Revisiting $\alpha_{\text {s }}$ extractions from Soft Collinear Effective Theory

Jim Talbert with G. Bell, C. Lee, Y. Makris, H. Prager, B. Yan

03 May 2023 || Institute for Nuclear Theory || U. Washington

The PDG table on α s

To be included in the PDG average, a fit must:

- be published in a peer-reviewed journal...
- include $O\left(\alpha_{s}{ }^{3}\right)$ fixed-order perturbative results...
- include `reliable' error estimates, including NP effects...

> 2022 PDG world average:
> .1179 +- . 0009

Thrust at $\mathrm{N}^{3} \mathrm{LL}$ with Power Corrections and a Precision Global Fit for $\alpha_{s}\left(m_{Z}\right)$
Riccardo Abbate, ${ }^{1}$ Michael Fickinger, ${ }^{2}$ André H. Hoang, ${ }^{3}$ Vicent Mateu, ${ }^{3}$ and Iain W. Stewart ${ }^{1}$
hep-ph/1006.3080

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1135 \pm(0.0002)_{\exp } \\
& \pm(0.0005)_{\mathrm{hadr}} \pm(0.0009)_{\mathrm{pert}}
\end{aligned}
$$

A Precise Determination of α_{s} from the C-parameter Distribution André H. Hoang, ${ }^{1,2}$ Daniel W. Kolodrubetz, ${ }^{3}$ Vicent Mateu, ${ }^{1}$ and Iain W. Stewart ${ }^{3}$

hep-ph/1501.04111

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1123 \pm 0.0002_{\mathrm{exp}} \\
& \pm 0.0007_{\mathrm{hadr}} \pm 0.0014_{\mathrm{pert}}
\end{aligned}
$$

- 2015 C-parameter result $\sim 4 \sigma$ away from world average...

Outline

Warning! This is not a formalism talk. This is barely a pheno talk... This is really a talk on fitting.

Event shapes @ e+e-colliders

- The strong interaction provides the dominant contribution to collider processes involving colored objects.
- As QCD exhibits asymptotic freedom, high-energy colliders probe the interaction at weaker coupling, thereby permitting a perturbative description in QFT.
- However, as an event evolves, many scales are probed, including the non-perturbative. As a result, QCD spans a rich array of physical phenomena!
- QCD is 'simpler' in electron-positron collisions, as one avoids the messy initial state physics of bound protons (PDFs, ISR, multi-pardon scattering, etc.). This facilitates precision QCD studies, e.g. extractions of the strong coupling constant.
- Today we will focus on event shapes, which are geometric observables characterizing the 'shape' of final-state momentum distributions of hadronic objects. The dominant channel is e+e- -> JJ, as soft and collinear enhancements via gluon emission primarily lead to dijet events.

- So, a given event shape would assign a number to these géometric configurations, depending on what is actually getting measured...

Event shape distributions: thrust

- The classic example is Thrust: $\quad \tau=1-T=\frac{1}{Q} \sum_{i}\left|p_{\perp}^{i}\right| e^{-\left|\eta^{i}\right|}$

$$
T=1
$$

$T=\frac{2}{3}$

5
先
~

- The fixed-order distribution can readily be computed in QCD, while the current state of the art is a $N^{3} L L^{\prime}+O\left(\boldsymbol{\alpha}_{s}{ }^{3}\right)$ resummation performed with EFT (SCET) techniques:

Introducing SCET: intuition

- Event shapes can be predicted with SCET, an effective theory describing collinear and soft degrees of freedom (light, energetic particles) occurring alongside main channel collider scale Q

- SCET permits the precision resummation of large logs of these scales via renormalization group evolution!
- Begin with fundamental QCD fields and split into soft and collinear components:

$$
A^{\mu}(x) \rightarrow A_{c}^{\mu}(x)+A_{s}^{\mu}(x) \quad \Psi^{\mu}(x) \rightarrow \Psi_{c}^{\mu}(x)+\Psi_{s}^{\mu}(x)
$$

- Further project collinear fermion into two components, and determine scaling of correlators:

$$
\zeta(x)=\frac{\not h \hbar \hbar}{4} \Psi_{c}(x), \quad \eta(x)=\frac{\hbar \hbar}{4} \Psi_{c}(x) \quad\langle 0|\{\zeta(x) \bar{\zeta}(0)\}|0\rangle \sim \lambda^{2} \Rightarrow \zeta(x) \sim \lambda \quad\left(\eta(x) \sim \lambda^{2}\right)
$$

- After multipole expansion, hard-collinear factorization, and soft decoupling (achieved with Wilson lines), one can factorize the Sudakov form factor (schematically):

- Obviously, dijet event shape factorization in e+e- closely related, with addition of explicit measurements on soft and collinear momenta: $\lambda=\sqrt{\tau}$

$$
\begin{equation*}
\frac{1}{\sigma_{\text {tot }}} \frac{d \sigma}{d e}=H(Q ; \mu) \int d e_{n} d e_{\bar{n}} d e_{s} J_{n}\left(e_{n} ; \mu\right) J_{\bar{n}}\left(e_{\bar{n}} ; \mu\right) S\left(e_{s} ; \mu\right) \delta\left(e-e_{n}-e_{\bar{n}}-e_{s}\right) \tag{thrust}
\end{equation*}
$$

