Calculations of Nucleon EDMs on a Lattice with Background Field

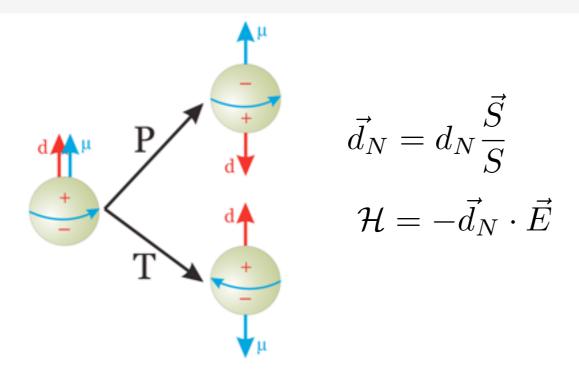
Sergey N. Syritsyn, with Stony Brook University & RIKEN / BNL Research Center with M. Abramczyk, T. Blum, F. He, T. Izubuchi, H. Ohki, (RBC collaboration)

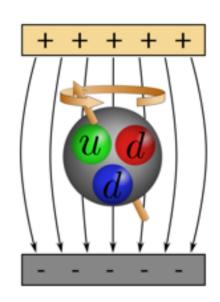
INT 23-1b Program
"New physics searches at the precision frontier"
May 26, 2023

Outline

- Introduction
 - Motivation, status & outlook
 - Methods and challenges of lattice calculations
- igoplus Nucleon EDM induced by $heta_{QCD}$ —term
 - Topological charge on a lattice
 - · Discussion of recent results
- Computing EDMs with background electric field
 - EDM from Feynman-Hellman theorem
 - Analysis of gradient-flowed correlators
- Summary & Outlook

Nucleon Electric Dipole Moments



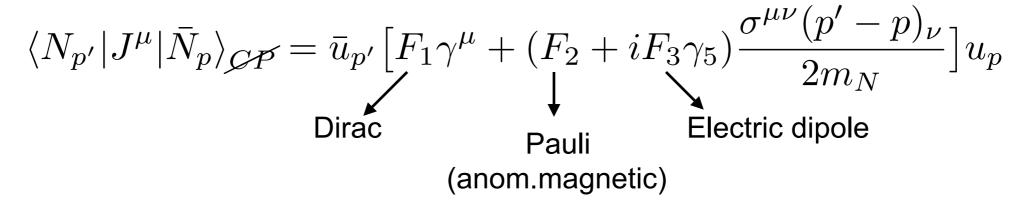


EDMs are the most sensitive probes of CPv:

- Signals for beyond SM physics
 (SM = 10⁻⁵ of the current exp.bound)
- Prerequisite for Baryogenesis
- Strong $\frac{CP}{CP}$ problem : θ_{QCD} -induced EDM?

A.Sakharov's conditions for baryon asymmetry in the Universe [JETP letters, 1967]

- P, CP symmetry violation
- Baryon number violation
- non-equilibrium transition



Experimental Outlook

Current nEDM limits:

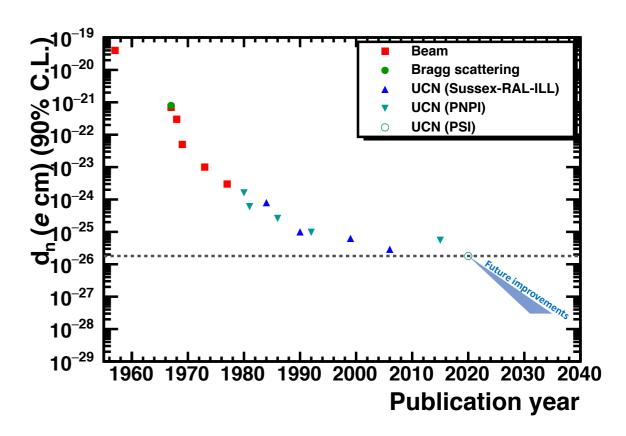
- $|d_n| < 2.9 \times 10^{-26} e \cdot \mathrm{cm}$ (stored UC neutrons) [Baker et al, PRL97: 131801(2006)]
- $|d_n| < 1.6 \times 10^{-26} \, e \cdot \text{cm} \, \, (^{199}\text{Hg})$ [Graner et al, PRL116:161601(2016)]

Future nEDM sensitivity:

- 1–2 years : next best limit?
- 3–4 years : x10 improvement
- 7-10 years : x100 improvement

	10 ⁻²⁸ e cm
CURRENT LIMIT	<300
Spallation Source @ORNL	< 5
Ultracold Neutrons @LANL	~30
PSI EDM	<50 (I), <5 (II)
ILL PNPI	<10
Munich FRMII	< 5
RCMP TRIUMF	<50 (I), <5 (II)
JPARC	< 5
Standard Model (CKM)	< 0.001

[Snowmass EDM workshop report, arXiv:2203.08103]



Nucleon EDMs: a Window into New Physics

● Effective quark-gluon CPv interactions: dimension ⇔ scale of BSM physics

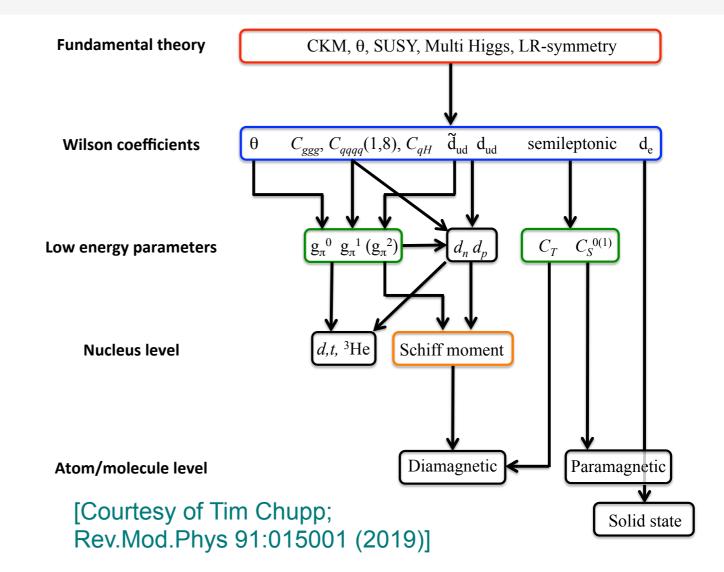
[Engel, Ramsey-Musolf, van Kolck, Prog.Part.Nucl.Phys. 71:21 (2013)]

$$\mathcal{L}_{eff} = \sum_i rac{c_i}{[\Lambda_{(i)}]^{d_i - 4}} \mathcal{O}_i^{[d_i]}$$

 $d=4: \theta_{QCD}$

d=5(6): quark EDM, chromo-EDM

d=6: 4-fermion CPv, 3-gluon (Weinberg)



$$d_{n,p} = d_{n,p}^{\theta} \theta_{QCD} + d_{n,p}^{cEDM} c_{cEDM} + \dots$$

 $c_i \iff d_{n,p}$?

