT

Draft Created: October 12, 2021

Last Updated: October 13, 2021

We want to have the three-loop expressions for the renormalon-subtraction ingredients for generic ⇠
and µSUB, the scale of the subtraction, for both n = 0 and n = 1 schemes. In Chris’ ‘General R Schemes’

pdf, we have the desired expressions up to O(↵2
s), and in his old ‘Theoryuncertainties’ note on nuisance

parameters, we have the O(↵3
s), n = 1 expressions for �3a and �2R, but not for generic schemes. This note

aims to fill that gap, and also provide a check on a number of those expressions.TO DO: double check

new formulae

1 Soft Function

The subtraction terms are defined by

�a(µ) =
R

2⇠

dn

d(ln v)n
ln S̃(v, µ)

��
v=⇠/R

(1)

where S̃ is given by

S̃ = 1 +
⇣↵s

4⇡

⌘
S̃1 +

⇣↵s

4⇡

⌘2
S̃2 +

⇣↵s

4⇡

⌘3
S̃3 + ... (2)

with

S̃1 = �0
s L

2 + c1s (3)

S̃2 =
1

2
(�0

s)
2 L4 +

2

3
�0
s�0 L

3 +
�
�1
s + c1s�

0
s

�
L2 +

�
�1s + 2c1s�0

�
L+ c2s

S̃3 =
1

6
(�0

s)
3 L6 +

2

3
(�0

s)
2�0 L

5 +

✓
�0
s�

1
s +

2

3
�0
s�

2
0 +

1

2
(�0

s)
2c1s

◆
L4 +

✓
2

3
�0
s�1 +

4

3
�1
s�0 + �0

s�
1
s +

8

3
�0
s�0c

1
s

◆
L3

+
�
�2
s + 2�1s�0 + c1s

�
�1
s + 4�2

0

�
+ �0

sc
2
s

�
L2 +

�
�2s + �1s c

1
s + 2c1s�1 + 4c2s�0

�
L+ c3s .

recalling that �0s = 0. This yields

ln S̃ '

⇣↵s

4⇡

⌘
S̄1 +

⇣↵s

4⇡

⌘2
S̄2 +

⇣↵s

4⇡

⌘3
S̄3 + ˙...

1

Another scheme
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δ*a (R) = 1
2 R*eγE

d
d ln ν [ln SPT(ν, μ = R*)]ν=1/(R*eγE)“R* scheme”

γ*R = eγE[ αs(R)
4π

⋅ 0 + (αS(R)
4π )

2
(γ1

S + 2c1
S̃β0) + "(α3

s )]
γΔ[αs(μ)] = 0

To the order we work:

R-evolution:

-evolution:μ

Nothing special about this scheme, just a way to test the impact of changing the effective shift in event shapes.

we are not forced to set  in the 
subtraction series, we can pick  

μ = μS
μ = R

Bachu, Hoang, 
Mateu, Pathak, 
Stewart 
[2012.12304]

δ*a (R) = ReγE

2 [ αs(R)
4π

⋅ 0 + (αS(R)
4π )

2
(γ1

S + 2c1
S̃β0) + "(α3

s )]

R* Scheme:   
(n, ξ, μ) = (1, exp(-𝛾E), R*)

Anomalous dimensions, subtractions, turn on at one higher order:

This scheme is just a choice!

Brief Article

The Author

November 19, 2021

�?a(R
?) =

R?e�E

2

"
↵s(R?)

4⇡
· 0 +

✓
↵s(R?)

4⇡

◆2 �
�1
S + 2c1

S̃
�0
�
+O(↵3

s)

#

�?
R = e�E

"
↵s(R?)

4⇡
· 0 +

✓
↵s(R?)

4⇡

◆2 �
�1
S + 2c1

S̃
�0
�
+O(↵3

s)

#

A

(�slope)
= ↵PT

s (mZ)� ↵s(mZ) (1)

�slope (2)

V corr.
ij ⌘

✓
�2
↵s

�↵s �A ⇢↵A

�↵s �A ⇢↵A �2
A

◆
(3)

V total
ij ⌘ V exp.

ij + V theory
ij (4)

↵s(mZ)
��
NNLL’

= 0.109 ± 0.007exp ± 0.007th

A
��
NNLL’

= 0.36 ± 0.37exp ± 0.19th (GeV)

↵s(mZ)
��
NLL’

= 0.108 ± 0.007exp ± 0.02th

A
��
NLL’

= 0.45 ± 0.34exp ± 0.60th (GeV)

1

But then again, so is our choice of theory profiles, which also drive the effective shift…
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Profiling a fit window
How can we identify a region sensitive to  and 𝛼s, and for which our best theory curves are 
reliable?  Look to the profiles!

Ω1

A default fit window will be between [6/Q, 0.33].

hep-ph/1808.07867

minimized, finding

µ
nat

H = Q, µ
nat

J = Q·
1/(2≠a)

a , µ
nat

S = Q·a . (5.1)

In the tail region, where the resummation is critical, we want to evaluate the distributions
near these scales. However, we ultimately predict the distributions over a domain of ·a

that can be roughly broken into three regions where the comparative scalings di�er (see,
e.g. [18]):

• Peak Region: µH ∫ µJ ∫ µS ≥ �QCD ,

• Tail Region: µH ∫ µJ ∫ µS ∫ �QCD ,

• Far-tail Region: µH = µJ = µS ∫ �QCD .

In the peak region the soft scale is non-perturbative, and it is here that the full model
shape function described in Sec. 4 becomes necessary for making reliable predictions. In
this region we will adjust the scales to plateau at a constant value just above �QCD. On
the other hand, the scales are well separated in the tail region where the resummation
is most important. We want to minimize the logarithms in the resummed distributions,
and hence the scalings are close to the natural values in Eq. (5.1). Finally, our predictions
should match onto fixed-order perturbation theory in the far-tail region. The resummations
should therefore be switched o�, and the scales should merge at µH,J,S ≥ Q.

Getting the scales to merge near µH,J,S ≥ Q in the far-tail region will require µJ,S to
rise faster with ·a than the natural scales in Eq. (5.1), since the physical maximum value
of ·a is less than 1. We will achieve this below by defining a smooth function to transition
between the resummation and fixed-order regions. But the transition can be made less
sudden by increasing the rate of change of µJ,S even in the resummation region. Such an
increased slope was used for the C-parameter and thrust distributions in [16]. For thrust,
i.e. a = 0, the authors used the central values

µS = rsµH·0 , µJ = (µHµS)1/2
, (5.2)

with rs = 2 in the resummation region. We will follow this strategy here and give a physical
interpretation to the slope parameter rs. The maximal value for thrust is ·0 = 1/2, which
is achieved for a perfectly spherically symmetric distribution of particles in the final state.
The slope rs = 2 thus ensures that µJ,S merge with µH at this maximum value ·

sph

0
,

instead of at ·a = 1 as the natural scales Eq. (5.1) do. For arbitrary a, the angularity of
the spherically symmetric configuration is

·
sph

a = 1
4fi

⁄
2fi

0

d„

⁄
1

≠1

d cos ◊ sina
◊(1 ≠ |cos ◊|)1≠a = 1

2 ≠
a

2

2F1

1
1, ≠

a

2 ; 3 ≠
a

2 ; ≠1
2

, (5.3)

which ranges from ·
sph

≠1
¥ 0.356 to ·

sph

1/2
¥ 0.616 for the values of a we consider in this work.

These may be compared to the maximum values of a three- and four-particle configuration
in Fig. 20 in App. D. We will then choose a default slope rs = 1/·

sph
a in Eq. (5.2) that
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Peak

minimized, finding

µ
nat

H = Q, µ
nat

J = Q·
1/(2≠a)

a , µ
nat

S = Q·a . (5.1)

In the tail region, where the resummation is critical, we want to evaluate the distributions
near these scales. However, we ultimately predict the distributions over a domain of ·a

that can be roughly broken into three regions where the comparative scalings di�er (see,
e.g. [18]):

• Peak Region: µH ∫ µJ ∫ µS ≥ �QCD ,

• Tail Region: µH ∫ µJ ∫ µS ∫ �QCD ,
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Profiles trace scale hierarchies through different 
regimes of a given distribution:
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2010 Profiles of [6] 2018 Profiles of [15]

eH 0.5 ¡ 2 0.5 ¡ 2

eJ ≠1 ¡ 1 ≠0.75 ¡ 0.75

eS N.A. 0

n0 N.A. 1 ¡ 2 GeV

n1 2 ¡ 8 8.5 ¡ 11.5 GeV

n2 0.678 ¡ 1.017 0.9 ¡ 1.1

n3 N.A. 0.8 ¡ 0.9

µ0 1.5 ¡ 2.5 GeV 0.8 ¡ 1.2 GeV

R0 µ0 · 0.85 GeV µ0 ≠ 0.4 GeV

r N.A. 0.75 ¡ 1.33

”c
3
S̃

≠1 ¡ 1 ≠1 ¡ 1

”r
2

≠1 ¡ 1 ≠1 ¡ 1

”r
3

≠1 ¡ 1 ≠1 ¡ 1

ns {≠1, 0, 1} {≠1, 0, 1}

TABLE II: Profile parameter variations as described in
Section IV, for both the 2010 and 2018 formalisms. In

both scenarios, all parameters are chosen randomly
within the ranges shown, and the ’central’ values are
the centers of the given ranges, except for the slope
parameter r, whose central value is given by r = 1.
Note that we have refined this variation for the R

0

scheme — see the text for details.
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µS(·), t1 Æ · Æ 0.5
, (32a)

with parameters ti that are akin to those introduced in
31, and b, d parameters that can be written as functions
of µi and ti upon again ensuring the continuity of the
soft profile and its first derivatives at · = ti — see [6] for
complete details.

Besides their overall functional form, the profiles in
(29a) and (32a) also include multiple additional parame-
ters that allow us to vary these scales and obtain reliable
theory uncertainties — the parameters eH,J,S control the
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FIG. 3: The 2018 [15] and 2010 [6] profiles we
implement. The top figure compares the central values

for µH,J,S,R, while the second figure show µns. The
bottom two figures show µJ,S,R variations about central
values, respectively, as given in Table II. In the latter
plots µS < µJ is realized for any given set of scales,
despite the fact that the overall bands overlap. Also
note that the R

ı scales from (26) are shown in all
figures. The R scales, which correspond to R

ı with
Rmax = Œ, overlap with µS for · > t1. muH variations

correspond to overall shifts to the vertical axis.
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 R* Scheme:  profiles and shifts
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FIG. 2: The e�ective shift (19) of the cross section due
to di�ering renormalon cancellation and profile schemes,
evaluated using ‘central’ profiles at Q = mZ . The flat,
dashed line corresponds to the leading shift of (1). All
functions are calculated at N

3
LL + O(–3

s
) accuracy.

We also give the explicit expressions for ” and “R in
the n = 0 case in Appendix B, where one notices that
the cancellation ingredients generically appear with one
higher logarithmic power than in the n = 1 case. con-
tinue if we can ever find a stable variation of this

The important point to emphasize, of course, is that
there are any number consistent schemes that one can
utilize to cancel the leading soft renormalons of S̃ and ”,
and in upcoming sections we will demonstrate that this
choice, while freely made, has substantial implications
when extracting values of {–s, �1}.

IV. ESTIMATING THEORY UNCERTAINTIES

The matched and NP-corrected cross section in (12)
depends on a set of scales characterizing the physics hier-
archies present in our factorization framework, and these
should smoothly transition across the full · domain we
predict. Those in the perturbative cross section ‡P T

should of course be chosen to live at values that min-
imize the logarithms present in H, J , and S in the ·

domain most sensitive to resummation e�ects, i.e. the
tail region. Left of this, towards the peak of the distribu-
tion, the full shape function of (12) becomes necessary
to describe the non-perturbative physics at play, and we
force all scales to plateau at some value µ0 above �QCD.
Right of the tail, in the far tail region where matching
to fixed-order QCD is required, we merge the scales onto
the hard scale µH . All of these mergers are achieved
with particular choices of profile functions and, as men-
tioned,demonstrating the impact of this choice on subse-
quent {–s(mZ), �1} extractions is one of our two central
messages in this work. To that end we we will present
the explicit forms for the profiles designed in [15] and [6]
in what follows.