Dissecting dijets - constructing the curve

'Peak' Region: non-perturbative, soft region. NON-PERTURBATIVE MODELING

SCETching thrust: resummation

- H, Ji, and S contain logs of the form (respectively):

$$
d \sigma \sim H \cdot \mathcal{J} \otimes \mathcal{J} \otimes \mathcal{S} \quad \ln \frac{\mu^{2}}{Q^{2}}, \quad \ln \frac{\mu^{2}}{\tau Q^{2}}, \quad \ln \frac{\mu^{2}}{\tau^{2} Q^{2}}
$$

- We evaluated H, Ji, and S at a common scale. Yet there are 'natural' scales at which the logarithms are no longer large:

$$
\mu_{h} \sim Q \quad \mu_{j} \sim Q \sqrt{\tau} \quad \mu_{s} \sim Q \tau
$$

- We thus wish to RG run our functions up to their natural scales. Take H as a simple example:

$$
H\left(Q^{2}, \mu\right)=H\left(Q^{2}, \mu_{h}\right) U_{h}\left(\mu_{h}, \mu\right)
$$

- Where the function U is a solution to the $R G$ equation for the hard function:

$$
\frac{d H\left(Q^{2}, \mu\right)}{d \ln \mu}=\left[2 \Gamma_{\text {cusp }} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)+4 \gamma_{H}\left(\alpha_{s}\right)\right] H\left(Q^{2} . \mu\right)
$$

- Which, at LL approximation, has the following form:

$$
H\left(Q^{2}, \mu\right)=\exp \left[\frac{4 \pi \Gamma_{0}}{\beta_{0}^{2}} \frac{1}{\alpha_{s}(Q)}\left(1-\frac{1}{r}-\ln r\right)\right] \quad r=\frac{\alpha_{s}(\mu)}{\alpha_{s}(Q)}
$$

- Similar for jet and soft functions...

SCETching thrust: resummation and profiles

- Evolving all scales to/from their 'natural' settings, one arrives at, for the SCET, cumulant:

$$
\begin{aligned}
\sigma_{c}\left(\tau_{a}\right)= & \frac{1}{\sigma_{0}} \int_{0}^{\tau_{a}} d \tau_{a}^{\prime} \frac{d \sigma}{d \tau_{a}^{\prime}} \\
= & e^{K\left(\mu, \mu_{H}, \mu_{J}, \mu_{S}\right)}\left(\frac{\mu_{H}}{Q}\right)^{\omega_{H}\left(\mu, \mu_{H}\right)}\left(\frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}\right)^{2 \omega_{J}\left(\mu, \mu_{J}\right)}\left(\frac{\mu_{S}}{Q \tau_{a}}\right)^{\omega_{S}\left(\mu, \mu_{S}\right)} \\
& \times H\left(Q^{2}, \mu_{H}\right) \widetilde{J}\left(\partial_{\Omega}+\ln \frac{\mu_{J}^{2-a}}{Q^{2-a} \tau_{a}}, \mu_{J}\right)^{2} \widetilde{S}\left(\partial_{\Omega}+\ln \frac{\mu_{S}}{Q \tau_{a}}, \mu_{S}\right) \frac{e^{\gamma_{E} \Omega}}{\Gamma(1-\Omega)}
\end{aligned}
$$

Accuracy	$\boldsymbol{\Gamma}_{\text {cusp }}$	$\gamma_{\boldsymbol{F}}, \gamma_{\boldsymbol{\Delta}}^{\mu}, \gamma_{\boldsymbol{R}}$	$\boldsymbol{\beta}$	$H, \tilde{J}, \tilde{S}, \delta_{a}$
LL	α_{s}	1	α_{s}	1
NLL	α_{s}^{2}	α_{s}	α_{s}^{2}	1
NNLL	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}
$\mathrm{~N}^{3} \mathrm{LL}$	α_{s}^{4}	α_{s}^{3}	α_{s}^{4}	α_{s}^{2}

This cookbook changes at 'primed' accuracies, and of course when considering matching to QCD!

- Note that there also is freedom in scalesetting choices -> 'profiles'

SCETching thrust: matching to QCD

- SCET predicts the singular component of the cross section. One must then match to QCD:

$$
\begin{aligned}
& \frac{\sigma_{c}\left(\tau_{a}\right)}{\sigma_{0}}-\frac{\sigma_{\mathrm{c}, \operatorname{sing}}\left(\tau_{a}\right)}{\sigma_{0}}=r_{c}\left(\tau_{a}\right)=\theta\left(\tau_{a}\right)\left\{\frac{\alpha_{s}(Q)}{2 \pi} r_{c}^{1}\left(\tau_{a}\right)+\left(\frac{\alpha_{s}(Q)}{2 \pi}\right)^{2} r_{c}^{2}\left(\tau_{a}\right)\right\}+\ldots \\
& \text { QCD distribution } \\
& \text { SCET distribution }
\end{aligned}
$$

At $O\left(a_{\mathrm{s}}\right)$, for example, the matching restricts the distribution to the domain

$$
\mathrm{J} \in\{0, \mathrm{~J} \max \}:
$$

Unmatched Remainder Matched

hep-ph / 0901.3780

- Results for $O\left(a_{\mathrm{s}}(2,3)\right)$ matching, obtained from EVENT2 / EERAD3, included.