Nonperturbative QCD on a Lattice:

Quark-gluon CPv interactions \Longrightarrow nucleon EDMs , CPv π NN couplings

Adding CPv Interactions to Lattice QCD

• Linear response to θ_{QCD} -term

[Aoki et al (2005); Berruto et al (2005); Shindler et al (2015); Alexandrou et al (2015); Shintani et al (2016); Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021); Liang et al (2023)]

$$\langle \mathcal{O} \dots \rangle_{\mathcal{CP}} = \langle \mathcal{O} \dots \rangle_{CP-even} - i\theta \langle Q \cdot \mathcal{O} \dots \rangle_{CP-even} + O(\theta^2)$$

$$\mathcal{CP} \text{ coupling}$$

$$\mathcal{CP} \text{ operator: GG, cEDM, }$$

$$\text{GGG(Weinberg), 4-quark}$$

 $(n) \rightarrow (n+1)$ correlation function, e.g.

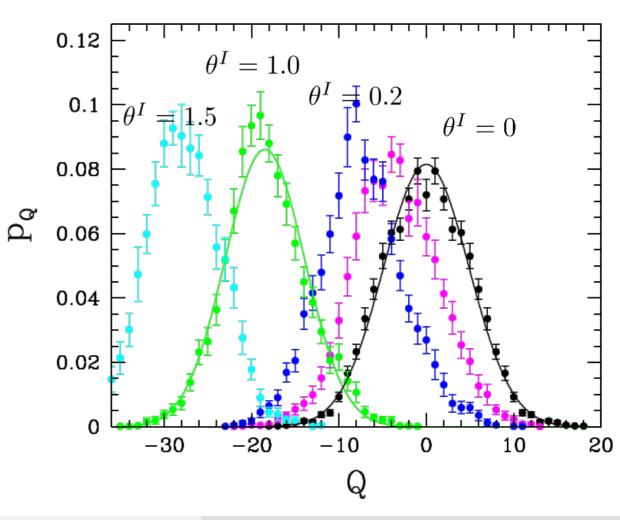
$$\langle NJ\bar{N}\rangle \longrightarrow \langle QNJ\bar{N}\rangle$$

Finite (imaginary) CPv: θ^IQCD
 [R.Horsley et al (2008); F.K.Guo et al (2015)]

$$\langle \mathcal{O} \dots \rangle_{\theta} \sim \int \mathcal{D}U \, e^{-S - \theta^I Q} \, (\mathcal{O} \dots)$$

require dedicated QCD simulation

⇒ better sampling of Q≠0 sectors



Determination of Nucleon EDM

• "Energy-Shift method" (uniform electric field)

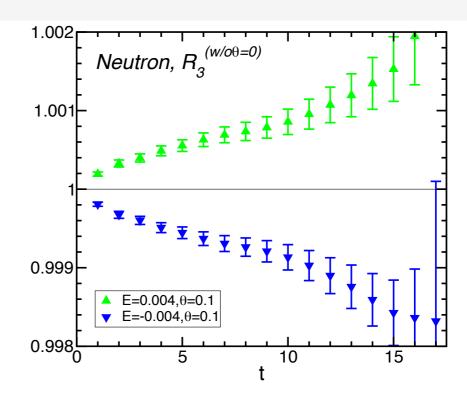
[S.Aoki et al '89; E.Shintani et al '06; E.Shintani et al, PRD75, 034507(2007)]

$$\langle N(t)\bar{N}(0)\rangle_{\theta,\vec{E}} \sim e^{-(E\pm\vec{d}_N\cdot\vec{E})t}$$

Euclidean lattice:

Real-valued $E \implies \text{violate time-BC}$

Imag-valued $\mathbf{E} \implies \text{imaginary shift in } m_N$



• "Form-Factor method": $d_N=F_3(Q^2\rightarrow 0)/(2m_N)$ [(everybody else, almost)]

$$\langle N_{p'}|\bar{q}\gamma^{\mu}q|N_{p}\rangle_{\mathcal{CP}} = \bar{u}_{p'}\big[F_{1}\gamma^{\mu} + (F_{2} + i\overline{F_{3}}\gamma_{5})\frac{i\sigma^{\mu\nu}(p'-p)_{\nu}}{2m_{N}}\big]u_{p}$$

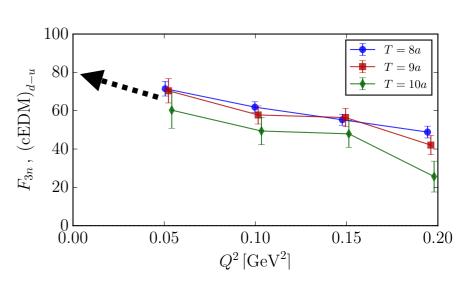
- pre-2017 : spurious $\mu_n \leftrightarrow d_n$ mixing
- Dragos et al(2019)
- Alexandrou et al(2020)
- Bhattacharya et al (2021)
- Liang et al (2023)

$$d_n / \theta = -0.0015(7) e \cdot \text{fm}$$

$$d_n / \theta = 0.0009(24) e \cdot fm$$

$$|d_n/\theta| \lesssim 0.01 \ e \cdot \text{fm}$$

$$d_n / \theta = -0.0015(1)(3) e \cdot \text{fm}$$



Need extrapolation to forward-limit $F_3(Q^2 \rightarrow 0)$

Nucleon "Parity Mixing"

Any CPv interaction induces a chiral phase in nucleon spinor on a lattice

$$\langle \operatorname{vac}|N|p,\sigma\rangle_{\mathcal{CP}} = e^{i\alpha\gamma_5} u_{p,\sigma} = \tilde{u}_{p,\sigma}$$

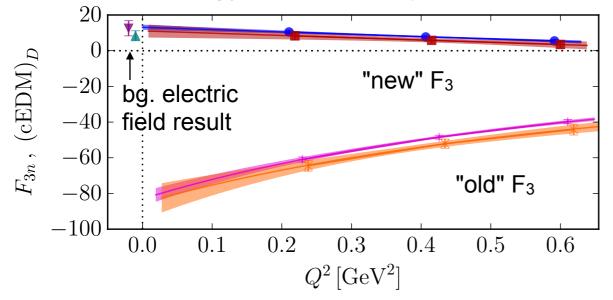
$$u[u^T C\gamma_5 d] \qquad \sum_{\sigma} \tilde{u}_{p,\sigma} \bar{\tilde{u}}_{p,\sigma} \sim (-i p_{\mathcal{E}} + m_N e^{2i\alpha\gamma_5})$$

[M.Abramczyk, S.Aoki, S.N.S, et al (2017) arXiv:1701.07792]

EDM and MDM are defined with positive-parity spinors

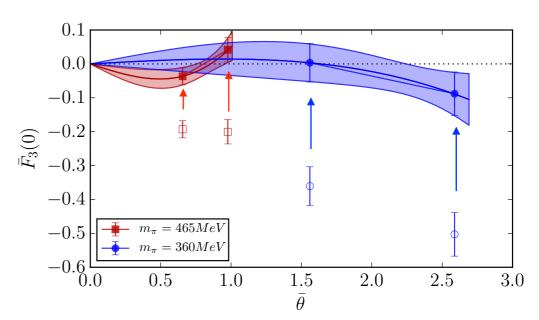
$$\langle N_{p'}|\bar{q}\gamma^{\mu}q|N_{p}\rangle_{\mathcal{CP}}=\bar{u}_{p'}\big[F_{1}\gamma^{\mu}+(F_{2}+i\overline{F_{3}}\gamma_{5})\frac{i\sigma^{\mu\nu}(p'-p)_{\nu}}{2m_{N}}\big]u_{p}\quad\text{,}\quad\text{with}\quad \frac{\gamma_{4}u=+u}{\bar{u}\gamma_{4}=+\bar{u}}$$

check: cEDM-induced EDM / EDFF comparison of form factor F_3 to energy shift in *background* \overline{E} =const