In [15] we designed the following profiles based o� of

those presented in [7]:
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µR = R © µS with µ0 æ R0, (29a)

where the µrun function ensures the profiles evolve
smoothly over · . It is given by

µrun =

Y
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_______[

µ0 · Æ t0

’

1
· ; {t0, µ0, 0}, {t1, 0,

r

·sph µH}

2
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1
· ; {t2, 0,

r

·sph µH}, {t3, µH , 0}

2
t2 Æ · Æ t3

µH · Ø t3

.

(30)
As is clear, the shape of (30) (and therefore (29a)) is
controlled by the transition points ti which we choose to
be

t0 = n0

Q
, t2 = n2 ◊ 0.295 ,

t1 = n1

Q
, t3 = n3 ·

sph
. (31)

The particular forms in (31) were designed empirically
— t0,1 roughly track the peak of the · di�erential
distributions, and hence the transition between non-
perturbative and resummation regions, whereas t2 ap-
proximates the crossover where singular and nonsingu-
lar contributions are of equal magnitude, and therefore
where resummation turns o�. Finally, t3 sits just be-
low the value of the spherically symmetric thrust dis-
tribution ·

sph, signalling where our predictions reduce
to their fixed-order values. These choices for ti then
determine the ’ function, generically parameterized by
’ (· ; {t0, y0, r0}, {t1, y1, r1}), which is a quadratic polyno-
mial in either (· ≠ t0) or (· ≠ t1), depending on whether
· is greater or less than (t0 + t1)/2. The coe�cients of
these polynomials are themselves determined from the
continuity of ’ and its first derivative.

On the other hand, the authors of [6] instead chose the
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TABLE II: Profile parameter variations as described in
Section IV, for both the 2010 and 2018 formalisms. In

both scenarios, all parameters are chosen randomly
within the ranges shown, and the ’central’ values are
the centers of the given ranges, except for the slope
parameter r, whose central value is given by r = 1.
Note that we have refined this variation for the R
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scheme — see the text for details.
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with parameters ti that are akin to those introduced in
31, and b, d parameters that can be written as functions
of µi and ti upon again ensuring the continuity of the
soft profile and its first derivatives at · = ti — see [6] for
complete details.

Besides their overall functional form, the profiles in
(29a) and (32a) also include multiple additional parame-
ters that allow us to vary these scales and obtain reliable
theory uncertainties — the parameters eH,J,S control the
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for µH,J,S,R, while the second figure show µns. The
bottom two figures show µJ,S,R variations about central
values, respectively, as given in Table II. In the latter
plots µS < µJ is realized for any given set of scales,
despite the fact that the overall bands overlap. Also
note that the R
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correspond to overall shifts to the vertical axis.
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within the ranges shown, and the ’central’ values are
the centers of the given ranges, except for the slope
parameter r, whose central value is given by r = 1.
Note that we have refined this variation for the R
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scheme — see the text for details.
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with parameters ti that are akin to those introduced in
31, and b, d parameters that can be written as functions
of µi and ti upon again ensuring the continuity of the
soft profile and its first derivatives at · = ti — see [6] for
complete details.

Besides their overall functional form, the profiles in
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ters that allow us to vary these scales and obtain reliable
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expected…
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What else can we vary?
Generalized cancellation schemes also depend on derivative rank and normalization params:

6

with f
(i)

mod
defined as in (18).

As a final note we recall that, regardless of the scheme
choices that we make, (12) assumes that the dominant
power corrections e�ecting our observable come from the
soft sector, while those from the collinear sector are sup-
pressed. This is true for e+e≠ thrust.

A. Renormalon Cancellation Schemes

As mentioned above, both S̃ and ” su�er from renor-
malon ambiguities [] associated to infrared poles in their
(all-orders) Borel series representations. As in prior stud-
ies, we will adopt a formalism to cancel them against one
another, thereby rendering our overall cross section free
of the (leading) soft renormalon. check wording A gen-
eralized set of schemes achieving this cancellation was
recently presented in [13] and is given by

d
n

d(ln v)n
ln

Ë
S̃(v, µSUB)e≠2v”(µSUB)

È

v=›/µR

= 0 , (20)

where v is a Laplace variable, µSUB is a subtraction scale
discuss di�erence w.r.t. µR, and n, › are free parameters
defining the scheme. From (20) one immediately obtains
an expression for the subtraction term ”(µSUB) in terms
of the perturbative soft function,

”(µSUB) = µR

2›

d
n

d(ln v)n
ln S̃(v, µSUB)

--
v=›/µR

. (21)

Here it is clear that we need to have control over the
renormalization group evolution (RGE) of the subtrac-
tion terms, both in terms of the subtraction scale µSUB

itself and the renormalon scale µR,

“R [–s(µR)] = d

dµR

”(µR) ©

ÿ

n=0

3
–s(µR)

4fi

4n+1

“
n

µR
,

(22)

“� [–s(µSUB)] = ≠
d

d ln µSUB

�(µSUB , µR) (23)

= d

d ln µSUB

”(µSUB , µR) . (24)

The µSUB-evolution is well-known [], and is given in
terms of the cusp evolution function ÷� defined in (4).
This evolution only plays a role in the functional form
of �(µSUB , µR), which we give explicitly at three-loop
order in (B3). Note that in (22) we have anticipated the
necessary perturbative description of the µR-anomalous
dimension, as this will be defined order-by-order in terms
of ”(µR), which is scheme dependent.

We now address the choice of renormalon cancellation
scheme which, as is evident in (21), depends on a choice of
derivative rank (the n parameter), overall normalization
(the › parameter), and subtraction scale µSUB . As long
as an appropriate hierarchy of scales is maintained true?,

one may choose these parameters freely. In [6, 7], for
example, the so-called R Scheme was defined by

R Scheme: {n, ›, µSUB , µR} = {1, e
≠“E , µS , R} ,

(25)

where the functional form of the profile R is given in
Section IV. Exact n = 1 expressions for both ” and
“R (at arbitrary µSUB and ›) are given up to O

!
–

3
s

"

in Appendix B, and in Figure 2 we plot the e�ective
shift (19) of the overall di�erential distribution as a re-
sult of this choice (blue curve). One notices an (a priori)
odd e�ect: the impact of non-perturbative physics grows
as · increases, i.e. as the distribution evolves towards
(high-energy) multi-jet configurations, where one naively
expects perturbative QCD to adequately describe data.
While recent studies of three-jet power corrections [] to
d‡/d· indicate that such a trend may be physical, it is
unclear as to why this e�ect should be present as a re-
sult of a renormalon cancellation scheme as applied to
the dijet factorization implied in (3). As the growth of
(19) is due to the RGE of �(µSUB , µR) (and therefore
the profile scales of Section IV), one may be motivated
to consider schemes where this e�ective shift of the dijet
prediction can be limited, while still achieving the can-
cellation of the leading soft renormalon.

To that end, in this paper we also define the following
Rı scheme:

Rı Scheme: {n, ›, µSUB , µR} = {1, e
≠“E , R

ı
, R

ı
}

(26)

Here we have simply replaced the subtraction scale µSUB

with a new Rı scale, defined as a step function,

R
ı =

I
R R < Rmax

Rmax R Ø Rmax .
(27)

Below the limiting parameter Rmax, µSUB = R, which
is profiled in Section IV. Most importantly, as is clear
in (B16), all of the ln µSUB/R terms appearing in ” are
turned o� in this (dominantly non-perturbative) domain.
Beyond this point, the scale becomes a constant, and
small logarithmic contributions are allowed. The Rı ef-
fective shift is plotted in black and blue in Figure 2, re-
spectively for the 2018 and 2010 profile functions we in-
troduce in Sectino IV. There one observes a leveling o�
in comparison to the standard R scheme, for both scale
choices, as designed.6

As a third and final scheme, we consider an instance
where n = 0, which we refer to as the R0 scheme:

R0 Scheme: {n, ›, µSUB , µR} = {0, 2fi, µS , R} (28)

6 The limiting parameter has been chosen as the value of R at the
profile parameter t1 discussed in Section IV, Rmax = R(t1).

Let’s also try to define a scheme with n=0.  We’ve calculated the required subtraction terms and 
anomalous dimensions to three-loop order.
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three-loop order, and is given by
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where G is the anti-derivative of 1/— [–],
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On the other hand, the functional dependence of ”
n on the subtraction and renormalon scales is scheme-dependent,

as is the structure of the R-anomalous dimensions appearing in (B3). We now present the ingredients ”
i and “

i

R
in

both the n = 0 and n = 1 schemes considered in the main text.

1. n=0

From (21) one reads o� that

”(µ) = R

2›
ln S̃(v = ›

R
, µ) ©

R

2›

ÿ

n=1

3
–s(µ)

4fi

4n

”
n(µ) (B6)

for a generic › scheme and subtraction scale µ © µSUB . Given the known three-loop expansion of the Laplace-space
soft function S̃(‹, µ), one can then easily obtain the order-by-order expressions for ” as follows:
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Cancellation (and evolution terms) 
explicitly sensitive to missing three-loop 

finite soft constant…

Cancellation 
(and evolution 

terms) sensitive 
to logs @ one 
higher power, 
with respect to 
n=1 schemes…

6

with f
(i)

mod
defined as in (18).

As a final note we recall that, regardless of the scheme
choices that we make, (12) assumes that the dominant
power corrections e�ecting our observable come from the
soft sector, while those from the collinear sector are sup-
pressed. This is true for e+e≠ thrust.

A. Renormalon Cancellation Schemes

As mentioned above, both S̃ and ” su�er from renor-
malon ambiguities [] associated to infrared poles in their
(all-orders) Borel series representations. As in prior stud-
ies, we will adopt a formalism to cancel them against one
another, thereby rendering our overall cross section free
of the (leading) soft renormalon. check wording A gen-
eralized set of schemes achieving this cancellation was
recently presented in [13] and is given by

d
n

d(ln v)n
ln

Ë
S̃(v, µSUB)e≠2v”(µSUB)

È

v=›/µR

= 0 , (20)

where v is a Laplace variable, µSUB is a subtraction scale
discuss di�erence w.r.t. µR, and n, › are free parameters
defining the scheme. From (20) one immediately obtains
an expression for the subtraction term ”(µSUB) in terms
of the perturbative soft function,

”(µSUB) = µR

2›

d
n

d(ln v)n
ln S̃(v, µSUB)

--
v=›/µR

. (21)

Here it is clear that we need to have control over the
renormalization group evolution (RGE) of the subtrac-
tion terms, both in terms of the subtraction scale µSUB

itself and the renormalon scale µR,

“R [–s(µR)] = d

dµR

”(µR) ©

ÿ

n=0

3
–s(µR)

4fi

4n+1

“
n

µR
,

(22)

“� [–s(µSUB)] = ≠
d

d ln µSUB

�(µSUB , µR) (23)

= d

d ln µSUB

”(µSUB , µR) . (24)

The µSUB-evolution is well-known [], and is given in
terms of the cusp evolution function ÷� defined in (4).
This evolution only plays a role in the functional form
of �(µSUB , µR), which we give explicitly at three-loop
order in (B3). Note that in (22) we have anticipated the
necessary perturbative description of the µR-anomalous
dimension, as this will be defined order-by-order in terms
of ”(µR), which is scheme dependent.

We now address the choice of renormalon cancellation
scheme which, as is evident in (21), depends on a choice of
derivative rank (the n parameter), overall normalization
(the › parameter), and subtraction scale µSUB . As long
as an appropriate hierarchy of scales is maintained true?,

one may choose these parameters freely. In [6, 7], for
example, the so-called R Scheme was defined by

R Scheme: {n, ›, µSUB , µR} = {1, e
≠“E , µS , R} ,

(25)

where the functional form of the profile R is given in
Section IV. Exact n = 1 expressions for both ” and
“R (at arbitrary µSUB and ›) are given up to O

!
–

3
s

"

in Appendix B, and in Figure 2 we plot the e�ective
shift (19) of the overall di�erential distribution as a re-
sult of this choice (blue curve). One notices an (a priori)
odd e�ect: the impact of non-perturbative physics grows
as · increases, i.e. as the distribution evolves towards
(high-energy) multi-jet configurations, where one naively
expects perturbative QCD to adequately describe data.
While recent studies of three-jet power corrections [] to
d‡/d· indicate that such a trend may be physical, it is
unclear as to why this e�ect should be present as a re-
sult of a renormalon cancellation scheme as applied to
the dijet factorization implied in (3). As the growth of
(19) is due to the RGE of �(µSUB , µR) (and therefore
the profile scales of Section IV), one may be motivated
to consider schemes where this e�ective shift of the dijet
prediction can be limited, while still achieving the can-
cellation of the leading soft renormalon.