SCETching thrust: non-perturbative corrections

- A treatment of non-perturbative effects is critical in $e^{+} e^{-}->$hadrons...
- When dominant power corrections come from the soft function, NP effects can be parameterized into a shape function $f_{\text {mod }}$:

$$
\begin{equation*}
S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right) f_{\bmod }\left(k^{\prime}-2 \bar{\Delta}_{a}\right) \quad f_{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{\infty} b_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2} \tag{0709.3519}
\end{equation*}
$$

[0807.1926]

- The leading impact of this shape function correction is to shift the overall perturbative distribution:

$$
\mathrm{a}=0 \text { (Thrust) } \quad \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\bar{\Omega}_{1}}{Q}\right) \quad \frac{2 \bar{\Omega}_{1}}{1-a}=2 \bar{\Delta}_{a}+\int d k k f_{\bmod }(k)
$$

- However, both the gap parameter Δ and the soft function S_PT have a renormalon ambiguity!

$$
w O m=w+m O m+\cdots O m O m+\ldots
$$

- Solution: subtract a series with a compensating/cancelling ambiguity:

$$
\bar{\Delta}_{a}=\Delta_{a}(\mu)+\delta_{a}(\mu) \longrightarrow \widetilde{S}(\nu, \mu)=\left[e^{-2 \nu \Delta_{a}(\mu)} \widetilde{f}_{\bmod }(\nu)\right]\left[e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]
$$

- The highest precision SCET extractions have done so with a very particular scheme...

SCET extractions @ N3 $\mathrm{LL}+\mathrm{O}\left(\boldsymbol{\alpha}^{3}\right)$ accuracy

C-parameter versus Thrust Tail Global Fit

2022 PDG world
 average:

1179 +- . 0009
hep-ph/0803.0342 (BS)
hep-ph/1006.3080 (AFHMS) hep-ph/1501.04111 (HKMS)
(Q1) Why are SCET results so discrepant with PDG?
(O2) What can break the $\alpha_{\mathrm{s}}-\Omega$ degeneracy?

Thrust fits revisited

Our collaboration's goals

- We want to surgically review the extraction of $\left\{\alpha_{s,} \Omega_{1}\right\}$ from e+e- event shapes, focusing on thrust.
- This includes (1) a dedicated, independent crosscheck of prior work, but also (2) looking at all of the assumptions made in prior literature:
non-perturbative physics

MC event generation

theory uncertainty estimation (perturbative) power corrections missing three-loop ingredients

binning techniques

fit windows

- Furthermore, we do so at the highest order achievable with current theory inputs:

Accuracy	$\boldsymbol{\Gamma}_{\text {cusp }}$	$\gamma_{\boldsymbol{F}}, \gamma_{\Delta}^{\mu}, \gamma_{\boldsymbol{R}}$	$\boldsymbol{\beta}$	$H, \tilde{J}, \tilde{S}, \delta$
LL	α_{s}	1	α_{s}	1
NLL	α_{s}^{2}	α_{s}	α_{s}^{2}	1
NNLL	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}
$\mathrm{~N}^{3} \mathrm{LL}$	α_{s}^{4}	α_{s}^{3}	α_{s}^{4}	α_{s}^{2}

Accuracy	$H, \tilde{J}, \tilde{S}, \delta$
NLL^{\prime}	α_{s}
NNLL^{\prime}	α_{s}^{2}
$\mathrm{~N}^{3} \mathrm{LL}^{\prime}$	α_{s}^{3}

Matching	$r^{n}(\tau)$
$+\mathcal{O}\left(\alpha_{s}\right)$	α_{s}
$+\mathcal{O}\left(\alpha_{s}^{2}\right)$	α_{s}^{2}
$+\mathcal{O}\left(\alpha_{s}^{3}\right)$	α_{s}^{3}

- Time allowing, I'll comment on the missing three-loop ingredient, $\mathrm{c}_{\mathrm{s}}{ }^{3}$

Renormalon corrections and α_{s}

- We have estimates of the effects of the shape function and renormalon corrections from prior analyses:

order	$\alpha_{s}\left(m_{Z}\right)\left(\right.$ with $\left.\bar{\Omega}_{1}\right)$	$\alpha_{s}\left(m_{Z}\right)\left(\right.$ with $\left.\Omega_{1}\left(R_{\Delta}, \mu_{\Delta}\right)\right)$
NLL^{\prime}	$0.1071(60)(05)$	$0.1059(62)(05)$
$\mathrm{N}^{2} \mathrm{LL}^{\prime}$	$0.1102(32)(06)$	$0.1100(33)(06)$
$\mathrm{N}^{3} \mathrm{LL}^{\prime}($ full $)$	$0.1117(16)(06)$	$\mathbf{0 . 1 1 2 3 (1 4) (\mathbf { 0 6 })}$

order	$\bar{\Omega}_{1}[\mathrm{GeV}]$	$\Omega_{1}\left(R_{\Delta}, \mu_{\Delta}\right)[\mathrm{GeV}]$
NLL^{\prime}	$0.533(154)(18)$	$0.582(134)(16)$
$\mathrm{N}^{2} \mathrm{LL}^{\prime}$	$0.443(119)(19)$	$0.457(83)(19)$
$\mathrm{N}^{3} \mathrm{LL}^{\prime}$ (full)	$0.384(91)(20)$	$\mathbf{0 . 4 2 1 (\mathbf { 6 0 }) (\mathbf { 2 0 })}$

This matters! So let's perhaps look here first to see what's happening...