Pre-2017 results: mixing correction

"
$$d_{n,p}$$
" $\approx [d_{n,p}]_{\text{true}} - 2\alpha \frac{\kappa_{n,p}}{2m_N}$



Nucleon "Parity Mixing"

CPv interaction induces a chiral phase in nucleon wave functions on a lattice

$$\langle \operatorname{vac}|N|p,\sigma\rangle_{\mathcal{CP}} = e^{i\alpha\gamma_5} u_{p,\sigma} = \tilde{u}_{p,\sigma}$$

$$u[u^T C\gamma_5 d] \qquad \sum_{\sigma} \tilde{u}_{p,\sigma} \bar{\tilde{u}}_{p,\sigma} \sim (-i p_{\mathcal{E}} + m_N e^{2i\alpha\gamma_5})$$

[M.Abramczyk, S.Aoki, S.N.S, et al (2017) arXiv:1701.07792]

EDM and MDM are defined with positive-parity spinors

$$\langle N_{p'}|\bar{q}\gamma^{\mu}q|N_{p}\rangle_{\mathcal{CP}}=\bar{u}_{p'}\big[F_{1}\gamma^{\mu}+(F_{2}+i\overline{F_{3}}\gamma_{5})\frac{i\sigma^{\mu\nu}(p'-p)_{\nu}}{2m_{N}}\big]u_{p}\quad\text{,}\quad\text{with}\quad \frac{\gamma_{4}u=+u}{\bar{u}\gamma_{4}=+\bar{u}}$$

θ -n	EDM
-------------	-----

[ETMC 2016]

	_
n	5
p	5
n	6
n	6
n	$\mid 4$
n	3
	n p n n n n

		$m_{\pi} [\mathrm{MeV}]$	$m_N [{ m GeV}]$	$\overline{F_2}$	α	$ ilde{F}_3$	F_3
•	n	373	1.216(4)	$-1.50(16)^a$	-0.217(18)	-0.555(74)	0.094(74)
ſ	n	530	1.334(8)	-0.560(40)	$-0.247(17)^b$	-0.325(68)	-0.048(68)
1	p	530	1.334(8)	0.399(37)	$-0.247(17)^b$	0.284(81)	0.087(81)
Ì	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
ĺ	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
j	n	465	1.246(7)	$-1.491(22)^c$	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$
1	n	360	1.138(13)	$-1.473(37)^c$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$

After removing the spurious contribution,

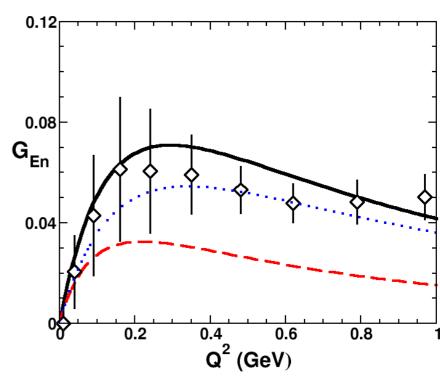
- no lattice signal for θ_{QCD} -induced nEDM
- RESOLVED conflict with pheno. values, lack of $d_N \sim m_q$ scaling

Importance of "Parity Mixing" Correction

Exact value of α₅ is critical for correct determination of EDM:

$$F_3^{\rm lat}(Q^2) \approx \frac{m}{q_3} \underbrace{\langle N_\uparrow(0) | \bar{q} \gamma_4 q | N_\uparrow(-q_3) \rangle_{\mathcal{CP}}}_{\text{CPV matrix element}} - \underbrace{\alpha_5 G_E(Q^2)}_{\text{Subtraction}}$$
 Sachs form factor subtraction

- Proton ($G_{Ep}(0)=1$): Correction ~ α_5
- Neutron $(G_{En}(0)=0)$: No correction at $Q^2=0$ However, $Q^2 \rightarrow 0$ extrapolation may be skewed by neutron electric form factor $\sim \alpha_5 G_{En}(Q^2)$



[Punjabi et al, 1503.01452]

Noise from θ -Term in nEDM from

Variance of lattice θ -induced nEDM signal ~ (Volume)_{4d}:

$$d_N \sim \langle Q\cdot (NJ_\mu N)\rangle$$
 Top. charge
$$Q \sim \int_{V_4} (G\tilde{G}) \ , \quad {\rm with} \ \langle |Q|^2\rangle \sim V_4$$

Constrain Q sum to the fiducial volume

- in time around current, $|t_Q t_J| < \Delta t$
 - [E.Shintani et al (2015); Yoon et al (2019)]
- \odot in time around source, $|t_Q t_{source}| < \Delta t$ [Dragos et al (2019)]
- \circ 4-d sphere around sink, $|x_Q x_{sink}| < R$ [K.-F. Liu et al (2023)]:

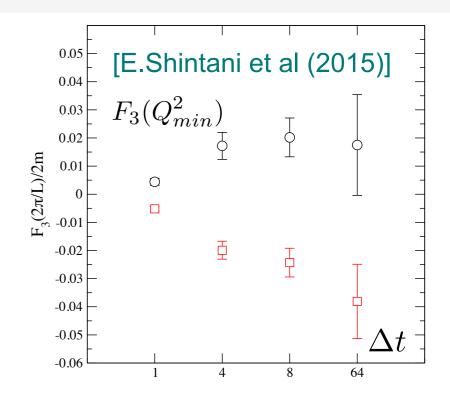
Proper treatment of nucleon parity mixing is critical for correct determination of F_3 \implies nucleon must "settle" in the new $\theta \neq 0$ vacuum

$$N^{(+)} \to \tilde{N}^{(+)} \approx N^{(+)} + i\alpha N^{(-)}$$

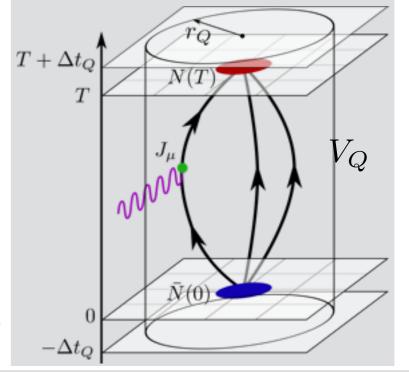
 $N^{(-)} \to \tilde{N}^{(-)} \approx N^{(-)} - i\alpha N^{(+)}$

⇒ constrain time and space differently :