To that end, in this paper we also define the following
Rı scheme:

Rı Scheme: {n, ›, µSUB , µR} = {1, e
≠“E , R

ı
, R

ı
}

(26)

Here we have simply replaced the subtraction scale µSUB

with a new Rı scale, defined as a step function,

R
ı =

I
R R < Rmax

Rmax R Ø Rmax .
(27)

Below the limiting parameter Rmax, µSUB = R, which
is profiled in Section IV. Most importantly, as is clear
in (B16), all of the ln µSUB/R terms appearing in ” are
turned o� in this (dominantly non-perturbative) domain.
Beyond this point, the scale becomes a constant, and
small logarithmic contributions are allowed. The Rı ef-
fective shift is plotted in black and blue in Figure 2, re-
spectively for the 2018 and 2010 profile functions we in-
troduce in Sectino IV. There one observes a leveling o�
in comparison to the standard R scheme, for both scale
choices, as designed.6

As a third and final scheme, we consider an instance
where n = 0, which we refer to as the R0 scheme:

R0 Scheme: {n, ›, µSUB , µR} = {0, 2fi, µS , R} (28)

6 The limiting parameter has been chosen as the value of R at the
profile parameter t1 discussed in Section IV, Rmax = R(t1).
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FIG. 4: Top Panel: Convergence plot for the (normalized) cumulant thrust cross section across the entirety of the
· domain, assuming the R renormalon cancellation scheme from [6, 7] and described in Section III A. These plots are
generated with 100 variations of the embedded profile parameters. Middle Panel: The same as the Top Panel, but

for the normalized di�erential distribution, multiplied by the observable · . Bottom Panel: A comparison of the
di�erential distribution with L3 thrust data at N3LL+O(–3

s
) accuracy, and at Q = mZ

overall magnitude and width of the hard, jet, and soft
profile bands, R0 < µ0 for ·a < t0 ensures that no large
logarithms between the soft and renormalon scales arise
[], the adjustable parameters ni allow a variation about
our rough estimates for di�erent regions in the ·a domain,
and ns picks out di�erent values of the non-singular scale
µns entering the matching contributions to ‡P T , whose
variation accounts for missing higher-order terms in these
fixed-order predictions. Finally, the parameters r repre-
sents a slope in the transition regions.

In addition to these ‘scale’ variations, we must also ac-
count for systematic errors associated to the extraction of

unknown quantities from event generators. In our setup
there are three such parameters of concern, the three-
loop singular constant c

3

S̃
, which we take from [18], and

the non-singular remainder functions r
2
c

and r
3
c

which we
have extracted from EVENT2 and EERAD3, respectively.
Following [15], we assign an error function to the central
values found for these objects X œ {c

3

S̃
, r

2
c
, r

3
c
} as

X = X
central +

I
”X �X

upper (”X > 0)
”X �X

lower (”X < 0)
(33)

where ”X is varied between ±1 as presented in Table II
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for the normalized di�erential distribution, multiplied by the observable · . Bottom Panel: A comparison of the
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) accuracy, and at Q = mZ

overall magnitude and width of the hard, jet, and soft
profile bands, R0 < µ0 for ·a < t0 ensures that no large
logarithms between the soft and renormalon scales arise
[], the adjustable parameters ni allow a variation about
our rough estimates for di�erent regions in the ·a domain,
and ns picks out di�erent values of the non-singular scale
µns entering the matching contributions to ‡P T , whose
variation accounts for missing higher-order terms in these
fixed-order predictions. Finally, the parameters r repre-
sents a slope in the transition regions.

In addition to these ‘scale’ variations, we must also ac-
count for systematic errors associated to the extraction of

unknown quantities from event generators. In our setup
there are three such parameters of concern, the three-
loop singular constant c

3

S̃
, which we take from [18], and

the non-singular remainder functions r
2
c

and r
3
c

which we
have extracted from EVENT2 and EERAD3, respectively.
Following [15], we assign an error function to the central
values found for these objects X œ {c

3

S̃
, r

2
c
, r

3
c
} as

X = X
central +

I
”X �X

upper (”X > 0)
”X �X

lower (”X < 0)
(33)

where ”X is varied between ±1 as presented in Table II
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FIG. 5: The same as 4, but for the R
ı cancellation scheme.

and discussed below, and �X represents the associated
extraction error as discussed above and in [18] with re-
spect to c

3

S̃
. This procedure allows us to reliably account

for systematic uncertainties associated to these objects,
despite the fact that these errors are not the primary
focus of our study.7

In order to vary the scales in (29a) and (32a), and
thereby obtain an estimate of the total theory uncer-
tainty, we implement a procedure where random values
of all parameters in (29a)-(33) are scanned over a pre-
determined range with each instantiation yielding a dif-
ferent profile. The overall envelope of these profiles is

7 See our future work [24] on this matter.

then taken as the total theory uncertainty, upon ensur-
ing that the final cross sections exhibit good convergence
when moving towards higher logarithmic accuracies. The
ranges we scan over are given in Table II, where the
parameters ”r

2 and ”r
3 represent systematic uncertain-

ties coming from the extractions of these quantities from
fixed-order event generators as described in Section ??,
and ”c

3

S
is the proposed error coming from the Padé ap-

proximant calculated in [6].
The central values for the 2018 and 2010 µJ,S,R profiles

are given in the top panels of Figure 3, while the second
panel gives the central values of the non-singular scale
µns at ns œ {≠1, 0, 1}. The results of 64 di�erent random
scans of the theory parameters embedded in µJ,S,R (as
discussed above) are then illustrated in the bottom two
panels of Figure 3, for the 2018 (second from the bottom
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and discussed below, and �X represents the associated
extraction error as discussed above and in [18] with re-
spect to c

3

S̃
. This procedure allows us to reliably account

for systematic uncertainties associated to these objects,
despite the fact that these errors are not the primary
focus of our study.7

In order to vary the scales in (29a) and (32a), and
thereby obtain an estimate of the total theory uncer-
tainty, we implement a procedure where random values
of all parameters in (29a)-(33) are scanned over a pre-
determined range with each instantiation yielding a dif-
ferent profile. The overall envelope of these profiles is

7 See our future work [24] on this matter.

then taken as the total theory uncertainty, upon ensur-
ing that the final cross sections exhibit good convergence
when moving towards higher logarithmic accuracies. The
ranges we scan over are given in Table II, where the
parameters ”r

2 and ”r
3 represent systematic uncertain-

ties coming from the extractions of these quantities from
fixed-order event generators as described in Section ??,
and ”c

3

S
is the proposed error coming from the Padé ap-

proximant calculated in [6].
The central values for the 2018 and 2010 µJ,S,R profiles

are given in the top panels of Figure 3, while the second
panel gives the central values of the non-singular scale
µns at ns œ {≠1, 0, 1}. The results of 64 di�erent random
scans of the theory parameters embedded in µJ,S,R (as
discussed above) are then illustrated in the bottom two
panels of Figure 3, for the 2018 (second from the bottom
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overall magnitude and width of the hard, jet, and soft
profile bands, R0 < µ0 for ·a < t0 ensures that no large
logarithms between the soft and renormalon scales arise
[], the adjustable parameters ni allow a variation about
our rough estimates for di�erent regions in the ·a domain,
and ns picks out di�erent values of the non-singular scale
µns entering the matching contributions to ‡P T , whose
variation accounts for missing higher-order terms in these
fixed-order predictions. Finally, the parameters r repre-
sents a slope in the transition regions.

In addition to these ‘scale’ variations, we must also ac-
count for systematic errors associated to the extraction of

unknown quantities from event generators. In our setup
there are three such parameters of concern, the three-
loop singular constant c

3

S̃
, which we take from [18], and

the non-singular remainder functions r
2
c

and r
3
c

which we
have extracted from EVENT2 and EERAD3, respectively.
Following [15], we assign an error function to the central
values found for these objects X œ {c

3

S̃
, r

2
c
, r

3
c
} as

X = X
central +

I
”X �X

upper (”X > 0)
”X �X

lower (”X < 0)
(33)

where ”X is varied between ±1 as presented in Table II
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FIG. 6: The same as 4, but for the R
0 cancellation scheme.

panel) and 2010 (bottom panel) functional forms. Note
that in both panels we have plotted the renormalon scales
with the modified R

ı prescription of (26), as otherwise
they would be visibly indistinguishable from µS across
the bulk of the domain. The variation of the hard scale
parameter eH corresponds to shifts of the overall vertical
axis, as indicated by the black error bands.

From Fig. 3 one notices that the choices embedded in
(29a) and (32a), which are both legitimate and robust
frameworks, lead to a qualitatively di�erent behavior of
the overall scales throughout the bulk of the · domain,
both at central values and upon considering variations.
In Section V B we will illustrate the systematic impact
this has on global –s(mZ) and �1 extractions.

A. Theory Predictions for Cumulant and
Di�erential Distributions

Given the theory inputs from Section II, III, and the
scale variations discussed above, we can now use (3) and
(12) to predict cumulant and di�erential thrust distri-
butions with reliable theory uncertainties. We do so
in Figures 4-6 for the R, R

ı, and R
0 schemes, respec-

tively. In each individual Figure there are six panels,
with the left (right) column of panels corresponding to
predictions made with the relevant renormalon cancel-
lation scheme implemented with the 2018 (2010) profile
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that in both panels we have plotted the renormalon scales
with the modified R

ı prescription of (26), as otherwise
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the bulk of the domain. The variation of the hard scale
parameter eH corresponds to shifts of the overall vertical
axis, as indicated by the black error bands.
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the overall scales throughout the bulk of the · domain,
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A. Theory Predictions for Cumulant and
Di�erential Distributions

Given the theory inputs from Section II, III, and the
scale variations discussed above, we can now use (3) and
(12) to predict cumulant and di�erential thrust distri-
butions with reliable theory uncertainties. We do so
in Figures 4-6 for the R, R

ı, and R
0 schemes, respec-

tively. In each individual Figure there are six panels,
with the left (right) column of panels corresponding to
predictions made with the relevant renormalon cancel-
lation scheme implemented with the 2018 (2010) profile
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choices.8Then the upper row of panels shows the predic-
tion for the cumulant cross section ‡c from NLL

Õ+O (–s)
up to N
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resummed and matched accuracies,

across the entirety of the · domain. The middle row of
panels shows the cross sections obtained from di�erenti-
ating the cumulant curves9 at all accuracies, but only in
the central domain relevant to our –s(mZ) extractions
in Section V. Finally, the third row of panels shows the
N
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LL+O
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s
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di�erential distributions (including error

bands) compared to L3 data for thrust, at Q = mZ .
Broadly speaking, we observe excellent convergence be-

tween di�erent logarithmic accuracies for both cumulant
and di�erential distributions, using both 2010 and 2018
profile scales and considering all three di�erent renor-
malon cancellation schemes, at least in the central · do-
main. We observe, for example, that logs of µsub/µS that
are non-zero above t1 in the R

ı scheme (but zero in the
R scheme) do not qualitatively impact the perturbative
convergence of the physical cross sections — these logs
are therefore safe.

In lower · domains, however, we do observe some insta-
bility in the R

0 cancellation scheme, most notably around
the t1 threshold, and in particular for the 2010 profile
scans. We note of course that the R

0 scheme is sensi-
tive to one higher power of logarithm in its subtraction
terms, and to (e.g.) the unknown (and conservatively
varied) three-loop soft singular constant c

3

S
— cf. Ap-

pendix B. We expect that a concrete determination of
this constant and, perhaps, a more refined set of scale
variations, will eventually stabilize these curves as well.
In the meantime we will only consider the R

0 scheme in
its stable domain, i.e. for · Ø 0.1.