R scheme

- Recall that we reorganize the soft sector via a redefinition of the gap parameter:

$$
\bar{\Delta}_{a}=\Delta_{a}(\mu)+\delta_{a}(\mu) \quad \xrightarrow[\text { Laplace space }]{ } \quad \widetilde{S}(\nu, \mu)=\left[e^{-2 \nu \Delta_{a}(\mu)} \tilde{f}_{\bmod }(\nu)\right]\left[e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]
$$

- Then, choosing the \mathbf{R} scheme to cancel the leading renormalon,

$$
\begin{array}{cc}
R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widehat{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma_{E}}\right)}=0 \longrightarrow \delta_{a}(\mu, R)=\frac{1}{2} \operatorname{Re}^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\left.\gamma_{E}\right)}\right.}, \\
\widehat{S}_{\mathrm{PT}}(\nu, \mu)=e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu) & \text { All of these objects can be defined } \\
\text { perturbatively! }
\end{array}
$$

- and accounting for R and μ evolution,

$$
\frac{d}{d R} \Delta_{a}(R, R)=-\frac{d}{d R} \delta_{a}(R, R) \equiv-\gamma_{R}\left[\alpha_{s}(R)\right]: \quad \mu \frac{d}{d \mu} \Delta_{a}(\mu, R)=-\mu \frac{d}{d \mu} \delta_{a}(\mu, R) \equiv \gamma_{\Delta}^{\mu}\left[\alpha_{s}(\mu)\right]
$$

- one obtains the final soft function -> cross section:

Final cross section is expanded order-by-order in bracketed term

$$
\frac{1}{\sigma_{0}} \sigma\left(\tau_{a}\right)=\int d k \sigma_{\mathrm{PT}}\left(\tau_{a}-\frac{k}{Q}\right)\left[e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]
$$

R Scheme phenomenology

- R scheme removes unphysical effects in cross-section predictions and gives good qualitative agreement with data:

- How non-perturbative effects are implemented (clearly) affects the extraction of the strong coupling!

Effective non-perturbative shifts

- Before considering gapped renormalons, the leading-order NP effect is a constant shift:

$$
\frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\Omega_{1}}{Q}\right) \quad \Omega_{1}=\frac{1}{N_{C}} \operatorname{Tr}\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

- But what is the 'effective shift' of the distribution in the R scheme?

$$
\int d k k e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)=\int d k k\left[\sum_{i} f_{\bmod }^{(i)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]}
$$

- Shape function expanded order-by-order depending on logarithmic accuracy:

$$
\begin{aligned}
f_{\bmod }^{(0)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) \\
f_{\bmod }^{(1)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) & =-\frac{\alpha_{s}\left(\mu_{S}\right)}{4 \pi} 2 \delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right) \\
f_{\bmod }^{(2)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)= & \left(\frac{\alpha_{s}\left(\mu_{S}\right)}{4 \pi}\right)^{2}\left[-2 \delta_{a}^{2}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right. \\
& \left.+2\left(\delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}}\right)^{2} f_{\bmod }^{\prime \prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]
\end{aligned}
$$

Effective non-perturbative shifts

- Distributional shifts at NNLL' accuracy (central profile scales):

Why does the effect grow as one moves toward the fixed-order regime?

A naive way to limit the shift...

- Obvious solution is to simply limit the growth of the renormalon scale:

$$
\begin{array}{ll}
& \gamma_{R} \rightarrow \theta\left(R_{\max }-R\right) \gamma_{R} \\
\text { need: } & \frac{d}{d R} \delta_{a}(R, R)=\gamma_{R}\left[\alpha_{s}(R)\right] \theta\left(R_{\max }-R\right) \\
\text { recall: } & \delta_{a}(R, R)=R e^{\gamma_{E}}\left[\frac{\alpha_{s}(R)}{4 \pi} \delta_{a}^{1}(R, R)+\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2} \delta_{a}^{2}(R, R)+\cdots\right]
\end{array}
$$

- Simple solution is to simply set a max value for the R scale:

$$
\begin{aligned}
& R^{*} \equiv\left\{\begin{array}{ll}
R & R<R_{\max } \\
R_{\max } & R \geq R_{\max }
\end{array} \left\lvert\, \begin{array}{l}
\delta_{a}^{1}(\mu, R)=\Gamma_{S}^{0} \ln \frac{\mu}{R} \\
\delta_{a}^{2}(\mu, R)=\Gamma_{S}^{0} \beta_{0} \ln ^{2} \frac{\mu}{R}+\Gamma_{S}^{1} \ln \frac{\mu}{R}+\frac{\gamma_{S}^{1}(a)}{2}+c_{\tilde{S}}^{1}(a) \beta_{0}
\end{array}\right.\right. \\
& \text { Turns off the } \mathrm{R} \text {-scale at a given (fixed) } \mathrm{Rmax} \text { (good) } \quad \text { Potentially large logs of } \mu / \mathrm{R}!\text { (bad) }
\end{aligned}
$$