4d "cylinder"
$$V_Q: |\vec{z}| < r_Q, \quad -\Delta t_Q < z_0 < T + \Delta t_Q$$



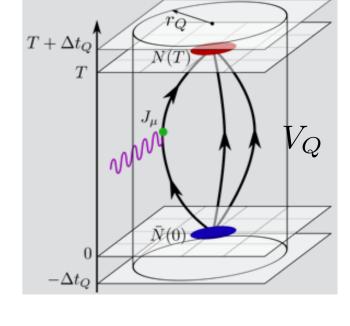
$$Q \approx \int_{V_Q} d^4 z \, q(z)$$

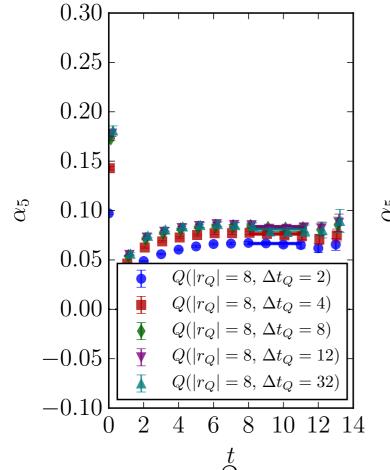


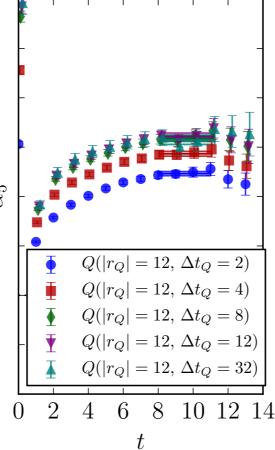
Effect of GG cuts: Parity Mixing Angle

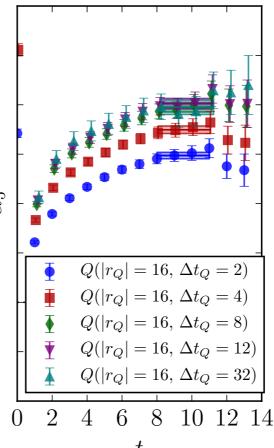
- 24^3 x64 a = 0.114 fm m π =330 MeV (N_f=2+1 chiral-symmetric quarks)
- 1400 confiigs \Longrightarrow 89.6k stat.
- GĞ: Wilson-flowed (t=8a²) gauge links [M.Luscher, 1006.4518]
 5-loop improved GĞ [P. de Forcrand et al '97]
- Cuts in space $r \le r_Q$, time Δt_Q

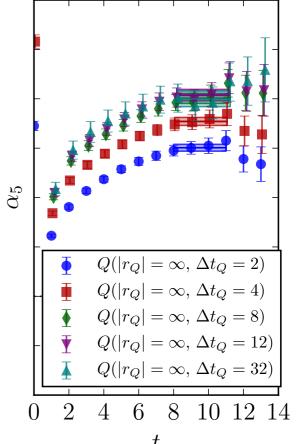
parity mixing angle ${\bf a}$: $\ \langle {\rm vac}|N|p,\sigma\rangle_{\rm CP}=e^{i\alpha\gamma_5}u_{p,\sigma}$







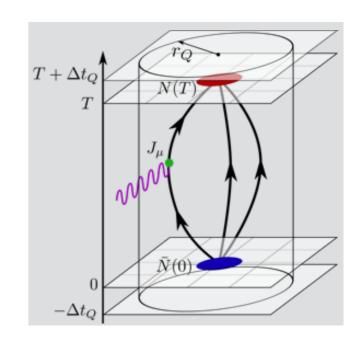


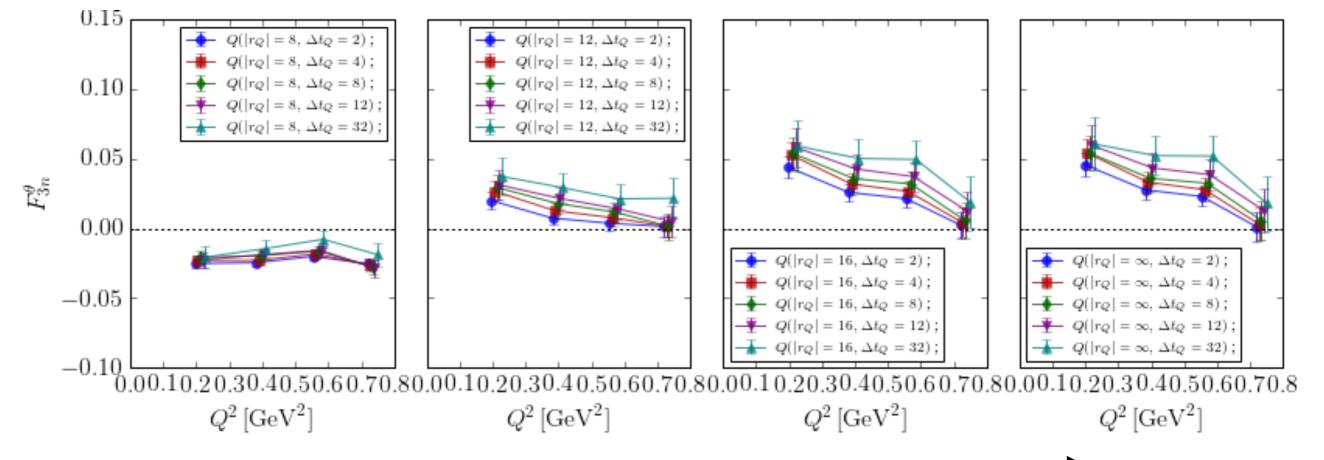


Effect of GG cuts: nEDM Form Factor F₃

- 24^3 x64 a = 0.114 fm m π =330 MeV (N_f=2+1 chiral-symmetric quarks)
- 1400 configs \implies 89.6k stat.
- GG : Wilson-flowed ($t=8a^2$) gauge field [M.Luscher, 1006.4518] 5-loop improved GG [P. de Forcrand et al '97]
- Cuts in space $r \le r_Q$, time Δt_Q

$$F_3^{\mathrm{lat}}(Q^2) \approx \frac{m}{q_3} \underbrace{\langle N_{\uparrow}(0) | \bar{q} \gamma_4 q | N_{\uparrow}(-q_3) \rangle_{\mathcal{CP}}} - \underbrace{\alpha_5 G_E(Q^2)}$$





 $r_{\rm O} = 8a$

INT 23-1B

Another Definition of Top. Charge Density

0.00

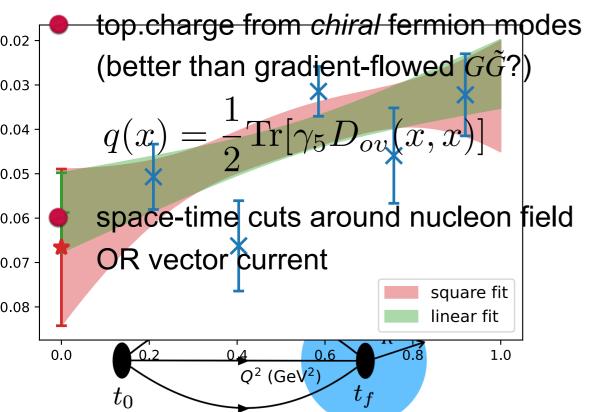
-0.02

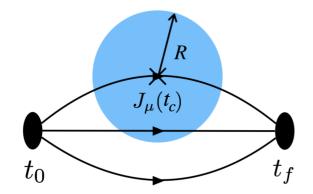
 $F_3(Q^2)$

-0.08 -

-0.10

[Liang et al; 2301.04331]