In addition to the obvious instabilities in the low-·
domain of the R

0 scheme plots, we also observe that, re-
gardless of the renormalon cancellation scheme, the error
bands associated to 2010 profile variations are generally
smaller than those associated to 2018 profile variations,
and hence the latter can be considered more conserva-
tive than the former. Of course, this behavior could have
been trivially anticipated from the variational plots in
Fig. 3, where the width of the 2018 profiles themselves
are already wider than their 2010 counterparts. Critically
though, it is clear from the third rows of Figs. 4-6 that
the N

3
LL + O
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s

"
di�erential curves describe available

thrust data exceptionally well in the tail region most rel-
evant to resummation improvements and –s extractions.
This is true for all renormalon cancellation and profile

8 A given combination of cancellation and profile scheme is denoted
R

i

scales
.

9 See [26] for an exhaustive discussion regarding alternative tech-
niques to predicting di�erential distributions in the SCET frame-
work. Note that in obtaining error bands on these di�eren-
tial objects we have calculated the derivative of all cumulant
curves coming from individual profile variations and then maxi-
mized/minimized these across the · domain, as opposed to sim-
ply taking the derivative of the max/min cumulant curve as
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schemes.
In Figure 7 we examine the percent di�erences between

the schemes we have considered individually in Figures 4-
6, normalized to the R2018 scheme. The top panel shows
the percent-di�erence of the central values of the di�er-
ential distributions predicted at N3LL+O(–3

s
), while the

bottom three panels compare the percent di�erences of
the minimum di�erential variations of the schemes, the
maximum di�erential variations, and the minimum vari-
ations of R

(ı,0)

2018,2010
simultaneous with the max variation

of R2018, respectively moving from the top down. All
curves are predicted at Q = mZ . As can be seen, profile
variations can lead to multi-percent di�erences between
the di�ering schemes, and this e�ect is especially notice-
able towards the far-tail of the distributions. Later, in
Section V, we will explore the possibility of performing
fits within a restricted · domain isolated more towards
the purely dijet region where the di�erences between our
schemes is less pronounced, rather than the default fit-
ting window (that we have plotted over in the di�erential
plots of Figure 7).

V. GLOBAL –s ≠ �1 EXTRACTIONS

Given the framework outlined in Sections II-IV, we can
now compare our various theory predictions to available
thrust data, in an e�ort to extract values of the strong
coupling constant –s(mZ) and leading non-perturbative
shift parameter �1 that are experimentally preferred.

To assess the quality of said fits quantitatively, we will
perform a ‰

2 analysis at the binned level to estimate the
quality of a given prediction:
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and where the ’theory’ predictions for a bin between
[·1, ·2] (with ·2 > ·1) are given by the values of the thrust
distribution at the endpoints of the bin, but with profile
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with µa any of the relevant scales presented in Section
IV. We deem this the midpoint binning procedure, and
will briefly discuss an alternative in Section V C below.

Then, for a given Q, Vij incorporates the quoted sta-
tistical and systematic errors from a given dataset. The
statistical errors of each bin, e

stat.

i
, are considered in-

dependent and contribute to the diagonal entries of Vij .
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FIG. 7: Percent-di�erence comparisons of the
renormalon-cancellation and profile variation schemes

we consider for di�erential distributions, normalized to
R2018. The top panel compares central curves, while the

bottom three panels compare the maximum and
minimum curves obtained upon calculating theory

uncertainties. See the text for more details.

di�erent bins yield non-zero o�-diagonal entries, which
we estimate using the Minimal Overlap Model (MOM)
[].10 According to the MOM prescription the o�-diagonal
elements of the error matrix Vi ”=j can be estimated as the
minimum of the two systematic errors of the individual
bins i and j, such that

Vij

---
MOM

= (estat.

i
)2

”ij + min(esys

i
, e

sys

j
)2

. (37)

For a given value Q and profile function parameters, we
may now find the values {–s(mZ), �1}b.f. that minimize
‰

2. To estimate the theoretical uncertainty on the ex-
tracted values we repeat the same procedure for multiple
random draws of the profile function parameters within
the ranges given in Table II. We then define the theoret-
ical error ellipse with the following equation:

1 = XT
K

≠1

theory
X , (38)

where

XT = {–s, �1} ≠ {µ–, µ�} (39)

and
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fl–� ‡–‡� ‡
2
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4
, (40)

with µX and ‡
2

X
respectively denoting the standard mean

and variances for the two parameters –s and �1. The
o�-diagonal entries of Ktheory, involve the standard cor-
relation coe�cient fl–� of the two parameters.11

Of course, one can also incorporate the experimental
uncertainty associated to the extractions. This can be
done by constructing the curve ‰

2(–s, �1) ≠ ‰
2
min

= 1 by
fixing the theory prediction in (35) to that of (12), eval-
uated at the central/default profile parameters in Table
II, and minimizing the ‰

2 to obtain {–s, �1}c.v.. This
curve can be very closely approximated by an ellipse in
the –s and �1 plane, with the following equation:

1 = XT

c.v.
K

≠1

exp.
Xc.v. , (41)

where

XT

c.v.
= {–s, �1} ≠ {–s, �1}c.v. (42)

and Kexp is a 2 ◊ 2 symmetric matrix. We refer to the
ellipse defined in (41) as the experimental error ellipse,
and then the total error ellipse is defined by

1 = XT
K

≠1

total
X , (43)

10 As no information was given by the experiment as regards this
correlation, a model had to be chosen. The Minimal Overlap
Model was chosen because it was used by the LEP QCD working
group [] and by the analyses in [].

11 The matrix Ktheory is simply the co-variance matrix evaluated
from all the minimization pairs {–s, �1}b.f..
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we estimate using the Minimal Overlap Model (MOM)
[].10 According to the MOM prescription the o�-diagonal
elements of the error matrix Vi ”=j can be estimated as the
minimum of the two systematic errors of the individual
bins i and j, such that

Vij

---
MOM

= (estat.

i
)2

”ij + min(esys

i
, e

sys

j
)2

. (37)

For a given value Q and profile function parameters, we
may now find the values {–s(mZ), �1}b.f. that minimize
‰

2. To estimate the theoretical uncertainty on the ex-
tracted values we repeat the same procedure for multiple
random draws of the profile function parameters within
the ranges given in Table II. We then define the theoret-
ical error ellipse with the following equation:

1 = XT
K

≠1

theory
X , (38)

where

XT = {–s, �1} ≠ {µ–, µ�} (39)

and

Ktheory =
3

‡
2
–

fl–� ‡–‡�

fl–� ‡–‡� ‡
2

�

4
, (40)

with µX and ‡
2

X
respectively denoting the standard mean

and variances for the two parameters –s and �1. The
o�-diagonal entries of Ktheory, involve the standard cor-
relation coe�cient fl–� of the two parameters.11

Of course, one can also incorporate the experimental
uncertainty associated to the extractions. This can be
done by constructing the curve ‰

2(–s, �1) ≠ ‰
2
min

= 1 by
fixing the theory prediction in (35) to that of (12), eval-
uated at the central/default profile parameters in Table
II, and minimizing the ‰

2 to obtain {–s, �1}c.v.. This
curve can be very closely approximated by an ellipse in
the –s and �1 plane, with the following equation:

1 = XT

c.v.
K

≠1

exp.
Xc.v. , (41)

where

XT

c.v.
= {–s, �1} ≠ {–s, �1}c.v. (42)

and Kexp is a 2 ◊ 2 symmetric matrix. We refer to the
ellipse defined in (41) as the experimental error ellipse,
and then the total error ellipse is defined by

1 = XT
K

≠1

total
X , (43)

10 As no information was given by the experiment as regards this
correlation, a model had to be chosen. The Minimal Overlap
Model was chosen because it was used by the LEP QCD working
group [] and by the analyses in [].

11 The matrix Ktheory is simply the co-variance matrix evaluated
from all the minimization pairs {–s, �1}b.f..

Experimental errors (stat. and syst.) accounted for with ‘minimal overlap model’:

Theory errors are conveniently parameterized in terms of an error ellipse K:
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choices.8Then the upper row of panels shows the predic-
tion for the cumulant cross section ‡c from NLL

Õ+O (–s)
up to N

3
LL+O

!
–

3
s

"
resummed and matched accuracies,

across the entirety of the · domain. The middle row of
panels shows the cross sections obtained from di�erenti-
ating the cumulant curves9 at all accuracies, but only in
the central domain relevant to our –s(mZ) extractions
in Section V. Finally, the third row of panels shows the
N

3
LL+O

!
–

3
s

"
di�erential distributions (including error

bands) compared to L3 data for thrust, at Q = mZ .
Broadly speaking, we observe excellent convergence be-

tween di�erent logarithmic accuracies for both cumulant
and di�erential distributions, using both 2010 and 2018
profile scales and considering all three di�erent renor-
malon cancellation schemes, at least in the central · do-
main. We observe, for example, that logs of µsub/µS that
are non-zero above t1 in the R

ı scheme (but zero in the
R scheme) do not qualitatively impact the perturbative
convergence of the physical cross sections — these logs
are therefore safe.

In lower · domains, however, we do observe some insta-
bility in the R

0 cancellation scheme, most notably around
the t1 threshold, and in particular for the 2010 profile
scans. We note of course that the R

0 scheme is sensi-
tive to one higher power of logarithm in its subtraction
terms, and to (e.g.) the unknown (and conservatively
varied) three-loop soft singular constant c

3

S
— cf. Ap-

pendix B. We expect that a concrete determination of
this constant and, perhaps, a more refined set of scale
variations, will eventually stabilize these curves as well.
In the meantime we will only consider the R

0 scheme in
its stable domain, i.e. for · Ø 0.1.

In addition to the obvious instabilities in the low-·
domain of the R

0 scheme plots, we also observe that, re-
gardless of the renormalon cancellation scheme, the error
bands associated to 2010 profile variations are generally
smaller than those associated to 2018 profile variations,
and hence the latter can be considered more conserva-
tive than the former. Of course, this behavior could have
been trivially anticipated from the variational plots in
Fig. 3, where the width of the 2018 profiles themselves
are already wider than their 2010 counterparts. Critically
though, it is clear from the third rows of Figs. 4-6 that
the N

3
LL + O

!
–

3
s

"
di�erential curves describe available

thrust data exceptionally well in the tail region most rel-
evant to resummation improvements and –s extractions.
This is true for all renormalon cancellation and profile

8 A given combination of cancellation and profile scheme is denoted
R

i

scales
.

9 See [26] for an exhaustive discussion regarding alternative tech-
niques to predicting di�erential distributions in the SCET frame-
work. Note that in obtaining error bands on these di�eren-
tial objects we have calculated the derivative of all cumulant
curves coming from individual profile variations and then maxi-
mized/minimized these across the · domain, as opposed to sim-
ply taking the derivative of the max/min cumulant curve as
shown in the top row of panels.

schemes.
In Figure 7 we examine the percent di�erences between

the schemes we have considered individually in Figures 4-
6, normalized to the R2018 scheme. The top panel shows
the percent-di�erence of the central values of the di�er-
ential distributions predicted at N3LL+O(–3

s
), while the

bottom three panels compare the percent di�erences of
the minimum di�erential variations of the schemes, the
maximum di�erential variations, and the minimum vari-
ations of R

(ı,0)

2018,2010
simultaneous with the max variation

of R2018, respectively moving from the top down. All
curves are predicted at Q = mZ . As can be seen, profile
variations can lead to multi-percent di�erences between
the di�ering schemes, and this e�ect is especially notice-
able towards the far-tail of the distributions. Later, in
Section V, we will explore the possibility of performing
fits within a restricted · domain isolated more towards
the purely dijet region where the di�erences between our
schemes is less pronounced, rather than the default fit-
ting window (that we have plotted over in the di�erential
plots of Figure 7).

V. GLOBAL –s ≠ �1 EXTRACTIONS

Given the framework outlined in Sections II-IV, we can
now compare our various theory predictions to available
thrust data, in an e�ort to extract values of the strong
coupling constant –s(mZ) and leading non-perturbative
shift parameter �1 that are experimentally preferred.