R*: a new scheme

- Generalized renormalon cancellation schemes can be defined: [2012.12304]

$$
\begin{aligned}
& \delta_{a}(\mu)=\left.\frac{R}{2 \xi} \frac{d^{n}}{d(\ln v)^{n}} \ln \tilde{S}(v, \mu)\right|_{v=\xi / R} \longrightarrow \delta_{a}^{*}(R)=\frac{1}{2} R^{*} e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln S_{\mathrm{PT}}\left(\nu, \mu=R^{*}\right)\right]_{\nu=1 /\left(R^{*} e^{\gamma_{E}}\right)} \\
& \mathbf{R}^{*} \text { Scheme: } \quad \begin{array}{l}
\text { we are not forced to set } \mu=\mu_{S} \text { in the }
\end{array} \\
&(\mathrm{n}, \xi, \mu)=\left(1, \exp \left(-\gamma_{\mathrm{E}}\right), \mathrm{R}^{*}\right) \text { subtraction series, we can pick } \mu=R
\end{aligned}
$$

- Anomalous dimensions, subtractions, turn on at one higher order:

$$
\begin{aligned}
\delta_{a}^{\star}\left(R^{\star}\right) & =\frac{R^{\star} e^{\gamma_{E}}}{2}\left[\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi} \cdot 0+\left(\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi}\right)^{2}\left(\gamma_{S}^{1}+2 c_{\tilde{S}}^{1} \beta_{0}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \\
\gamma_{R}^{\star} & =e^{\gamma_{E}}\left[\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi} \cdot 0+\left(\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi}\right)^{2}\left(\gamma_{S}^{1}+2 c_{\tilde{S}}^{1} \beta_{0}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
\end{aligned}
$$

- This scheme is just a choice!
- But then again, so is our choice of theory profiles, which also drive the effective shift...

Profiling a fit window

- How can we identify a region sensitive to Ω_{1} and α_{s}, and for which our best theory curves are reliable? Look to the profiles!

- Profiles trace scale hierarchies through different regimes of a given distribution:

$$
\begin{array}{cl}
\text { Peak } & \mu_{H} \gg \mu_{J} \gg \mu_{S} \sim \Lambda_{Q C D} \\
\text { Tail } & \mu_{H} \gg \mu_{J} \gg \mu_{S} \gg \Lambda_{Q C D} \\
\text { Far Tail } & \mu_{H}=\mu_{J}=\mu_{S} \gg \Lambda_{Q C D}
\end{array}
$$

- A default fit window will be between [6/Q, 0.33].

R* Scheme: profiles and shifts

Effective nonperturbative shift flattened, as desired/ expected...

What else can we vary?

- Generalized cancellation schemes also depend on derivative rank and normalization params:

$$
\frac{d^{n}}{d(\ln v)^{n}} \ln \left[\tilde{S}\left(v, \mu_{S U B}\right) e^{-2 v \delta\left(\mu_{S U B}\right)}\right]_{v=\xi / \mu_{R}}=0
$$

- Let's also try to define a scheme with $\mathbf{n}=\mathbf{0}$. We've calculated the required subtraction terms and anomalous dimensions to three-loop order.

$$
\mathbf{R}^{0} \text { Scheme: }\left\{n, \xi, \mu_{S U B}, \mu_{R}\right\}=\left\{0,2 \pi, \mu_{S}, R\right\}
$$

Cancellation (and evolution terms) sensitive to logs @ one higher power, with respect to $\mathrm{n}=1$ schemes...

$$
\delta^{3}\left(\mu_{s}\right)=\frac{2}{3} \Gamma_{s}^{0} \beta_{0}^{2} L^{4}-\frac{2}{3}\left(2 \Gamma_{s}^{1} \beta_{0}+\Gamma_{s}^{0} \beta_{1}+4 \Gamma_{s}^{0} \beta_{0}^{2} \ln \frac{\mu_{s}}{\mu}\right) L^{3}
$$

$$
+\left(\Gamma_{s}^{2}+2 \gamma_{s}^{1} \beta_{0}+4 c_{s}^{1} \beta_{0}^{2}+2 \ln \frac{\mu_{s}}{\mu}\left(2 \Gamma_{s}^{0} \beta_{0}^{2} \ln \frac{\mu_{s}}{\mu}+\Gamma_{s}^{0} \beta_{1}+2 \Gamma_{s}^{1} \beta_{0}\right)\right) L^{2}
$$

$$
+\left(\gamma_{s}^{2}+2 c_{s}^{1} \beta_{1}+4 c_{s}^{2} \beta_{0}-2\left(c_{s}^{1}\right)^{2} \beta_{0}+4 \beta_{0} \ln \frac{\mu_{s}}{\mu}\left(\gamma_{s}^{1}+2 c_{s}^{1} \beta_{0}\right)\right) L
$$

$$
+2 \ln \frac{\mu_{s}}{\mu}\left(2 c_{s}^{1} \beta_{0}^{2} \ln \frac{\mu_{s}}{\mu}+c_{s}^{1} \beta_{1}+2 c_{s}^{2} \beta_{0}-\left(c_{s}^{1}\right)^{2} \beta_{0}\right)-c_{s}^{1} c_{s}^{2}+\frac{1}{3}\left(c_{s}^{1}\right)^{3}+c_{s}^{3}
$$

Cancellation (and evolution terms) explicitly sensitive to missing three-loop finite soft constant...

