Marvelous Manifestations of Primordial Black Holes

from Multiverse to Neutron Star Explosions

Volodymyr Takhistov Kavli IPMU, U. Tokyo / QUP, KEK

.C Stéphane Guisard

Black Holes Definitively Exist, Central in Astronomy

Sgr A* Milky Way

Primordial Black Holes (PBHs)

In early Universe, just roughly take scoop of ~ 50% overdensity to make BH

PBHs as dark matter

... a "Standard Model" candidate

Formation and Possible Features

"Standard" PBH Formation

• Big perturbations ($\delta \sim$ 1) enter horizon \rightarrow collapse

$$M_H \approx \frac{c^3 t}{G} = 10^{15} \,\mathrm{g}\left(\frac{t}{10^{-23} \,\mathrm{s}}\right)$$

- Need to fine tune inflaton potential
 → sensitive to restrictions on field behavior
 - Example: "string swampland conjectures"
 [Kawasaki, VT, PRD, 1810.02547]

Scalar Fields Principal in Early Universe

- <u>Scalars exist</u> Happy 10th birthday Higgs Boson! (July 2022)
- Inflaton drives rapid early expansion, resolving Big Bang problems

• Scalars expected ubiquitous from fundamental theory

PBHs from Bubble Multiverse

generic mechanism for PBHs broadly distributed in mass

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, *Phys.Rev.Lett.*, 2001.09160] [Deng, Vilenkin; Sasaki+, 1980s...]

PBH DM from Bubble Multiverse: Detected by HSC ?!

- PBH DM from bubble multiverse consistent with detected HSC event !
 - \rightarrow tail of broad PBH distribution allows for indirect test of open DM window

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, Phys.Rev.Lett., 2001.09160]

PBH DM from Bubble Multiverse: Detected by HSC ?!

• Generalized model explains many observables simultaneously (DM, LIGO, SMBH seeds...)

Will be <u>definitively</u> tested with upcoming HSC data

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, Phys.Rev.Lett., 2001.09160]

Yet Another Generic Mechanism: PBHs from Broken Inflaton

- In many models inflaton can break apart
- Sizable self-interactions: unstable oscillation modes
- A general potential potential $U(\phi) \sim |\phi|^n$ gives pressure-density relation

$$p=\left(rac{n-2}{n+2}
ight)
ho$$
 [Enqvist, McDonald, 1997]

- for n < 2 (attractive interactions) \rightarrow negative pressure (p < 0) \rightarrow collapse

• Instabilities grow when overcome expansion rate

⇒ inflaton fragments to <u>oscillons</u> (massive, localized, long-lived solitonic lumps) [Amin+, 2010, 2011..;Bogolyubsky, Mukhanov, 1976; Gleiser, 1993...] + many recent simulations

*** *fragmentation possibly very generic, if gravity is weakest force* [Kusenko, **VT**, Yamada, Yamazaki, *PLB*, 1908.10930]

Analogy with Gravitational Jeans Instability

Jeans fragmentation (massive molecular Galactic Center clouds) oscillon fragmentation (string moduli)

PBH Formation in Matter-Dominated Era

[Cotner, Kusenko, **VT**, *PRD*, 1801.03321; Cotner, Kusenko, Sasaki, **VT**, *JCAP*, 1907.10613]

Aside: Fun with Sphere Packing

How dense can you pack identical spherical non-overlapping solitons to form black hole?

 \rightarrow packing $\stackrel{\scriptstyle <}{\scriptstyle \sim}$ 74% volume

2022 Fields Medal for sphere packing: 8, 24 dimensions

Unusual Generic PBH Formation

	PBH Produ	PBH Production Scenario	
	Inflationary Perturbations	Field Fragmentation	
	(common mechanism)	(our mechanism)	
Source and type of large	inflaton fluctuations,	inflaton fluctuations,	
(CMB-scale) perturbations	curvature	curvature	
Source and type of small	inflaton fluctuations,	stochastic field fragmentation	,
(PBH-scale) perturbations	curvature	isocurvature (fragment-lumps))
PBH source field	inflaton	inflaton or spectator field	
		no new restrictions on inflator	1
		potential, scalar field potentia	1
Required potential condition	inflaton potential fine tuning	shallower than quadratic	
		(attractive self-interactions)	
PBH formation era (t_{PBH})	$t_{\rm BBN} \gtrsim t_{\rm PBH} \gtrsim t_{\rm reh},$	$t_{\rm BBN} \gtrsim t_{\rm PBH} \gtrsim t_{\rm inf},$	
and type	after reheating,	before or after reheating,	
	radiation-dominated era	temporary matter-dominated e	ra
PBH size $(r_{\rm BH})$ vs. horizon $(r_{\rm H})$	$m_{\text{THE }} \sim m_{\text{THE }} \sim H^{-1}$	$m_{\rm DM} \ll m_{\rm M} \sim H^{-1}$	
at formation	$^{\prime}BH \sim ^{\prime}H \sim 11$	$^{\prime}\mathrm{BH} \ll ^{\prime}\mathrm{H} \sim 11$	
PBH spin (a_s)	$a_s \sim 0$	$a_s \sim \mathcal{O}(1)$ possible	Ρ

PBHs with sizable spin possible !