To assess the quality of said fits quantitatively, we will
perform a ‰

2 analysis at the binned level to estimate the
quality of a given prediction:

‰
2

©

ÿ

i,j

�iV
≠1

ij
�j . (34)

where we have defined �i as the di�erence between the-
ory and experiment in the i-th data bin,

�i ©

3
1
‡

d‡

d·
(·i)|exp

≠
1
‡

d‡

d·
(·i)|th

4
, (35)

and where the ’theory’ predictions for a bin between
[·1, ·2] (with ·2 > ·1) are given by the values of the thrust
distribution at the endpoints of the bin, but with profile
scales evaluated at the bin’s center · © (·1 + ·2)/2:

1
‡

d‡

d·
(·i)

---
th

MP

©
1

‡tot

‡c(·2, µa(·)) ≠ ‡c(·1, µa(·))
·2 ≠ ·1

, (36)

with µa any of the relevant scales presented in Section
IV. We deem this the midpoint binning procedure, and
will briefly discuss an alternative in Section V C below.

Then, for a given Q, Vij incorporates the quoted sta-
tistical and systematic errors from a given dataset. The
statistical errors of each bin, e

stat.

i
, are considered in-

dependent and contribute to the diagonal entries of Vij .
However, the correlated systematic uncertainties between
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Global fits include 488 bins of data with c.o.m energies between 35-207 GeV.
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FIG. 8: Extractions of {–s, �1} using the method described in Section V, i.e. in comparing N
3
LL + O

!
–

3
s

"
theory

predictions to thrust data at c.o.m. energies between Q œ {35 ≠ 207} GeV. Upper panels compare the systematic
impact of varying 2010 vs. 2018 profile scales within a given renormalon cancellation scheme, while bottom panels

vary cancellation schemes within a given set of profile scales.

where

Ktotal = Ktheory + Kexp. (44)

and XT is given in (39).
However, given that our motivation in this paper is to

highlight the systematic theory uncertainties associated
to renormalon cancellation and profile variation scheme
choices, we will only quote the theoretical uncertainty
associated to a given fit in what follows. In any event, in
the context of global thrust fits, where an abundance of
data is available, the associated experimental uncertainty
is minimal in comparison to theory errors [6, 7]

A. Global Datasets

In addition to improved statistics, it is both intuitive
and explicitly clear from (e.g.) (1) that the impact of
non-perturbative corrections will change with a varying
C.O.M. energy Q, and hence comparing to data extracted
at di�erent Q will improve our sensitivity to both –s and
�1. We will therefore perform a global fit, including 488
total bins over 52 di�erent datasets, with C.O.M. ener-
gies spread over Q œ {35, 207} GeV, into our ‰

2 analysis
described above. Specifically, we include: list here — a
task for after beers?

B. Final Results and Discussion

Our final results in the {–s, �1} plane are summarized
between Table III and Figures 8-??. continuing The the-
ory correlation matrix Ktheory for the R2018 scheme is
given by

K
R2018
theory

=
3

a b

c d

4
(45)

from which we can extract the correlation and variance
parameters as

‡– =
‡� =

fl–� = (46)
(47)

Performing the same exercise for the remaining schemes,
we find continuing These theory uncertainties are com-
bined with the best-fit value for {–s, �1} in Table III,
along with the associated ‰

2

d.o.f.
at this best-fit point.

continuing

C. Comments on Other Extraction Systematics

Before concluding, it is important to briefly comment
on at least two other aspects of our extractions, namely
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FIG. 7: Percent-di�erence comparisons of the
renormalon-cancellation and profile variation schemes

we consider for di�erential distributions, normalized to
R2018. The top panel compares central curves, while the

bottom three panels compare the maximum and
minimum curves obtained upon calculating theory

uncertainties. See the text for more details.

di�erent bins yield non-zero o�-diagonal entries, which
we estimate using the Minimal Overlap Model (MOM)
[].10 According to the MOM prescription the o�-diagonal
elements of the error matrix Vi ”=j can be estimated as the
minimum of the two systematic errors of the individual
bins i and j, such that

Vij

---
MOM

= (estat.

i
)2

”ij + min(esys

i
, e

sys

j
)2

. (37)

For a given value Q and profile function parameters, we
may now find the values {–s(mZ), �1}b.f. that minimize
‰

2. To estimate the theoretical uncertainty on the ex-
tracted values we repeat the same procedure for multiple
random draws of the profile function parameters within
the ranges given in Table II. We then define the theoret-
ical error ellipse with the following equation:

1 = XT
K

≠1

theory
X , (38)

where

XT = {–s, �1} ≠ {µ–, µ�} (39)

and

Ktheory =
3

‡
2
–

fl–� ‡–‡�

fl–� ‡–‡� ‡
2

�

4
, (40)

with µX and ‡
2

X
respectively denoting the standard mean

and variances for the two parameters –s and �1. The
o�-diagonal entries of Ktheory, involve the standard cor-
relation coe�cient fl–� of the two parameters.11

Of course, one can also incorporate the experimental
uncertainty associated to the extractions. This can be
done by constructing the curve ‰

2(–s, �1) ≠ ‰
2
min

= 1 by
fixing the theory prediction in (35) to that of (12), eval-
uated at the central/default profile parameters in Table
II, and minimizing the ‰

2 to obtain {–s, �1}c.v.. This
curve can be very closely approximated by an ellipse in
the –s and �1 plane, with the following equation:

1 = XT

c.v.
K

≠1

exp.
Xc.v. , (41)

where

XT

c.v.
= {–s, �1} ≠ {–s, �1}c.v. (42)

and Kexp is a 2 ◊ 2 symmetric matrix. We refer to the
ellipse defined in (41) as the experimental error ellipse,
and then the total error ellipse is defined by

1 = XT
K

≠1

total
X , (43)

10 As no information was given by the experiment as regards this
correlation, a model had to be chosen. The Minimal Overlap
Model was chosen because it was used by the LEP QCD working
group [] and by the analyses in [].

11 The matrix Ktheory is simply the co-variance matrix evaluated
from all the minimization pairs {–s, �1}b.f..
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FIG. 10: TOP: Fits comparing extractions using the complete set of 488 bins (darker colors) to those where two
bins have been removed from the far tail of each dataset (lighter colors). MIDDLE: BOTTOM:

is obvious, removing these far-tail bins generically leads
to smaller preferred values of –s(mZ) and larger values
of �1, regardless of the renormalon cancellation and/or
profile scheme employed.

On the other hand, in the middle panel of Fig. 10,
we have considered fits where datasets covering all Q are
considered vs. that subset of the datasets where Q = mZ .
The latter corresponds to a 54 bin fit, and as can be seen
the inclusion of Q ”= mZ bins generically reduces the pre-
ferred values of –s(mZ), and only impacts �1 preferences
mildly.

Finally, motivated by Fig. create this figure, in the
bottom panel of Fig. 10 we have again considered
Q = mZ fits, but compared the extraction results ob-
tained when the fit window is varied between the default

[6/Q, 0.33] range to a reduced [6/Q, 0.225] window. This
was motivated by the observation in Fig. ?? that, at least
at central profile values and for Q = mZ , the percent dif-
ference w.r.t. to di�ering renormalon cancellation and
profile schemes is minimized in the latter, reduced win-
dow. The bottom panel of Fig. 10 is consistent with this
observation, at least for the R2010,2018 and R

ı

2018
schemes,

which we have explicitly checked have {–s, �1}|central fit
values that are closer to one another than in the global
Q = mZ datasets. This tentatively indicates that, while
including data over many di�erent Q values reduces un-
certainties and helps in the decorrelation e�ort between
–s and �1, it can potentially augment di�erences be-
tween extractions performed in di�erent schemes.
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Missing fixed-order ingredients
Our extractions are sensitive, to more or less degrees, on calculations / simulations related to 
missing fixed-order ingredients.

Preliminary!

We have extracted the three-loop remainder function, and have attempted to extract the three-
loop finite singular constant (as have others).

This object (and especially 
its central value) clearly 

matters at the accuracies 
we consider. 

This would be especially 
true for n=0 schemes…

We believe there is more to say here….
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3

The hard function H describes the matching of the ef-
fective theory to full QCD via virtual corrections to
e

+
e

≠
æ qq̄ scattering, while collinear radiation along the

jet directions is described by the jet functions ÂJ (with the
tilde denoting an evaluation in Laplace space), which are
observable-dependent. Finally, background low-energy
radiation that communicates between the two jets is en-
coded in the soft function ÂS. All of these functions in
(3) already live at an associated ‘natural’ scale µH,J,S at
which their logarithms are minimized and their perturba-
tive series well-behaved. This resummation was achieved
via renormalization group evolution (RGE), which gen-
erates the evolution kernels ÂK, K“ , � in (4) defined in
terms of cusp and non-cusp components:

ÂK�(µ, µF ; Q) ©

⁄
µ

µF

dµ
Õ

µÕ �cusp[–s(µÕ)] ln µ
Õ

Q
,

K“F
(µ, µF ) ©

⁄
µ

µF

dµ
Õ

µÕ “F [–s(µÕ)],

÷�(µ, µF ) ©

⁄
µ

µF

dµ
Õ

µÕ �cusp[–s(µÕ)]. (5)

Values for the parameters ŸF , jF are given by

jH = 1, jJ = 2, jS = 1,

ŸH = 4, ŸJ = ≠2, ŸS = 4. (6)

Given perturbative expansions of the cusp �cusp and non-
cusp “ anomalous dimensions, one can solve (5) order
by order, achieving approximate analytic expressions for
kernels that resum to a given logarithmic precision.2 For
derivations of these quantities and further details regard-
ing the forms in (3)-(4), see []. The core takeaway is that
the factorized cross-section in (3) can be used to predict
the singular part of the resummed thrust distributionn
at arbitrary Q, and the order to which each individual
component of (3) must be calculated is presented in Ta-
ble I. As our resummation for thrust will be performed
at N3LL(Õ) accuracy, we will need non-cusp anomalous
dimensions “F and fixed-order hard, jet, and soft func-
tions H, J, S up to O(–3

s
), while O(–4

s
) ingredients are re-

quired for the cusp anomalous dimension �cusp and QCD
—-function.

Of these, only the finite (non-logarithmically-
weighted) component c

3

S
of the three-loop Laplace-space

soft function S̃ is unknown, although [18] has performed
an extraction of this constant using the analytic three-
loop jet function they have computed therein, along with
the EERAD3 event generator [19] results from [20]. In the
next Section we also detail our use of event generators
to match our SCET predictions to O(–2,3

s
) fixed-order

QCD, although in attempting to independently extract

2 However, one should also take note of the systematic errors with
respect to (near) exact solutions introduced when solving these
equations in an approximate analytic framework [16, 17].

c
3
s

from EERAD3 using the methods of [21] (and analogous
to our successful extraction of c

2

J
from EVENT2 [22, 23]

in [15]) we have encountered instabilities that lead to
markedly di�erent values of c

3
s

when comparing to [18]
(see more discussion below). Furthermore, naive appli-
cations of the relative uncertainty between our two ex-
tractions leads to poorer-than-necessary convergence be-
tween N3LL + O(–2

s
) and N3LLÕ + O(–3

s
) accuracies in

Section IV, and also obscures our main message regard-
ing renormalon cancellation schemes and profiled scale
variations. As a result, in this study we have chosen to
implement the Padé Approximant for c

3

S
utilized in [6],3

c
3

s

--
P adé

ƒ 691 ± 1000 . (7)

Note that we have checked that variations of c
3

S
on the

order of O(104), i.e. that doubling or zeroing the value
obtained in [18], does not impact our results for –S(mZ)
by more than ≥ 0.5%, for a given set of sample profile
variations. triple check Hence the approximation in (7) is
safe and suitable for our present purposes (and will also
allow for a more robust comparison to the results of, e.g.,
[6, 7]). unify notation on S,J, indices on constants, here
and in appendix

A. Fixed-Order Matching to QCD

In the far-tail region of the distributions, where resum-
mation becomes less important, it is necessary to match
the singular predictions of SCET from (3) to full QCD.
Focusing on the cumulative integrated distribution, ob-
taining the additional ‘non-singular’ component is then
a matter of determining remainder coe�cients r

i

c
by sub-

tracting o� the singular SCET prediction from the total
QCD result, at a given order in perturbation theory:

‡
P T

c
(·)

‡0

≠
‡c,sing(·)

‡0

= rc(·)

ƒ ◊(·)
;

r̄
1

c
(Q, ·) + r̄

2

c
(Q, ·) + r̄

3

c
(Q, ·)

<
, (8)

where r̄
i

c
(Q, ·) ©

1
–s(Q)