Preliminary!

$\mathrm{N} 3 \mathrm{LL}+O\left(\alpha_{s}^{3}\right)$

Convergence \& data comparison

R Scheme

R^{0} Scheme

Fit technique

- We perform a $\chi_{\text {d.o.f. }}^{2}$ analysis at the level of binned theory predictions:

$$
\chi^{2} \equiv \sum_{i, j} \Delta_{i} V_{i j}^{-1} \Delta_{j}
$$

$$
\bar{\tau} \equiv\left(\tau_{1}+\tau_{2}\right) / 2
$$

$\Delta_{i} \equiv\left(\left.\frac{1}{\sigma} \frac{d \sigma}{d \tau}\left(\tau_{i}\right)\right|^{\exp }-\left.\frac{1}{\sigma} \frac{d \sigma}{d \tau}\left(\tau_{i}\right)\right|^{\mathrm{th}}\right)$

$$
\left.\frac{1}{\sigma} \frac{d \sigma}{d \tau}\left(\tau_{i}\right)\right|_{M P} ^{\mathrm{th}} \equiv \frac{1}{\sigma_{t o t}} \frac{\sigma_{c}\left(\tau_{2}, \mu_{a}(\bar{\tau})\right)-\sigma_{c}\left(\tau_{1}, \mu_{a}(\bar{\tau})\right)}{\tau_{2}-\tau_{1}}
$$

- Experimental errors (stat. and syst.) accounted for with 'minimal overlap model':

$$
\left.V_{i j}\right|_{\mathrm{MOM}}=\left(e_{i}^{\text {stat. }}\right)^{2} \delta_{i j}+\min \left(e_{i}^{\text {sys }}, e_{j}^{\text {sys }}\right)^{2}
$$

- Theory errors are conveniently parameterized in terms of an error ellipse K :

$$
1=\boldsymbol{X}^{T} K_{\text {theory }}^{-1} \boldsymbol{X} \quad \boldsymbol{X}^{T}=\left\{\alpha_{s}, \Omega_{1}\right\}-\left\{\mu_{\alpha}, \mu_{\Omega}\right\} \quad K_{\text {theory }}=\left(\begin{array}{cc}
\sigma_{\alpha}^{2} & \rho_{\alpha \Omega} \sigma_{\alpha} \sigma_{\Omega} \\
\rho_{\alpha \Omega} \sigma_{\alpha} \sigma_{\Omega} & \sigma_{\Omega}^{2}
\end{array}\right)
$$

$\left.\mathrm{N} 3 \mathrm{LL}{ }^{(}\right)+\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{3}\right)$ accuracy fits to α_{s} and $\Omega_{1} \quad$ Preliminary!

- Global fits include 488 bins of data with c.o.m energies between 35-207 GeV.

$\left.\mathrm{N} 3 L L^{(}\right)+\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{3}\right)$ accuracy fits to α_{s} and Ω_{1}

Fit windows

Central Profiles
Preliminary!
$\begin{array}{llll}0.15 & 0_{0.20}^{0} & 0.25 \\ 0.023\end{array}$

R^{0} sneak peeks

Currently generating remaining datasets...

Missing fixed-order ingredients

- Our extractions are sensitive, to more or less degrees, on calculations / simulations related to missing fixed-order ingredients.
- We have extracted the three-loop remainder function, and have attempted to extract the threeloop finite singular constant (as have others).
[1804.09722]
$c_{3}^{S}=2 s_{3}+691=-19988 \pm 1440$ (stat.) ± 4000 (syst.) VS. $\left.c_{s}^{3}\right|_{\text {Padé }} \simeq 691 \pm 1000$

This object (and especially its central value) clearly matters at the accuracies we consider.

This would be especially true for $n=0$ schemes...

- We believe there is more to say here....

Binning technique

- Even the technique with which we bin our theory distributions matters for the extractions!

'Midpoint' (Default) Scheme

$$
\begin{gathered}
\left.\frac{1}{\sigma} \frac{d \sigma}{d \tau}\left(\tau_{i}\right)\right|_{M P} ^{\text {th }} \equiv \\
\frac{1}{\sigma_{t o t}} \frac{\sigma_{c}\left(\tau_{2}, \mu_{a}(\bar{\tau})\right)-\sigma_{c}\left(\tau_{1}, \mu_{a}(\bar{\tau})\right)}{\tau_{2}-\tau_{1}} \\
\bar{\tau} \equiv\left(\tau_{1}+\tau_{2}\right) / 2
\end{gathered}
$$

- The endpoint scheme is argued to feature spurious contributions associated to the τ-dependence of the profile scales. Regardless, it is also a reasonable approximation to a differential distribution.

Note: NNLL accuracy

 plots for today...There's probably more to say here as well...

Towards Generalized Angularity Fits

Global two-parameter fits

- Multiple data sets can disentangle the strong coupling constant from non-perturbative parameter(s):

- The slope of the ellipse is \mathbf{Q}-dependent for all event shapes, and also depends on the strength of non-perturbative effects. Global fits over many different data sets necessary for extraction.