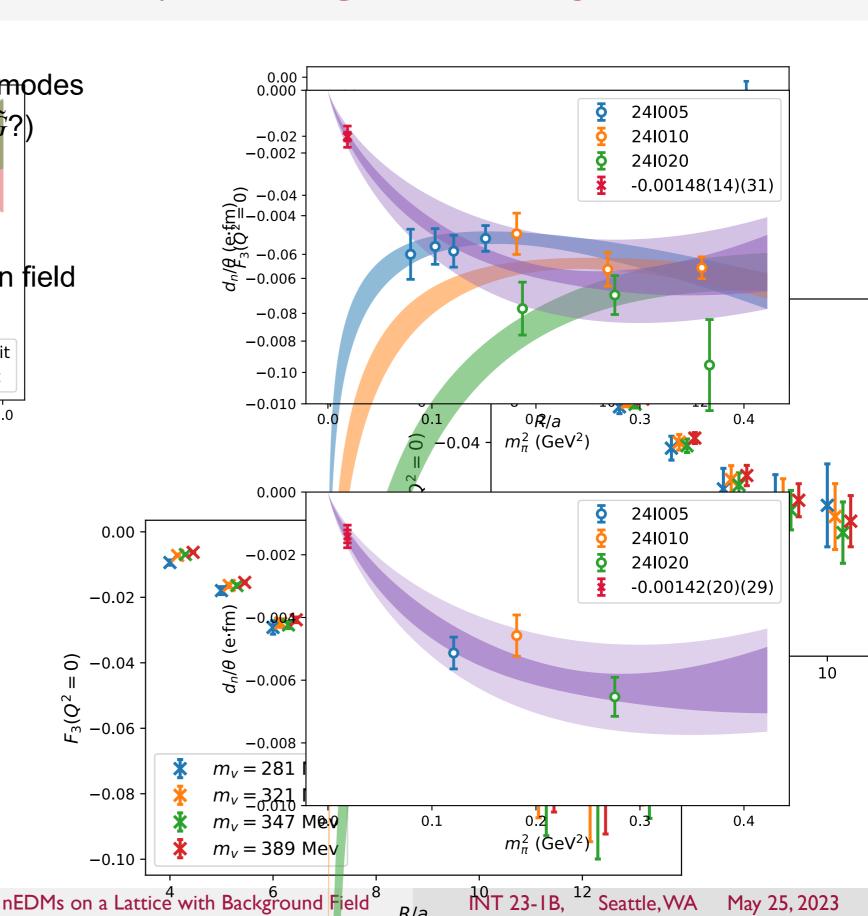




best definition of d_n to date?

$$d_n^{\theta}/\theta = -0.0015(1)(3) e \cdot \text{fm}$$

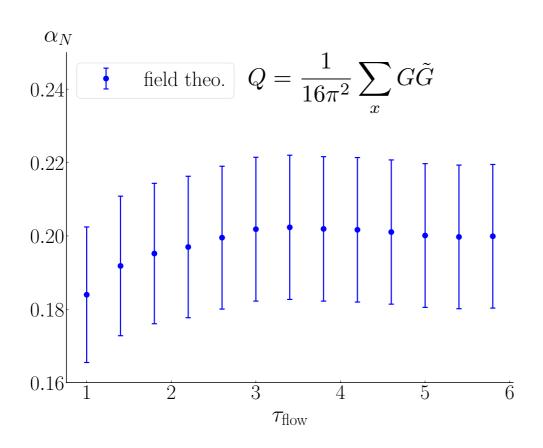
(chiral extrapolation)



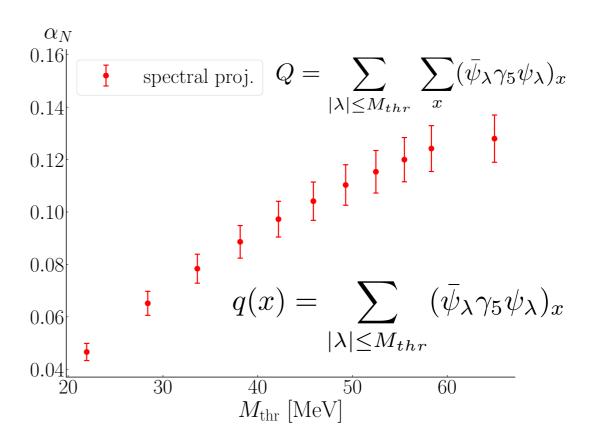
EDM from Full Q at Physical Point

[Alexandrou et al, PRD(202); 2011.01084]

comparison of EDM from $Q_G = \int G\tilde{G}$ vs. fermion*-mode Q_F



$$d_n / \theta = 0.0018(56) e \cdot \text{fm}$$



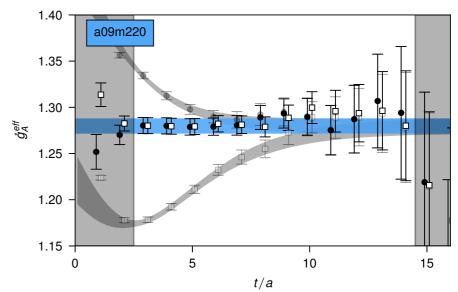
$$d_n / \theta = 0.0009(24) e \cdot \text{fm}$$

Alternative: EDM from Feynman-Hellman Thm

● FH theorem : Perturbation's matrix element ⇔ Energy shift

$$\frac{\partial E_{\lambda}}{\partial \lambda} = \left\langle \phi_{\lambda} \middle| \frac{\partial \hat{H}_{\lambda}}{\partial \lambda} \middle| \phi_{\lambda} \right\rangle$$

(used successfully to compute g_A to sub-% precision) and other forward hadron matrix elements



[Chang et al (CalLat), Nature 558:91 (2018)]

Nucleon EDM from FH:

- θ-term as a linear perturbation induces EDM $d_n \sim \theta$:
- background electric field leads to a energy shift of a polarized-nucleon
- FH : relation between EDM and matrix element of <u>local top.charge density</u>

$$\delta \mathcal{L} = \frac{\theta g^2}{32\pi^2} \int dt \int d^3x G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu}$$

$$m_N' = m_N - (d_N^{\theta} \theta) \vec{\Sigma} \cdot \vec{\mathcal{E}}$$

$$d_N^{\theta} \propto \left\langle N_{\uparrow} \middle| \int d^3x \, G_{\mu\nu}^a \widetilde{G}_{\mu\nu}^a \middle| N_{\uparrow} \right\rangle_{\mathcal{E}_z}$$

Advantage: precise d_n from $G\tilde{G}$ on only one time slice \Longrightarrow noise reduction

EDM ⇔ Density of Top.charge in Polarized Nucleon

$$d_N^{\theta} \propto \left\langle N_{\uparrow} \right| \int d^3x \, G_{\mu\nu}^a \widetilde{G}_{\mu\nu}^a \left| N_{\uparrow} \right\rangle_{\mathcal{E}_z}$$

Nonzero in CP-even vacuum only if both **spin**- and **charge**-polarized (can be simulated with background E || B fields)

(permanent) EDM ←⇒ correlation of spin and charge

- charge polarization in CPv vacuumOR
- spin polarization in CPv vacuumOR
- "topological" polarization in CP-even vacuum

 $\langle N | d | N \rangle_{CPV} \sim E$

 $\langle N | \Sigma | N \rangle_{CPv} \sim E$

 $\langle N | G\tilde{G} | N \rangle_{CP\text{-even}} \sim S \cdot E$

Normally \(\mathbb{N} \) G\(\tilde{\Gamma} \) \(\mathbb{N} \) CP-even is zero

$$\mathcal{P}(|N_{\uparrow}^{(+)}\rangle) = +|N_{\uparrow}^{(+)}\rangle
\mathcal{P}(G\tilde{G}) = -G\tilde{G}$$

unless background **E** field breaks parity, polarizes N into a mixed-parity state:

$$|N\rangle_{\mathcal{E}_z} = |N^{(+)}\rangle + O(\mathcal{E}_z)|N^{(-)}\rangle$$