[Cotner, Kusenko, Sasaki, VT, JCAP, 1907.10613]

... and a novel source of GWs !

Fragmentation in Inflation Models

[Lozanov, VT, 2204.07152]

Very Long-Lived Oscillons Possible

[Lozanov, VT, 2204.07152]

Induced GWs, Reminder on Early Evaporating PBHs

- Consider rapid Hawking evaporation of PBHs dominating the early Universe
- Leads to rapid transition of matter to radiation era

 \rightarrow strong induced GWs

 $\Omega_{
m GW} \propto f(\Phi_{
m grav}^\prime \Phi_{
m grav}^\prime)$

[Domenech, Lin, Sasaki, 2021; Kohri, Sasaki+, 2012...Inomata, Yanagida, Kawasaki...] also [Domenech, VT, Sasaki, PLB, 2105.06816]

Oscillon-Induced GWs: A New Test of Early Universe

- Oscillons matter-dominate and subsequently rapidly decay
 - \rightarrow strong induced GWs
- Unlike evaporating PBHs, directly test inflationary potential

GW signal observable, possibly orders below in frequency than previously considered oscillon GWs from formation

Distinct PBH Features Possible

scalar fragmentation

PBHs peaked in mass + big spin possible

e.g. oscillons [Cotner, Kusenko, VT, PRD, 1801.03321; Cotner, Kusenko, Sasaki, VT, JCAP, 1907.10613]

vacuum bubble "multiverse"

PBHs broadly distributed in mass

[Deng, Vilenkin, Sasaki...; [Kusenko, Sasaki, Sugiyama, Takada, **VT**, Vitagliano, *Phys.Rev.Lett.*, 2001.09160]

Disrupting Astrophysics with PBHs

Detour: Neutron Star (NS) Margars

Where do heavy elements (gold) come from? \rightarrow major problem

Heavy Element Production in Merger Material

- Ejected material is neutron rich \rightarrow great site for r-process
- <u>R-process nucleosynthesis</u>
 → main furnace of heavy elements in astronomy

Nuclear reactions in expanding ejecta produce heat + afterglow (kilonova)

Making Gold with Tiny PBHs

• Origin of heavy elements (gold) major long-standing problem

→ neutron star mergers great, but might not be enough e.g. [Kobayashi+, 2020]

 Elegant solution: asteroid-mass PBHs making DM captured by neutron stars, small PBHs eat & explode them → "r-process nucleosynthesis" factories

^{...}need more simulations

[Fuller, Kusenko, VT, Phys.Rev.Lett., 1704.01129] + Viewpoint Highlight by H.-T. Janka

PBH-NS: Nucleosynthesis

- Neutron-rich ejecta
 - \rightarrow heavy element production

 PBH-NS emission consistent with Milky Way & Ultra-faint Dwarf abundance

[Fuller, Kusenko, VT, Phys.Rev.Lett., 1704.01129]

Neutron Stars (+ White Dwarfs) as PBH Laboratories

[Fuller, Kusenko, VT, Phys.Rev.Lett., 1704.01129; VT, PLB, 1707.05849; VT, PLB, 1710.09458]

Briefly ~ Novel Generic Signal for NS Mergers

Positrons produced in heated NS merger ejecta → some escape → annihilate to 511 keV

With LIGO observations can explain 511 keV signal in Galactic Center !

[Fuller, Kusenko, Radice, VT, Phys.Rev.Lett., 1811.00133]

511 keV radiation

Escaping ~MeV positrons annihilate via positronium bound state formation ✓

 (as desired for Galactic Center excess) → 511 keV radiation

[Fuller, Kusenko, Radice, VT, Phys.Rev.Lett., 1811.00133]

NS Signal Connection, Smoking Gun ?

• Proposal directly links r-process and 511 keV

- Observations of Reticulum II dwarf spheroidal hint at heavy elements + 511 keV ?
 - \rightarrow smoking gun signal of mergers

[Ji, Frebel+, *Nature*, 2016; Siegert+ 2016] ...Siegert+, 2021 → 511 keV might be reduced, but excess still possible

[Fuller, Kusenko, Radice, VT, Phys.Rev.Lett., 1811.00133]

Volodymyr Takhistov (Kavli IPMU / QUP)

10

Origin of Solar-mass Black Holes

- Solar-mass (~1-2.5 M☉) BHs unexpected in astrophysics → PBHs ? particle DM accumulation? [Reddy, Baryakhtar, Tsai, Capela, Tinyakov, Yu, Kouvaris...]
- LIGO detected candidate event [Abbott+, ApJL, 2020...] ...how to tell BH origin ?
- <u>Solution:</u> *transmuted* BHs from PBHs (or particle) DM eating NSs follow NS mass distribution

Large (> 1.5 M^o) candidates unlikely to be from DM-NS interactions!