2fi

2i

r
i

c
(·). The singular cross sec-

tion is obtained from (3) by expanding F = H, ÂJ, ÂS at
µ = µH = µJ = µS to fixed order in –s, multiplying
out the expressions, and then inverse Laplace transform-
ing the result. This process is straightforward given the
well-known expressions [] for the fixed-order Fn defined

3 As such, in what follows we do not claim to have achieved a
full N3LLÕ accurate resummation, but instead N3LL + O(–3

s)
accuracy, and believe this further motivates an analytic calcula-
tion of the three-loop thrust soft function. We also aim to more
exhaustively study systematic uncertainties in three-loop QCD
matching in the future [24].
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2
(4�0 + �

i
0)J

(2)
i,�1 , (15)

where �0 = 11
3 CA � 4

3 TF nf and �1 = 34
3 C

2
A � ( 203 CA +

4CF )TF nf with nf the number of active flavors. Our
result for the three-loop quark jet function perfectly re-
produces Eq. (15) for i = q. This provides another strong
cross check and at the same time represents the first di-
rect calculation of �q

2 , which up to now has been inferred
from RG consistency [16] using the three-loop results of

Refs. [57, 59]. For m = 0, 1, 2 the constants J (m)
q,�1 are e.g.

collected in Ref. [25] in accordance with our conventions.
The new result of our work is

J
(3)
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It is often convenient to work with the Laplace transform

J̃q(⌫, µ) =

Z 1

0
ds e�⌫s

Jq(s) , (17)

because the convolutions of Eq. (2) type turn in to simple
products in Laplace space. The Laplace space equivalents
to our Eqs. (14) and (15) can be read o↵ from Ref. [17].
The new three-loop constant related to Eq. (16) in their
notation is

c
J
3 = 25.06777873C3

F + 32.81169125CAC
2
F

� 0.7795843561C2
ACF � 31.65196210CACFnfTF

� 61.78995095C2
FnfTF + 28.49157341CFn

2
fT

2
F , (18)

where for the sake of brevity we have evaluated the exact
analytical result to ten valid digits for each color fac-
tor. The constant cJ3 equals the position space coe�cient
j3 a↵ecting the ↵s determinations in Refs. [18, 19, 21],

where until now j3 = 0± 3000 has been assumed. Evalu-
ating Eq. (18) for Nc = 3, TF = 1/2 and nf = 5 we have
j3 = �128.6512525.
In Ref. [60] the N3LO non-logarithmic constant of the

(normalized) thrust cumulant cross section in the singu-
lar limit was obtained from a fit to fixed-order data pro-
duced by the Monte Carlo program EERAD3 [61], albeit
with large numerical errors. With our new three-loop jet
function constant in Eq. (16) and the known three-loop
hard function [18] at hand we can use this result to ex-
tract a rough estimate for the unknown thrust (qq̄ chan-
nel) soft function constant at three loops. In Laplace (po-
sition) space and adopting the notation of Ref. [17] (cS3 )
and Ref. [18] (s3) we find (Nc = 3, TF = 1/2, nf = 5)

c
S
3 = 2s3 + 691 = �19988± 1440 (stat.)± 4000 (syst.) .

(19)

Summary. In this letter we have presented our calcula-
tion of the quark jet function Jq(s) at three loops. The
main result is the three-loop contribution to the �(s) coef-
ficient and given in Eq. (16). All other terms at this order
can be derived from RG consistency conditions in terms
of previous results, see Eq. (15). The new contribution
is a necessary ingredient to many N3LL0 resummed pro-
cesses with final state jets. It has e.g. a direct impact on
existing ↵s determinations from e

+
e
� event shapes. Our

calculation also represents the first step toward possible
applications of the N -jettiness IR slicing (or subtraction)
method at N3LO.
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Binning technique

Even the technique with which we bin our theory distributions matters for the extractions!

12

choices.8Then the upper row of panels shows the predic-
tion for the cumulant cross section ‡c from NLL

Õ+O (–s)
up to N

3
LL+O

!
–

3
s

"
resummed and matched accuracies,

across the entirety of the · domain. The middle row of
panels shows the cross sections obtained from di�erenti-
ating the cumulant curves9 at all accuracies, but only in
the central domain relevant to our –s(mZ) extractions
in Section V. Finally, the third row of panels shows the
N

3
LL+O

!
–

3
s

"
di�erential distributions (including error

bands) compared to L3 data for thrust, at Q = mZ .
Broadly speaking, we observe excellent convergence be-

tween di�erent logarithmic accuracies for both cumulant
and di�erential distributions, using both 2010 and 2018
profile scales and considering all three di�erent renor-
malon cancellation schemes, at least in the central · do-
main. We observe, for example, that logs of µsub/µS that
are non-zero above t1 in the R

ı scheme (but zero in the
R scheme) do not qualitatively impact the perturbative
convergence of the physical cross sections — these logs
are therefore safe.

In lower · domains, however, we do observe some insta-
bility in the R

0 cancellation scheme, most notably around
the t1 threshold, and in particular for the 2010 profile
scans. We note of course that the R

0 scheme is sensi-
tive to one higher power of logarithm in its subtraction
terms, and to (e.g.) the unknown (and conservatively
varied) three-loop soft singular constant c

3

S
— cf. Ap-

pendix B. We expect that a concrete determination of
this constant and, perhaps, a more refined set of scale
variations, will eventually stabilize these curves as well.
In the meantime we will only consider the R

0 scheme in
its stable domain, i.e. for · Ø 0.1.

In addition to the obvious instabilities in the low-·
domain of the R

0 scheme plots, we also observe that, re-
gardless of the renormalon cancellation scheme, the error
bands associated to 2010 profile variations are generally
smaller than those associated to 2018 profile variations,
and hence the latter can be considered more conserva-
tive than the former. Of course, this behavior could have
been trivially anticipated from the variational plots in
Fig. 3, where the width of the 2018 profiles themselves
are already wider than their 2010 counterparts. Critically
though, it is clear from the third rows of Figs. 4-6 that
the N

3
LL + O

!
–

3
s

"
di�erential curves describe available

thrust data exceptionally well in the tail region most rel-
evant to resummation improvements and –s extractions.
This is true for all renormalon cancellation and profile

8 A given combination of cancellation and profile scheme is denoted
R

i

scales
.

9 See [26] for an exhaustive discussion regarding alternative tech-
niques to predicting di�erential distributions in the SCET frame-
work. Note that in obtaining error bands on these di�eren-
tial objects we have calculated the derivative of all cumulant
curves coming from individual profile variations and then maxi-
mized/minimized these across the · domain, as opposed to sim-
ply taking the derivative of the max/min cumulant curve as
shown in the top row of panels.

schemes.
In Figure 7 we examine the percent di�erences between

the schemes we have considered individually in Figures 4-
6, normalized to the R2018 scheme. The top panel shows
the percent-di�erence of the central values of the di�er-
ential distributions predicted at N3LL+O(–3

s
), while the

bottom three panels compare the percent di�erences of
the minimum di�erential variations of the schemes, the
maximum di�erential variations, and the minimum vari-
ations of R

(ı,0)

2018,2010
simultaneous with the max variation

of R2018, respectively moving from the top down. All
curves are predicted at Q = mZ . As can be seen, profile
variations can lead to multi-percent di�erences between
the di�ering schemes, and this e�ect is especially notice-
able towards the far-tail of the distributions. Later, in
Section V, we will explore the possibility of performing
fits within a restricted · domain isolated more towards
the purely dijet region where the di�erences between our
schemes is less pronounced, rather than the default fit-
ting window (that we have plotted over in the di�erential
plots of Figure 7).

V. GLOBAL –s ≠ �1 EXTRACTIONS

Given the framework outlined in Sections II-IV, we can
now compare our various theory predictions to available
thrust data, in an e�ort to extract values of the strong
coupling constant –s(mZ) and leading non-perturbative
shift parameter �1 that are experimentally preferred.

To assess the quality of said fits quantitatively, we will
perform a ‰

2 analysis at the binned level to estimate the
quality of a given prediction:

‰
2

©

ÿ

i,j

�iV
≠1

ij
�j . (34)

where we have defined �i as the di�erence between the-
ory and experiment in the i-th data bin,

�i ©

3
1
‡

d‡

d·
(·i)|exp

≠
1
‡

d‡

d·
(·i)|th

4
, (35)

and where the ’theory’ predictions for a bin between
[·1, ·2] (with ·2 > ·1) are given by the values of the thrust
distribution at the endpoints of the bin, but with profile
scales evaluated at the bin’s center · © (·1 + ·2)/2:

1
‡

d‡

d·
(·i)

---
th

MP

©
1

‡tot

‡c(·2, µa(·)) ≠ ‡c(·1, µa(·))
·2 ≠ ·1

, (36)

with µa any of the relevant scales presented in Section
IV. We deem this the midpoint binning procedure, and
will briefly discuss an alternative in Section V C below.

Then, for a given Q, Vij incorporates the quoted sta-
tistical and systematic errors from a given dataset. The
statistical errors of each bin, e

stat.

i
, are considered in-

dependent and contribute to the diagonal entries of Vij .
However, the correlated systematic uncertainties between

‘Midpoint’ (Default) Scheme Endpoint Scheme
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Profiles R Scheme Rı Scheme R0 Scheme

2018 Profiles
insert insert insert

2010 Profiles
insert insert insert

[6] R2010 Results
–s = 0.1135 ± 0.0005h ± 0.0009p

N.A. N.A.�1 = 0.323 ± 0.020– ± 0.045p

‰
2
/d.o.f. = 0.91

[7] R2018 Results
–s = 0.1128 ± 0.0005h ± 0.0011p

N.A. N.A.�1 = 0.322 ± 0.021– ± 0.064p

unlisted?

TABLE III: Best fit values for –s(mZ), �1(R�, µ�), and their associated ‰
2

d.o.f.
given the extraction technique

outlined in Section V, and the systematic theory choices discussed for renormalon cancellation schemes in Section
III A. The error quoted is the theoretical error coming from varying profile parameters as described in Section IV,
and the ‰

2/d.o.f. is that associated to the best-fit values in the 2-D plane. The last two rows compare the results
from [6, 7]. check Hoang profiles exact same or comment otherwise

FIG. 9: Our final global fits on the {–s, �1} (TOP) and
{–s, ‰

2

d.o.f
} (BOTTOM) planes, for all four renormalon

+ profile schemes we have considered, and calculated at
N

3
LL + O(–3

s
) accuracy.

the
1. choice of binning technique

2. choice of fit window and datasets.
During our study we have noted, as prior authors have

as well (cf. [6, 7]), that substantially di�erent fit results

can be obtained when these extraction systematics are
varied.

With respect to (1), we have explored binning our dis-
tributions by instead calculating with profile functions
evaluated at the endpoints of bins, rather than the mid-
point as in (36), i.e.

1
‡

d‡

d·
(·i)

---
th

EP

©
1

‡tot

‡c(·2, µa(·2)) ≠ ‡c(·1, µa(·1))
·2 ≠ ·1

.

(48)
As pointed out in [6], such an endpoint procedure poten-
tially introduces spurious contributions to the cross sec-
tion associated to the change in profile scales µi with re-
spect to · check wording...writing quickly here, which can
lead to a many-percent di�erence in comparison to our
default midpoint procedure. We have confirmed these
observations do we want to show a plot?, and therefore
rely on the midpoint procedure in (36).12

With respect to (2), we also note that performing
fits over di�ering · windows and/or including di�erent
datasets leads to qualitatively di�erent fit results. Our
default bin choice of · œ [6/Q, 0.33] was designed to
mimic the default choice of [6], and (at least in the case
of the 2010 profiles), roughly corresponds to just beyond
the t1 transition point, roughly marking the onset of
the resummation-sensitive tail region, up to the three-jet
fixed-order event threshold, beyond which one expects
further corrections beyond those captured in our dijet
factorization theorem (3).

comment on likelihoods in all cases In the top panel
of Figure 10 we have removed two bins from the far tail
of each dataset we have employed in our analysis, i.e.
52◊2 = 104 bins, and then rerun our fitting code. As

12 Note also that we find the endpoint binning procedure to be much
more sensitive to, e.g., uncertainty variations in the three-loop
finite singular constant c

3
S

.