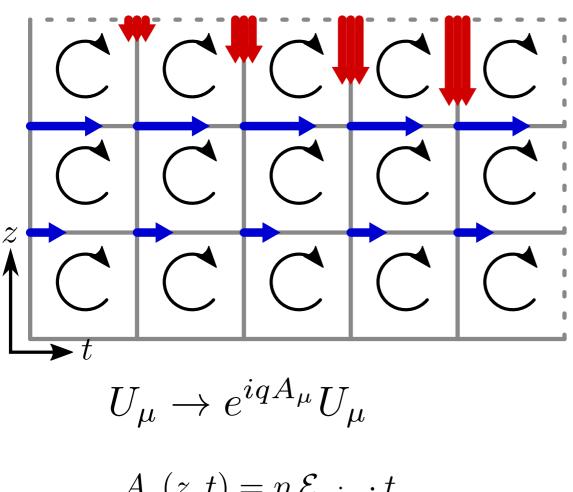
used in

 $\langle N_{\uparrow}| G\tilde{G} |N_{\uparrow}\rangle_{E=0} \text{ vanishes}$

sensitive to EDM directly (no subtractions)

Background Electric Field

Accessing magnetic and electric moments at Q²=0 Imag.Minkowski/Real Euc. electric field on a lattice [W.Detmold et al (2009)] : calculation of hadron polarizabilities



$$A_z(z,t) = n \mathcal{E}_{\min} \cdot t$$

$$A_t(z,t = L_t - 1) = -n \mathcal{E}_{\min} \cdot L_t z$$

Full flux through the "side" of the periodic box

$$= q\Phi = 2\pi \cdot n$$

Constant Electric field has to be quantized,

$$\mathcal{E}_{\min} = \frac{1}{|q_d|} \frac{2\pi}{L_x L_t}$$

Electric field on a 243x64 lattice

$$\mathcal{E} = \frac{6\pi}{L_x L_t} \approx 0.037 \text{ GeV}^2$$
$$\approx 186 \text{ MV/fm}$$

Unambiguous determination of EDM from the energy shift Straightforward for neutron with Q=0

Topological Charge with Gradient Flow

[M.Luscher, JHEP08:071; 1006.4518]

Gradient flow: covariant *4D-diffusion* of quantum fields with "G.F." time t_{GF} :

$$\frac{d}{dt_{\text{GF}}} B_{\mu}(t_{\text{GF}}) = D_{\mu} G_{\mu\nu}(t_{\text{GF}}), \quad B_{\mu}(0) = A_{\mu}$$

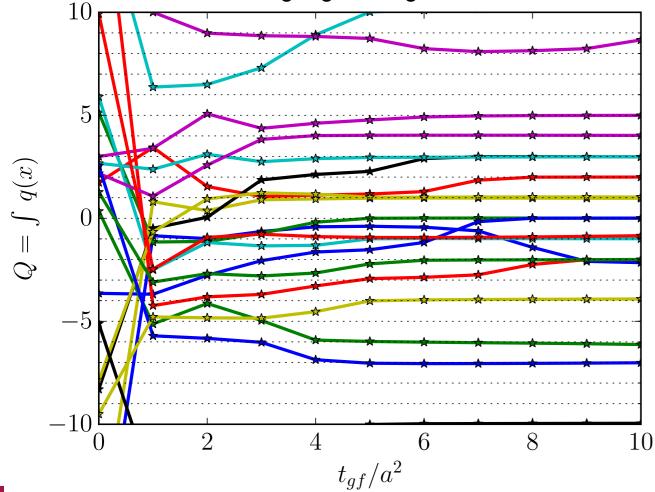
Tree-level:

$$B_{\mu}(x, t_{\rm GF}) \propto \int d^4y \, \exp\left[-\frac{(x-y)^2}{4t_{\rm GF}}\right] A_{\mu}(y)$$

Gradient-flowed topological charge:

$$\tilde{Q}(t_{\rm GF}) = \int d^4x \, \frac{g^2}{32\pi^2} \left[G_{\mu\nu} \tilde{G}_{\mu\nu} \right] \Big|_{t_{\rm GF}}$$

total top. charge on 20 randomly chosen gauge configurations

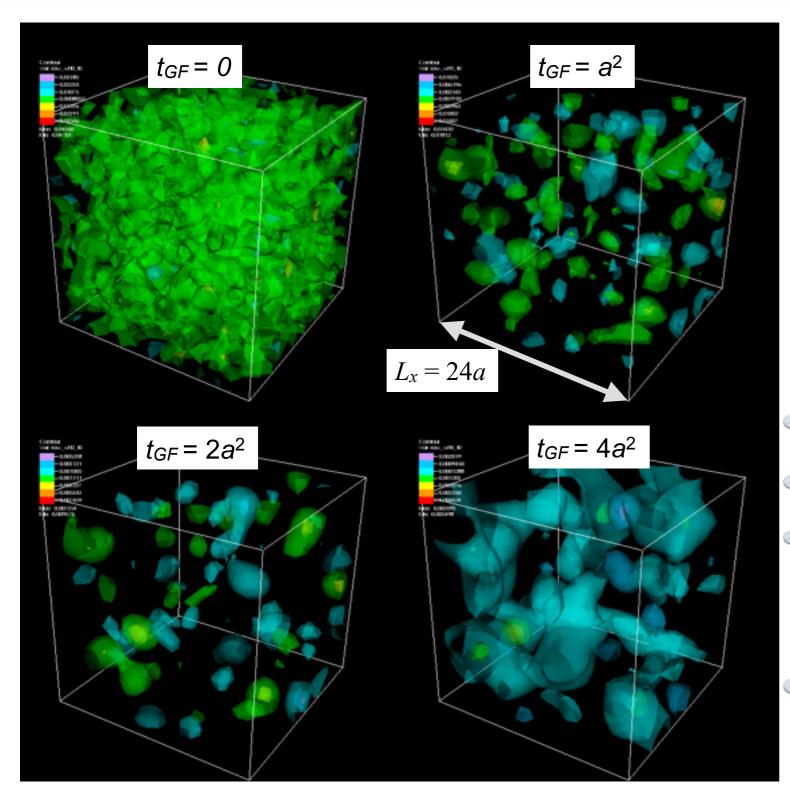


- effective scale $\Lambda_{\rm UV} \rightarrow (t_{\rm GF})^{-1/2}$
- smooth fields (reduce $|G_{\mu\nu}|$) \iff continuous "cooling"
- remove Gμν dislocations
 ⇒dynamical separation of top. sectors
 [M.Luscher, JHEP08:071; 1006.4518]

INT 23-1B.

diffusion of top.charge density

Gradient-Flowed Topological Charge Density



$$q(x) = \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu}$$

$$\approx \frac{1}{16\pi^2} \frac{1}{a^4} \text{Tr} \left[G^{\text{lat}}_{\mu\nu} \widetilde{G}^{\text{lat}}_{\mu\nu} \right]$$