[VT, Fuller, Kusenko, Phys.Rev.Lett., 2008.12780]

Identifying Black Hole - Neutron Star (BH-NS) Mergers

- PBH-PBH linked with LIGO BH-BH GW observations? [Bird+ PRL 2016, Sasaki+ PRL 2016....]
- First BH-NS candidates observed by LIGO [Abbott+, ApJL, 2021...]from PBHs?
- Unlike PBH-PBH, PBH-NS can only form after star formation

$$\mathcal{R}_{\rm PBH-NS} = 4\pi \int_{0}^{R_{\rm vir}} \mathrm{d}r r^2 \frac{\rho_{\rm NS}}{m_1} \frac{\rho_{\rm PBH}}{m_2} \langle \sigma v_{\rm rel} \rangle$$
2-body scattering with GW emission

[Sasaki, **VT**, Vardanyan, Zhang, *ApJ*, 2110.09509]

Identifying Black Hole - Neutron Star (BH-NS) Mergers

- PBH-NS rates subdominant → observed NS-BH events are <u>astrophysical !</u>
- *True, even if PBH-PBH are significant* \rightarrow contributions from early Universe
- Do not expect significant multimessenger contributions / emissions from PBH-NS

[Sasaki, **VT**, Vardanyan, Zhang, *ApJ*, 2110.09509]

* can try looking at particular galaxy

[Tsai, Palmese, Profumo, Jeltma, 2020]

Cosmological Lensing, A Novel Test of Dressed PBHs

- Stellar-mass PBHs can only be subdominant DM
 → engulfed in massive halo dress of primary DM (e.g. axions, WIMPs) [Mack+, 2007; Ricotti+, 2008]
- While local lensing is inefficient, strong cosmological lensing (e.g. FRBs) can directly test !

[Oguri, **VT**, Kohri, 2208.05957]

Cosmological Lensing, A Novel Test of Dressed PBHs

• Already start exploring with CHIME FRB data, with ~10⁵ FRBs will probe LIGO region

• Method covers broad model range, applicable to other lensing: supernovae, caustics

[Oguri, VT, Kohri, 2208.05957]

Are Intermediate-mass BHs Primordial ?

- GW190521 event ~ 150 M^o merger mass [Abbott+, PRL, 2020], first definitive IMBH detection
- New general cosmology-independent observable: interactions and heating of gas
- Gas heating mechanisms:
 - gravitational drag (dynamical friction)
 - accretion disk photons
 - accretion outflows / winds
- Great testing site: dwarf galaxies (Leo T)

[Lu, **VT**+, *ApJ Lett.*, 2007.02213; **VT**+, *JCAP*, 2105.06099]

PBH Outflow Winds and Jets

• Outflow winds and powerful jets (especially for spinning PBH) expected to deposit efficiently significant energy via shock heating $L\sim\epsilon\dot{M}$

[VT+, MNRAS Lett., 2111.08699]

PBH Outflow Winds and Jets

[VT+, MNRAS Lett., 2111.08699]

Exploring Evaporating PBHs with GWs

 Evaporating PBHs with mass ≤ 10⁹ g unconstrained, <u>how to explore scenarios ?</u>

- Evaporating PBH emission products \rightarrow "dark radiation" \rightarrow change ΔN_{eff}
 - PBH *spin* distribution can significantly modify

[Hooper+ 2020; Arbey, Auffinger+, 2021; Masina, 2021]

- Rapid evaporation of PBHs dominating Universe \rightarrow induced GWs \rightarrow change ΔN_{eff}
 - PBH *mass* distribution can significantly modify

[Inomata, Kohri+, 2019; Papanikolaou, Vennin+, 2020; Domenech, Lin, Sasaki, 2020...]

Exploring Evaporating PBHs with GWs

 \rightarrow Coincidence signals allow probing many scenarios over broad mass-range !

[Domenech, VT, Sasaki, PLB, 2105.06816]

Summary

- PBHs ~ "Standard Model" dark matter
- Renaissance in the field, synergy with multimessenger astronomy breakthroughs
- Distinct PBH features possible, can generically appear in many models
- Connections with long-standing astronomy puzzles and numerous signatures

Could be already lurking in the data $! \rightarrow \text{essential to confront new observations}$