The endpoint scheme is argued to feature spurious contributions associated to the -dependence 
of the profile scales.  Regardless, it is also a reasonable approximation to a differential 
distribution.
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resummed and matched accuracies,

across the entirety of the · domain. The middle row of
panels shows the cross sections obtained from di�erenti-
ating the cumulant curves9 at all accuracies, but only in
the central domain relevant to our –s(mZ) extractions
in Section V. Finally, the third row of panels shows the
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di�erential distributions (including error

bands) compared to L3 data for thrust, at Q = mZ .
Broadly speaking, we observe excellent convergence be-

tween di�erent logarithmic accuracies for both cumulant
and di�erential distributions, using both 2010 and 2018
profile scales and considering all three di�erent renor-
malon cancellation schemes, at least in the central · do-
main. We observe, for example, that logs of µsub/µS that
are non-zero above t1 in the R

ı scheme (but zero in the
R scheme) do not qualitatively impact the perturbative
convergence of the physical cross sections — these logs
are therefore safe.

In lower · domains, however, we do observe some insta-
bility in the R

0 cancellation scheme, most notably around
the t1 threshold, and in particular for the 2010 profile
scans. We note of course that the R

0 scheme is sensi-
tive to one higher power of logarithm in its subtraction
terms, and to (e.g.) the unknown (and conservatively
varied) three-loop soft singular constant c

3

S
— cf. Ap-

pendix B. We expect that a concrete determination of
this constant and, perhaps, a more refined set of scale
variations, will eventually stabilize these curves as well.
In the meantime we will only consider the R

0 scheme in
its stable domain, i.e. for · Ø 0.1.

In addition to the obvious instabilities in the low-·
domain of the R

0 scheme plots, we also observe that, re-
gardless of the renormalon cancellation scheme, the error
bands associated to 2010 profile variations are generally
smaller than those associated to 2018 profile variations,
and hence the latter can be considered more conserva-
tive than the former. Of course, this behavior could have
been trivially anticipated from the variational plots in
Fig. 3, where the width of the 2018 profiles themselves
are already wider than their 2010 counterparts. Critically
though, it is clear from the third rows of Figs. 4-6 that
the N

3
LL + O

!
–

3
s

"
di�erential curves describe available

thrust data exceptionally well in the tail region most rel-
evant to resummation improvements and –s extractions.
This is true for all renormalon cancellation and profile

8 A given combination of cancellation and profile scheme is denoted
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scales
.

9 See [26] for an exhaustive discussion regarding alternative tech-
niques to predicting di�erential distributions in the SCET frame-
work. Note that in obtaining error bands on these di�eren-
tial objects we have calculated the derivative of all cumulant
curves coming from individual profile variations and then maxi-
mized/minimized these across the · domain, as opposed to sim-
ply taking the derivative of the max/min cumulant curve as
shown in the top row of panels.
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In Figure 7 we examine the percent di�erences between

the schemes we have considered individually in Figures 4-
6, normalized to the R2018 scheme. The top panel shows
the percent-di�erence of the central values of the di�er-
ential distributions predicted at N3LL+O(–3
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), while the

bottom three panels compare the percent di�erences of
the minimum di�erential variations of the schemes, the
maximum di�erential variations, and the minimum vari-
ations of R

(ı,0)

2018,2010
simultaneous with the max variation

of R2018, respectively moving from the top down. All
curves are predicted at Q = mZ . As can be seen, profile
variations can lead to multi-percent di�erences between
the di�ering schemes, and this e�ect is especially notice-
able towards the far-tail of the distributions. Later, in
Section V, we will explore the possibility of performing
fits within a restricted · domain isolated more towards
the purely dijet region where the di�erences between our
schemes is less pronounced, rather than the default fit-
ting window (that we have plotted over in the di�erential
plots of Figure 7).

V. GLOBAL –s ≠ �1 EXTRACTIONS

Given the framework outlined in Sections II-IV, we can
now compare our various theory predictions to available
thrust data, in an e�ort to extract values of the strong
coupling constant –s(mZ) and leading non-perturbative
shift parameter �1 that are experimentally preferred.

To assess the quality of said fits quantitatively, we will
perform a ‰

2 analysis at the binned level to estimate the
quality of a given prediction:
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where we have defined �i as the di�erence between the-
ory and experiment in the i-th data bin,
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and where the ’theory’ predictions for a bin between
[·1, ·2] (with ·2 > ·1) are given by the values of the thrust
distribution at the endpoints of the bin, but with profile
scales evaluated at the bin’s center · © (·1 + ·2)/2:
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with µa any of the relevant scales presented in Section
IV. We deem this the midpoint binning procedure, and
will briefly discuss an alternative in Section V C below.

Then, for a given Q, Vij incorporates the quoted sta-
tistical and systematic errors from a given dataset. The
statistical errors of each bin, e

stat.
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, are considered in-

dependent and contribute to the diagonal entries of Vij .
However, the correlated systematic uncertainties between
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Towards Generalized 
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Multiple data sets can disentangle the strong coupling constant from non-perturbative 
parameter(s): 

Global two-parameter fits

The slope of the ellipse is Q-dependent for all event shapes, and also depends on the strength 
of non-perturbative effects.  Global fits over many different data sets necessary for extraction.

𝛼s

Agreement area 
is still large, 
uncertain.
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Varying slopes = 
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 Angularities: from 𝝉 to b
Consider Angularities, which can be defined in terms of the of the rapidity and pT of a final state 
particle ‘i’, with respect to the thrust axis:

a = 1 <-> `Jet Broadening’

a = 0 <-> `Thrust’
IR safe for a ∈ {-∞, 2}!

Figure 1. Angularity distributions at NNLLÕ + O(–2
s
) accuracy, convolved with a renormalon-free

non-perturbative shape function, whose calculation is the subject of this paper. We display the
predictions for three values of a (for now without uncertainties), illustrating roughly where two-jet
and three-or-more-jet events lie in each ·a spectrum. For this illustration, the boundary is drawn
at the value of ·a for a four-particle state that is grouped into pairs of jets with opening angle 30¶.
As a becomes larger (smaller), the peak region is more (less) dominated by purely two-jet events.

In the present work we analyze a class of event shapes known as angularities, which
are defined as [29]

·a = 1
Q

ÿ

i

|p
i

‹| e
≠|÷i|(1≠a)

, (1.1)

where Q is the center-of-mass energy of the collision and the sum runs over all final-state
particles i with rapidity ÷i and transverse momentum p

i

‹ with respect to the thrust axis.
The angularities depend on a continuous parameter a, and they include thrust (a = 0)
and total jet broadening (a = 1) as special cases. Whereas infrared safety requires that
a < 2, we restrict our attention to values of a Æ 0.5 in this work, since soft recoil e�ects
which complicate the resummation are known to become increasingly more important as
a æ 1 [30]. It is also possible to define ·a in Eq. (1.1) with respect to an axis other than
the thrust axis, such as the broadening axis or another soft-recoil-insensitive axis [31]. We
stick to the standard thrust-axis-based definition here, to coincide with the available data.
See [32] for a recent calculation with an alternative axis.

The phenomenological e�ect of varying a is to change the proportions of two-jet-like
events and three-or-more-jet-like events that populate the peak region of the ·a distribu-
tions (see Fig. 1). The relevant collinear scale that enters the factorization of angularity
distributions in the two-jet limit then varies accordingly with a, to properly reflect the
transverse size of the jets that are dominating each region of the distributions.

The resummation of Sudakov logarithms for the angularity distributions is based on
the factorization theorem [29, 33–35]

1
‡0

d‡

d·a

(·a) = H(Q2
, µ)

⁄
dt

a

n dt
a

n̄ dks J
a

n(ta

n, µ) J
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n̄(ta

n̄, µ) S
a(ks, µ) ”

1
·a ≠

t
a
n + t

a
n̄

Q2≠a
≠

ks

Q

2
,

(1.2)
which arises in the two-jet limit ·a æ 0. Here H is a hard function that contains the
virtual corrections to e

+
e

≠
æ qq̄ scattering at center-of-mass energy Q (normalised to the

Born cross section ‡0); J
a
n,n̄ are quark jet functions that describe the collinear emissions

into the jet directions, and are functions of a variable t
a
n,n̄ of mass dimension (2 ≠ a); and

S
a is a soft function that encodes the low-energetic cross talk between the two jets and

– 3 –

Varying Q between 35 and 207 GeV generates same difference as varying a ∈ {-2.0, 0.5} (~6)!!

where α = e−η′

, as n → αn and n̄ → α−1n̄. (This is also known in SCET as type-III
reparametrization invariance [46].) The only change is in the operator ET (η):

U(Λ(η′))ET (η)U(Λ(η′))† = ET (η + η′) , (57)

which follows from the defining relation for the ET operators, Eq. (46). Thus, the argument of
the operator ET (η) in the shape function in Eq. (55) may be shifted to any value of rapidity,
ET (η) → ET (η + η′). At this stage, this does not yet allow us to perform the rapidity
integral of fe(η) inside the delta function. Thus we do not find that the leading power
correction simply shifts the argument of the perturbative event shape distributions, as the
delta function is a highly nonlinear function of the energy flow operator and sits sandwiched
between Wilson lines in the matrix element. If we do neglect correlations between these
operators, we derive a delta function for the shape function, and reproduce the shift in the
distribution, Eq. (52) [9, 44].

The boost property (57) of a single operator, however, gives a strong result when applied
to the first moment of an event shape distribution [14]. Taylor expanding the delta function
in Eq. (55) (which is valid if we integrate the distribution over a sufficiently large region
near the endpoint), we find

Se(e) = δ(e) − δ′(e)
1

Q

∫

dη fe(η)
1

NC

Tr 〈0|Y
†
n̄Y

†
nET (η + η′)YnY n̄ |0〉 + · · · . (58)

Recalling the boost properties of the Wilson lines and the energy flow operators ET (η), we
are free to choose any value for η′ in this expression. Then, choosing η′ = −η, we find that,
remarkably, we may take the matrix element of the ET operator out of the integral over η,
leaving the result

Se(e) = δ(e) − δ′(e)ce

A

Q
+ · · · , (59)

where the coefficient ce is given by the integral,

ce =

∫ ∞

−∞

dη fe(η), (60)

and the universal quantity A is

A =
1

NC

Tr 〈0|Y
†
n̄Y †

nET (0)YnY n̄ |0〉 . (61)

For the C-parameter and angularities τa, the integrals of the corresponding weight functions,

fC(η) =
3

cosh η
, fτa = e−|η|(1−a), (62)

over all rapidities give the coefficients,

cC = 3π, cτa =
2

1 − a
. (63)

When convoluted with the perturbative distribution, Se(e) reproduces the universality re-
lations of Eq. (51) for the first moments of the distributions. We have thus established
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Leading NP effect is also an (a-dependent (!)) shift of the perturbative distribution:
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a
=

Z 1

�1
d⌘ f⌧a

(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12,23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10 in
[12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed, we
find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a
=

Z 1

�1
d⌘ f⌧a

(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12,23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10 in
[12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed, we
find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a
=

Z 1

�1
d⌘ f⌧a

(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12, 23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10
in [12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed,
we find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§
The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 11. Integrated angularity distributions for four values of a = {≠1.0, ≠0.5, 0.0, 0.5} and
Q = mZ at NLL (green), NLLÕ+O(–s) (orange), NNLL+O(–s) (blue), and NNLLÕ+O(–2

s
) (purple)

accuracy, with renormalon subtractions to the corresponding orders. The theoretical uncertainties
have been estimated with the band method (left) and the scan method (right) as discussed in
Sec. 5.2.
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accuracy, with renormalon subtractions to the corresponding orders. The theoretical uncertainties
have been estimated with the band method (left) and the scan method (right) as discussed in
Sec. 5.2.
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Non-perturbative effects accounted for by convolution with RGap—subtracted shape function

Two-loop jet anomalous dimension obtained from consistency relations
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Figure 12. Di�erential angularity distributions for four values of a = {≠0.5, ≠0.25, 0.25, 0.5} and
Q = mZ in the central ·a region, resummed and matched to NLL (green), NLLÕ + O(–s) (orange),
NNLL+O(–s) (blue), and NNLLÕ + O(–2

s
) (purple) accuracy, with renormalon subtractions to the

corresponding orders, and uncertainties estimated with the scan method.

use the MS coupling constant –s(mZ) = 0.11 and the non-perturbative shift parameter,
defined through Eq. (4.31), �1(R�, R�) = 0.4 GeV at R� = 1.5 GeV. These values are
chosen to be consistent with the central fit values from [21] for –s(mZ) (to two signficant
digits) and �1(R�, R�) (to one signficant digit) at NNLLÕ accuracy. Some discussion on
the phenomenological impact of choosing di�erent values for these input parameters will
be given in Sec. 7.