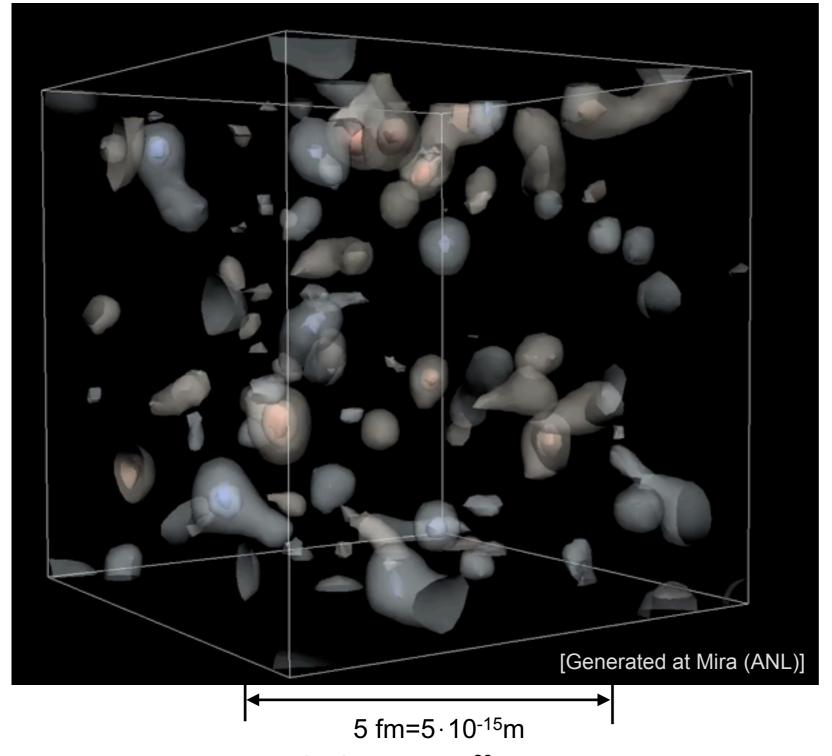
$$\propto (\mathbf{E} \cdot \mathbf{H})_{\text{color}}$$

Gradient flow:

- effective scale $(\Lambda_{\rm UV})^{-1} \rightarrow (t_{\rm GF})^{1/2}$
- make fields smooth (reduce $|G_{\mu\nu}|$)
- remove dislocations⇒dynamical separation of topological sectors [M.Luscher, JHEP08:071; 1006.4518]
- 4D-diffusion (including time) of q(x) $\langle q(x)q(0) \rangle \sim exp[-(x-y)^2/8t_{GF}]$

 $24^3 \times 64$ lattice, $m\pi \approx 340 \, MeV$

Tunneling Between Topology Sectors



6 s video =5 fm / c =1.7·10⁻²³ s real time [Lattice QCD at the physical point]

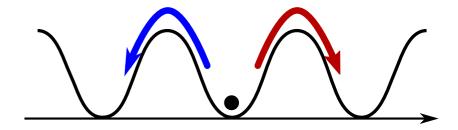
$$q(x) = \frac{g^2}{32\pi^2} G^a_{\mu\nu} \widetilde{G}^a_{\mu\nu}$$

$$\approx \frac{1}{16\pi^2} \frac{1}{a^4} \text{Tr} \left[G^{\text{lat}}_{\mu\nu} \widetilde{G}^{\text{lat}}_{\mu\nu} \right]$$

$$\propto (\mathbf{E} \cdot \mathbf{H})_{\text{color}}$$

Instantons and Anti-Instantons:

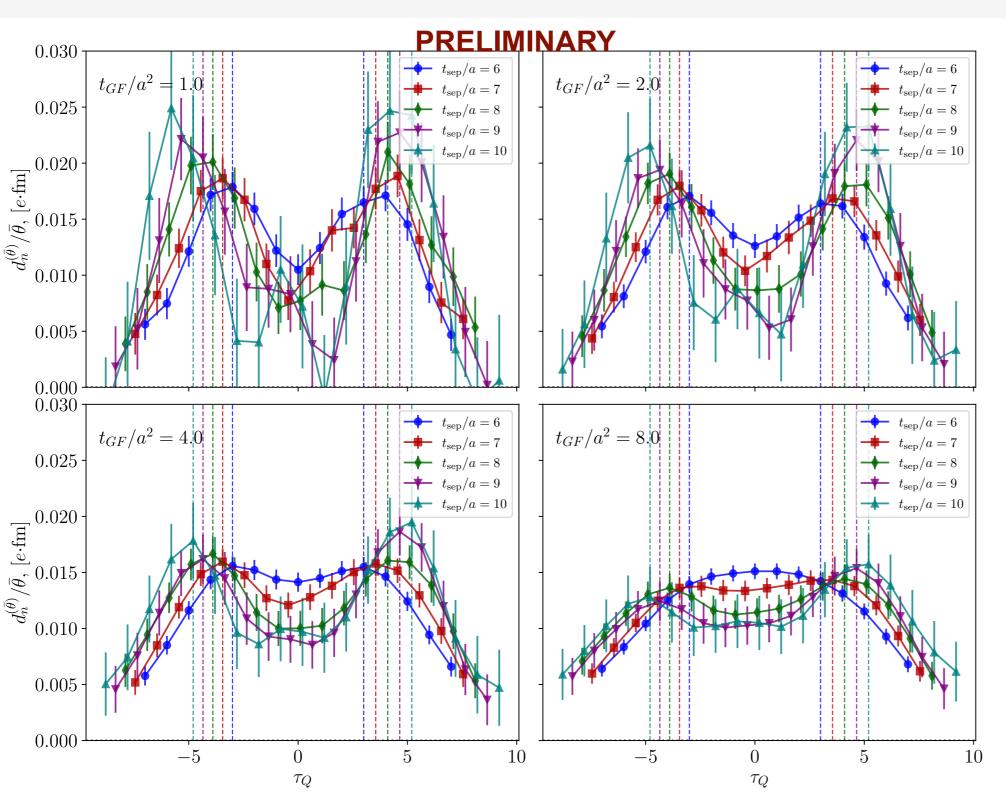
Quantum tunneling of gluon field between topological sectors



CPv-QCD *Θ*-Vacuum :

$$|vac\rangle_{\theta} = \sum_{Q} e^{i\theta Q} |Q\rangle$$

Matrix Elements of GG vs. Gradient Flow Time



Two effects observed:

- 1. Convergence to ground state matrix el.
- 2. Diffusion of top.charge for $t_{sep} \leq 7a$