Angularities: from τ to b

- Consider Angularities, which can be defined in terms of the of the rapidity and $\mathrm{P}_{\boldsymbol{T}}$ of a final state particle ' i ', with respect to the thrust axis:

a $=0$ <-> 'Thrust'
a = 1 <-> 'Jet Broadening'
- Leading NP effect is also an (a-dependent (!)) shift of the perturbative distribution:

- Varying \mathbf{Q} between 35 and 207 GeV generates same difference as varying a $\in\{-2.0,0.5\}$ ($\sim 6)!$! 36

2018 progress: NLL' to NNLL'

softserve.hepforge.org
Bell, Rahn \& Talbert

- Two-loop soft anomalous dimensions and singular constants provided by SoftSERVE
- Two-loop jet anomalous dimension obtained from consistency relations
- Two-loop singular jet constants extracted from EVENT2 (though now calculable)

Bell, Hornig, Lee \& Talbert

- Matching to QCD at $O\left(\alpha_{s}{ }^{2}\right)$ extracted from EVENT2 *
- Includes set of H,J,S, \& non-sing. profile scales, tuned for a-dependence, and varied with a random scan over parameters
- Non-perturbative effects accounted for by convolution with RGap—subtracted shape function

The (only) dataset

Generalized event shape and energy flow studies in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\sqrt{s}=91.2-208.0 \mathrm{GeV}$

JHEP 10 (2011) 143

Received: May 12, 2009
Revised: May 3, 2011
Accepted: August 24, 2011
Published: October 31, 2011
Also see thesis by Pratima Jindal, Panjab
University, Chandigarh

- Data for $a=\{-1.0,-0.75 .-0.5,-0.25,0.0,0.25,0.5,0.75\}$ at 91.2 and 197 GeV
- Total number of bins $=($ bins per a) $\times($ number of $a)=25 \times 7=175$ bins $@ \mathrm{Q}=91.2 \mathrm{GeV}$
- Compare to 404 bins included in 2015 C-Parameter fit (across all Q considered)...
- Early theory predictions look good against the data, but what does this translate to for $\boldsymbol{\Omega}$ and

BLUE: NNLL' $+\mathbf{O}\left(\alpha_{s}{ }^{2}\right)$
RED: $\mathbf{N N L L}+\mathbf{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)+\mathbf{N P}$

Summary and outlook

- We have presented results demonstrating the impact of (non-)perturbative physics on a global SCET extraction of the strong coupling from the Thrust e+e- event shape.
- Our results are valid at $\left.\mathbf{N} 3 L L L^{(}\right)+\mathbf{O}\left(\alpha_{s}{ }^{3}\right)$. Represents improvement over our prior results.
- We have also shown how Thrust fit values are sensitive to the fit window chosen, as well as to profile parameters associated to scale setting.
- When the effective shift of the distribution, due to non-perturbative physics, grows less in the multi-jet window, the value of the strong coupling from Thrust approaches the PDG average. Regardless, an additional systematic uncertainty is clearly present in EFT extractions...
- Analytic control over multi-jet power corrections would clearly be valuable (also see Luisoni et al., Nason, Zanderighi e.g.), as would control of next-to-leading power corrections in the EFT.
- In addition, we have argued that by studying the Angularities class of event shapes, one may have the opportunity to further disentangle two-parameter fits.
- However, only one L3 dataset exists. More data, at more values of \mathbf{Q} and a, could permit an unambiguous disentangling of leading non-perturbative effects.

Backup Slides

Data sets

-For thrust:

ALEPH-2004: 133. GeV (7) ALEPH-2004: 161. GeV (7) ALEPH-2004: 172. GeV (7) ALEPH-2004: 183. GeV (7) ALEPH-2004: 189. GeV (7) ALEPH-2004: 200. GeV (6) ALEPH-2004: 206. GeV (8) ALEPH-2004: 91.2 GeV (26) AMY-1990: 55.2 GeV (5) DELPHI-1999: 133. GeV (7) DELPHI-1999: 161. GeV (7) DELPHI-1999: 172. GeV (7) DELPHI-1999: 89.5 GeV (11) DELPHI-1999: 93. GeV (12) DELPHI-2000: 91.2 GeV (12) DELPHI-2003: 183. GeV (14) DELPHI-2003: 189. GeV (15) OP DELPHI-2003: 192. GeV (15) DELPHI-2003: 196. GeV (14) DELPHI-2003: 200. GeV (15) DELPHI-2003: 202. GeV (15) DELPHI-2003: 205. GeV (15) DELPHI-2003: 207. GeV (15) DELPHI-2003: 45. GeV (5) DELPHI-2003: 66. GeV (8) DELPHI-2003: 76. GeV (9) JADE-1998: 35. GeV (5) JADE-1998: 44. GeV (7) L3-2004: 130.1 GeV (11) L3-2004: 136.1 GeV (10) L3-2004: 161.3 GeV (12)