We first show in Fig. 11 our predictions for the integrated distributions ‡c(·a) given
by Eqs. (4.40) and (4.41) for four values of a at Q = mZ up to NNLLÕ + O(–2

s) accuracy,
including renormalon subtractions. At the same time we compare the two methods dis-
cussed in Sec. 5.2 to estimate the overall uncertainties of our analysis. The band method
has been applied in the left panel and the scan method in the right panel. One clearly
observes that moving to primed accuracies not only dramatically reduces the scale uncer-
tainties, but that also the variations converge across the entire spectra as we move to higher
accuracies. One also sees that the two methods that have been applied to estimate the
theory uncertainties are consistent with one another, given the parameter ranges and vari-
ations chosen. However, when computing di�erential distributions by taking the derivative
of Eq. (4.40), we notice a slight improvement in numerical stability when using the scan
method. This is partially due to the envelope of the many (64) variations smoothing out
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NNLL+O(–s) (blue), and NNLLÕ + O(–2

s
) (purple) accuracy, with renormalon subtractions to the

corresponding orders, and uncertainties estimated with the scan method.

use the MS coupling constant –s(mZ) = 0.11 and the non-perturbative shift parameter,
defined through Eq. (4.31), �1(R�, R�) = 0.4 GeV at R� = 1.5 GeV. These values are
chosen to be consistent with the central fit values from [21] for –s(mZ) (to two signficant
digits) and �1(R�, R�) (to one signficant digit) at NNLLÕ accuracy. Some discussion on
the phenomenological impact of choosing di�erent values for these input parameters will
be given in Sec. 7.

We first show in Fig. 11 our predictions for the integrated distributions ‡c(·a) given
by Eqs. (4.40) and (4.41) for four values of a at Q = mZ up to NNLLÕ + O(–2

s) accuracy,
including renormalon subtractions. At the same time we compare the two methods dis-
cussed in Sec. 5.2 to estimate the overall uncertainties of our analysis. The band method
has been applied in the left panel and the scan method in the right panel. One clearly
observes that moving to primed accuracies not only dramatically reduces the scale uncer-
tainties, but that also the variations converge across the entire spectra as we move to higher
accuracies. One also sees that the two methods that have been applied to estimate the
theory uncertainties are consistent with one another, given the parameter ranges and vari-
ations chosen. However, when computing di�erential distributions by taking the derivative
of Eq. (4.40), we notice a slight improvement in numerical stability when using the scan
method. This is partially due to the envelope of the many (64) variations smoothing out
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Figure 13. Di�erential angularity distributions for a = ≠0.5 and a = 0.25 at Q = mZ over the
entire ·a domain. The distributions correspond to NLLÕ + O(–s) (orange) and NNLLÕ + O(–2

s
)

(purple) accuracy with renormalon subtractions, and they are either obtained as the derivative
of the integrated distributions (left) or directly resummed as di�erential distributions (right). As
expected from the analysis in [35], the former show a bit better convergence than the latter.

wiggles coming from derivatives of profile functions µi(·a), especially in transition regions.
Fig. 12 illustrates this convergence of the di�erential distribution (multiplied by ·a) in the
central ·a domain for four values of the angularity parameter a. For this reason, and to
allow for a more direct comparison of our results to those of [16, 18, 21], we implement
theory uncertainties as obtained with the scan method in the following.

In order to demonstrate the improvement in precision that we achieve for the di�er-
ential distributions in moving from NLLÕ + O(–s) [34] to NNLLÕ + O(–2

s) accuracy, we
present our (renormalon-subtracted) predictions for a = {≠0.5, 0.25} and Q = mZ across
the entire ·a domain in Fig. 13. This figure also illustrates the di�erences between tak-
ing the derivative of the integrated distributions (which we call d‡c/d·a here) in the left
panel, and directly evaluating the resummed (“naïve”) di�erential distributions (which we
call d‡n/d·a here) in the right panel. We see that the former give better convergence and
that they better preserve the total integral under the distributions. These issues with the
naïve distributions were extensively discussed in [35]. In fact, as shown there, at unprimed
orders the naïve formulas do not even preserve the correct order of accuracy, and even the
primed orders su�er from the illustrated mismatch with the total integral under the curve.
These issues can be remedied by supplementing the naïve formula with additional terms
that both preserve accuracy (at unprimed orders) and maintain agreement with the total
integral under the curve (at any order). See [32, 35] for such strategies, and [91] for a beau-
tiful mathematical solution to this problem. Here, for simplicity, we have not implemented
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 The (only) dataset 

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV

Early theory predictions look good against the data, but what does this translate to for Ω and 
𝛼s?

Compare to 404 bins included in 2015 C-Parameter fit (across all Q considered)…
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Summary and outlook

Our results are valid at N3LL(’) + O(𝛼s3).  Represents improvement over our prior results.

However, only one L3 dataset exists.  More data, at more values of Q and a, could permit an 
unambiguous disentangling of leading non-perturbative effects.

We have also shown how Thrust fit values are sensitive to the fit window chosen, as well as to 
profile parameters associated to scale setting.

In addition, we have argued that by studying the Angularities class of event shapes, one may 
have the opportunity to further disentangle two-parameter fits.

We have presented results demonstrating the impact of (non-)perturbative physics on a global 
SCET extraction of the strong coupling from the Thrust e+e- event shape.

When the effective shift of the distribution, due to non-perturbative physics, grows less in the 
multi-jet window, the value of the strong coupling from Thrust approaches the PDG average.  
Regardless, an additional systematic uncertainty is clearly present in EFT extractions…

Analytic control over multi-jet power corrections would clearly be valuable (also see Luisoni et 
al., Nason, Zanderighi e.g.), as would control of next-to-leading power corrections in the EFT.

THANK YOU!
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Data sets

24

------ Summary ------
Totlal: 516
Q > 95 : 345
Q < 88 : 89
Q ~ MZ : 82

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

For thrust: For angularities:

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV

e.g. a = -1 and 0.5, Q = 91.2 GeV, compared to our NNLL’ prediction:
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• Begin with fundamental QCD fields and split into soft and collinear components:

42

Introducing SCET:  dijet factorization

• Further project collinear fermion into two components, and determine scaling of correlators:

• Now, integrate out momentum suppressed modes.  Note, this is not a traditional EFT! Let’s consider 
the factorization at the level of the current.  Two critical steps.  “Hard-Collinear factorization” (1) & 
“Soft-decoupling” (2):
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5

• Wilson lines necessary for gauge invariance: 
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Introducing SCET:  dijet factorization

Thrust in SCET

In the two-jet limit ⌧ ! 0 the thrust distribution factorises as [Fleming, Hoang, Mantry,
Stewart 07; Schwartz 07]

I 1
�0

d�

d⌧
= H(Q2, µ)

Z
dp

2
L

Z
dp

2
R

J(p2
L
, µ) J(p2

R
, µ) S

⇣
⌧Q �

p2
L
+ p2

R

Q
, µ

⌘

multi-scale problem: Q2 � p2
L
⇠ p2

R
⇠ ⌧Q2 � ⌧2Q2

hard collinear soft

H(Q2) J(p2R)J(p2L)

S(µ2
S)

Hard function:

I on-shell vector form factor of a massless quark

H(Q2) =

2

I known to three-loop accuracy [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser 09;
Gehrmann, Glover, Huber, Ikizlerli, Studerus 10]

I also enters Drell-Yan and DIS in the endpoint region

Jet function:

I imaginary part of quark propagator in light-cone gauge

I J(p2) ⇠ Im
h
F.T.

D
0
��� n/n̄/

4 W
†(0) (0)  ̄(x)W (x) n̄/n/

4

���0
Ei

W (x) = P exp

 
igs

Z 0

�1
ds n̄ · A(x + sn̄)

!

I known to two-loop accuracy (anomalous dimension to three-loop) [Becher, Neubert 06]

I also enters inclusive B decays and DIS in the endpoint region

Soft function:

I matrix element of Wilson lines along the directions of energetic quarks

I S(!) =
X

X

���
D

X

���S†
n
(0) Sn̄(0)

���0
E���

2
�(! � n · pXn

� n̄ · pX
n̄
) Sn(x) = P exp

 
igs

Z 0

�1
ds n · As(x + sn)

!

I known to two-loop accuracy (anomalous dimension to three-loop)
[Kelley, Schwartz, Schabinger, Zhu 11; Monni, Gehrmann,

Luisoni 11; Hornig, Lee, Stewart, Walsh Zuberi 11]

J E T B R O A D E N I N G I N E F F E C T I V E F I E L D T H E O R Y G U I D O B E L L
PA R T I C L E P H Y S I C S S E M I N A R – V I E N N A A P R I L 2 0 1 3

• We can thus factorize our matrix element for the dijet, two-fermion operator quite simply:

“soft-decoupling”
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M̄(⌧, k, l) = exp{�⌧ pT F (a, b, y)} (19)

2

observables that do not reject any final-state hadrons and are some of the oldest and
most e�cient probes of strong processes. Event shapes can be studied at hadron or e

+
e

≠

colliders, where for the latter a wealth of experimental data already exists thanks to the
operation of the Large Electron-Positron Collider (LEP) between 1989 and 2000 at CERN.
As uncertainties regarding the initial state composition of hadrons are not present in e

+
e

≠

physics, studying event-shapes in these environments amounts to an ideal testing ground
for high-precision QCD.

Yet, like other QCD observables that depend on widely separated energy scales, event
shapes are a�ected by logarithmic enhancements to the perturbative QCD (pQCD) expan-
sion, which must be resummed to all orders. Many studies have been performed to this
end with standard pQCD and also with Soft-Collinear E�ective Theory (SCET) [2–5], an
e�ective theory of QCD in the infrared (IR). SCET formally separates the relevant scales
present in collider processes and therefore provides an elegant means to establish factor-
ization theorems. For example, the dijet event shapes we are presently concerned with
factorize into a hard function H(µ, µH) that encodes the matching of SCET to QCD, two
jet functions J(µ, µJ) describing the evolution of the coloured partons into collimated jets,
and a soft function S(µ, µS) describing low-energy, wide-angle background radiation, all of
which live at an associated scale µH ∫ µJ ∫ µS [6–10]:

1
‡tot

d‡

de
= H(Q; µ)

⁄
den den̄ des Jn(en; µ) Jn̄(en̄; µ) S(es; µ) ”(e ≠ en ≠ en̄ ≠ es) (1.1)

where n, n̄ indicate opposite directions on the light-cone (n ·n̄ = 2). Each of these functions
is separately calculable order-by-order in perturbation theory, and systematic treatments
of non-perturbative e�ects can also be consistently employed. Furthermore, the depen-
dence of H, J , and S on the factorization scale µ is controlled by renormalization group
(RG) equations, which can be used to resum large logarithms present in each function. In-
deed, many of the most precise event-shape resummations have been achieved with SCET
techniques. For example, thrust [11], C-Parameter [], and (total) jet broadening [12] are
currently resummed to N3LL [13, 14], N3LL [15], and NNLL [16, 17] accuracy, respec-
tively.1

In this paper we focus on a class of event shapes generically defined as [19]:

e(X) = 1
Q

ÿ

iœX

|pi
‹| fe(÷i) (1.2)

where ÷i is the rapidity of the i’th final state particle with respect to the thrust axis and
pi

‹ its transverse momentum. fe determines a specific observable. For example, for thrust
T © 1≠· and (total) jet broadening BT , one has f· (÷) = e

≠|÷| and fBT
(÷) = 1, respectively.

These can be generalized to observables known as angularities [6, 20, 21]:

f·a
(÷) = e

≠|÷|(1≠a) (1.3)
1
For a thorough elaboration of the logarithmic enhancements captured in a N

k
LL (k œ {0, 1, ...}) resum-

mation and the subtle di�erences between primed and unprimed accuracies, see [18].
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