L3-2004: 172.3 GeV (12) L3-2004: 182.8 GeV (12) L3-2004: 188.6 GeV (12) L3-2004: 194.4 GeV (12) L3-2004: 200. GeV (11) L3-2004: 206.2 GeV (12) L3-2004: 41.4 GeV (5) L3-2004: 55.3 GeV (6) L3-2004: 65.4 GeV (7) L3-2004: 75.7 GeV (7) L3-2004: 82.3 GeV (8) L3-2004: 85.1 GeV (8) L3-2004: 91.2 GeV (10) OPAL-1997: 161. GeV (7) OPAL-2000: 172. GeV (8) OPAL-2000: 183. GeV (8) OPAL-2000: 189. GeV (8) OPAL-2005: 133. GeV (6) OPAL-2005: 177. GeV (8) OPAL-2005: 197. GeV (8) OPAL-2005: 91. GeV (5) SLD-1995: 91.2 GeV (6) TASSO-1998: 35. GeV (4 TASSO-1998: 44. GeV (5)
------ Summary ------

```
Totlal: 516
```

Q > 95 : 345
$\mathrm{Q}<88: 89$
Q ~ MZ : 82

-For angularities:

Generalized event shape and energy flow studies in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\sqrt{s}=91.2-208.0 \mathrm{GeV}$

L3 Collaboration

JHEP 10 (2011) 143

Also see thesis by Pratima Jindal,
Panjab University, Chandigarh

- Data for $\mathrm{a}=\{-1.0,-0.75 .-0.5,-0.25,0.0,0.25,0.5,0.75\}$ at 91.2 and 197 GeV
- Total number of bins $=($ bins per a) $\times($ number of a) $=25 \times 7=175$ bins $@ \mathrm{Q}=91.2 \mathrm{GeV}$
- e.g. $\mathrm{a}=-1$ and $0.5, \mathrm{Q}=91.2 \mathrm{GeV}$, compared to our NNLL' prediction:

Introducing SCET: dijet factorization

- Begin with fundamental QCD fields and split into soft and collinear components:

$$
A^{\mu}(x) \rightarrow A_{c}^{\mu}(x)+A_{s}^{\mu}(x) \quad \Psi^{\mu}(x) \rightarrow \Psi_{c}^{\mu}(x)+\Psi_{s}^{\mu}(x)
$$

- Further project collinear fermion into two components, and determine scaling of correlators:

$$
\zeta(x)=\frac{\not h \hbar}{4} \Psi_{c}(x), \quad \eta(x)=\frac{\hbar h}{4} \Psi_{c}(x)
$$

$$
\langle 0|\{\zeta(x) \bar{\zeta}(0)\}|0\rangle \sim \lambda^{2} \Rightarrow \zeta(x) \sim \lambda \quad\left(\eta(x) \sim \lambda^{2}\right)
$$

- Now, integrate out momentum suppressed modes. Note, this is not a traditional EFT! Let's consider the factorization at the level of the current. Two critical steps. "Hard-Collinear factorization" (1) \& "Soft-decoupling" (2):
(1) $\bar{\Psi}(0) \gamma^{\mu} \Psi(0) \rightarrow \int d s d t C_{V}(s, t)\left(\bar{\zeta}_{\bar{n}} W_{\bar{n}}\right)(s n) \gamma_{\perp}^{\mu}\left(W_{n}^{\dagger} \zeta_{n}\right)(t \bar{n})$
- Wilson lines necessary for gauge invariance: $\quad W_{c}=\operatorname{Pexp}\left(i g \int_{-\infty}^{0} d s \bar{n} \cdot A_{c}(x+s \bar{n})\right)$
(2) $\bar{\Psi}(0) \gamma^{\mu} \Psi(0) \rightarrow \int d s d t C_{V}(s, t) \bar{\zeta}_{\bar{n}}^{0} W_{\bar{n}}^{0, \dagger} S_{\bar{n}}^{\dagger} \gamma_{\perp}^{\mu} W_{n}^{0} S_{n} \zeta_{n}^{0}$

$$
\zeta_{n}(x)=S_{n}\left(x_{-}\right) \zeta_{n}^{0}(x)
$$

Introducing SCET: dijet factorization

- We can thus factorize our matrix element for the dijet, two-fermion operator quite simply:

$$
\begin{aligned}
& \left.\left|C_{V}\right|^{2} \underset{X}{\sum}\left|\langle 0| \mathcal{O}_{n \bar{n}}\right| X\right\rangle\left.\right|^{2} \\
& =\left|C_{V}\right|^{2}\langle 0|\left[\bar{\zeta}_{\bar{n}}^{0} W_{\bar{n}}^{0, \dagger}\right]\left[\bar{\zeta}_{\bar{n}}^{0} W_{\bar{n}}^{0, \dagger}\right]^{\dagger}|0\rangle\langle 0|\left[W_{n}^{0} \zeta_{n}^{0}\right]\left[W_{n}^{0} \zeta_{n}^{0}\right]^{\dagger}|0\rangle\langle 0|\left[S_{\bar{n}}^{\dagger} S_{n}\right]\left[S_{\bar{n}}^{\dagger} S_{n}\right]^{\dagger}|0\rangle
\end{aligned}
$$

$$
\frac{1}{\sigma_{\mathrm{tot}}} \frac{d \sigma}{d e}=H(Q ; \mu) \int d e_{n} d e_{\bar{n}} d e_{s} J_{n}\left(e_{n} ; \mu\right) J_{\bar{n}}\left(e_{\bar{n}} ; \mu\right) S\left(e_{s} ; \mu\right) \delta\left(e-e_{n}-e_{\bar{n}}-e_{s}\right)
$$