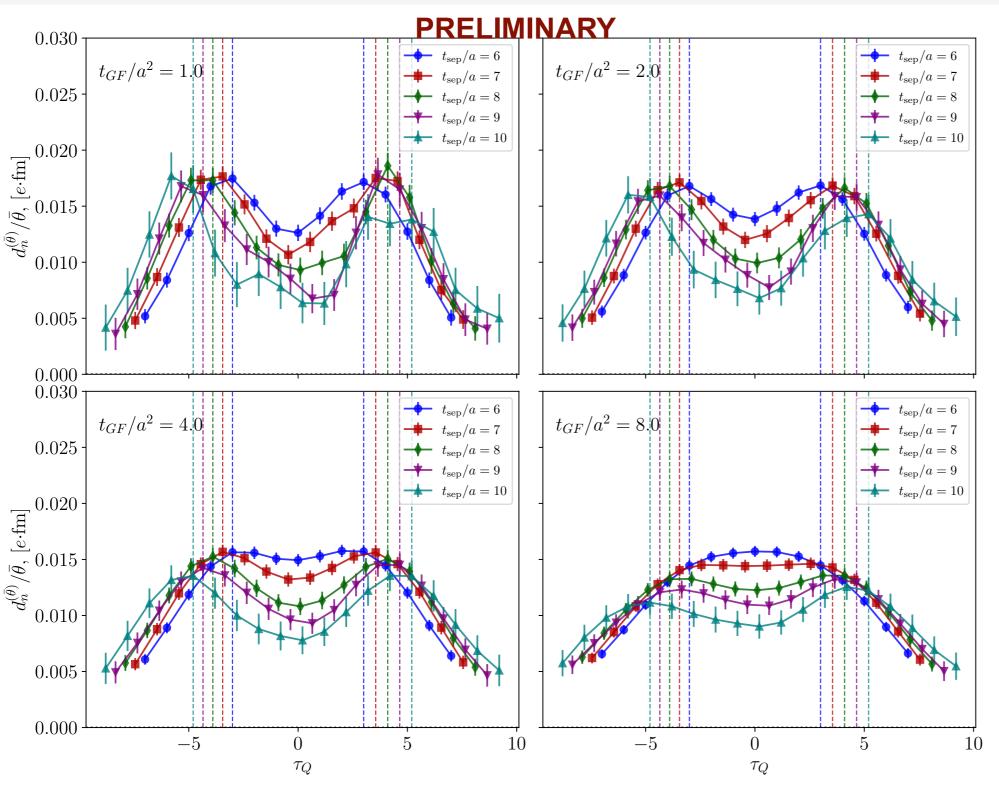
PRELIMINARY estimates $2md_n = F_3(0) \approx 0.11 ... 0.13$ agree with form factor

Analysis of (τ_Q, t_{GF}) required to detangle

$$\langle N|G\widetilde{G}|N\rangle$$
, $\langle N|G\widetilde{G}|N\rangle_{\mathrm{exc}}$, $\langle \mathrm{vac}|G\widetilde{G}|N\bar{N}\rangle$,

. . .

Matrix Elements of GG (Low-mode Improved)



Two effects observed:

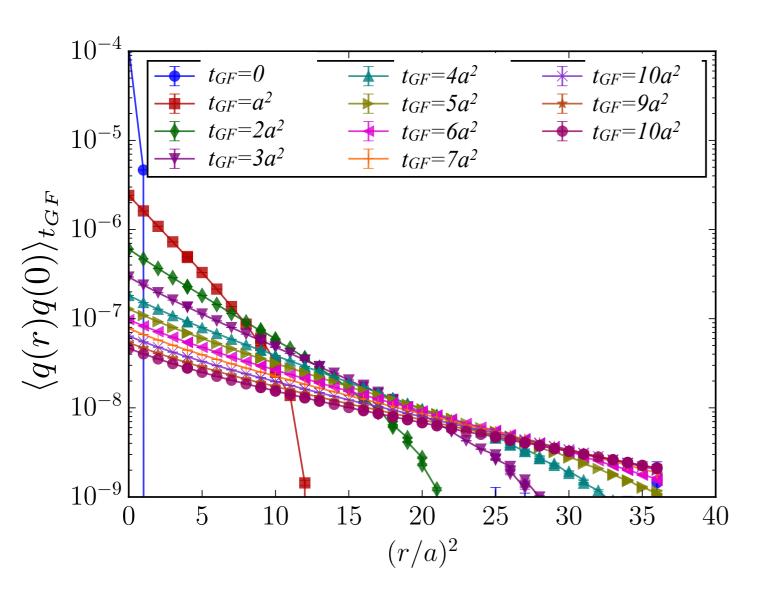
- 1. Convergence to ground state matrix el.
- 2. Diffusion of top.charge for $t_{sep} \leq 7a$

PRELIMINARY estimates $2md_n = F_3(0) \approx 0.11 ... 0.13$ agree with form factor

Analysis of (τ_{Q}, t_{GF}) required to detangle

$$\langle N|G\widetilde{G}|N\rangle$$
, $\langle N|G\widetilde{G}|N\rangle_{\mathrm{exc}}$, $\langle \mathrm{vac}|G\widetilde{G}|N\overline{N}\rangle$,

Gradient Flow as "Diffusion" of Top.Charge



Empirically for
$$r, \sqrt{t_{\rm GF}} \gg m_{\eta'}^{-1}$$

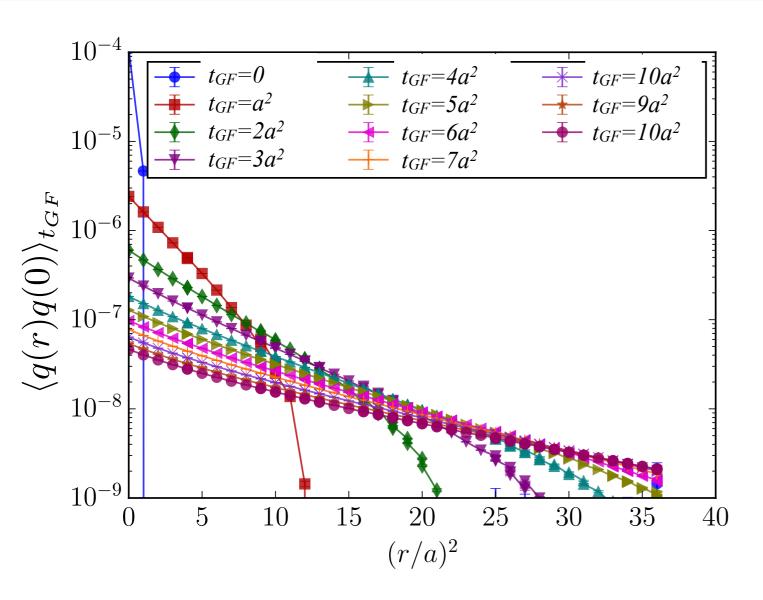
$$\langle \widetilde{q}(r) \widetilde{q}(0) \rangle \propto \exp \left[-\frac{r^2}{4r_Q^2(t_{\rm GF})} \right]$$

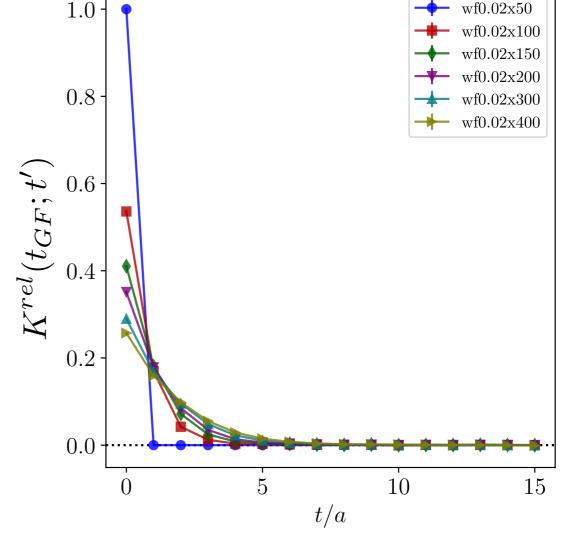
Diffusion of q(x) in Euclidean (lattice) time:

$$q(t_{GF};t) = \sum_{t'} K(t_{GF};t-t')q(t')$$

complications for matrix element analysis

Gradient Flow as "Diffusion" of Top.Charge





Diffusion of q(x) in Euclidean (lattice) time:

$$q(t_{GF};t) = \sum_{t'} K(t_{GF};t-t')q(t')$$

complications for matrix element analysis

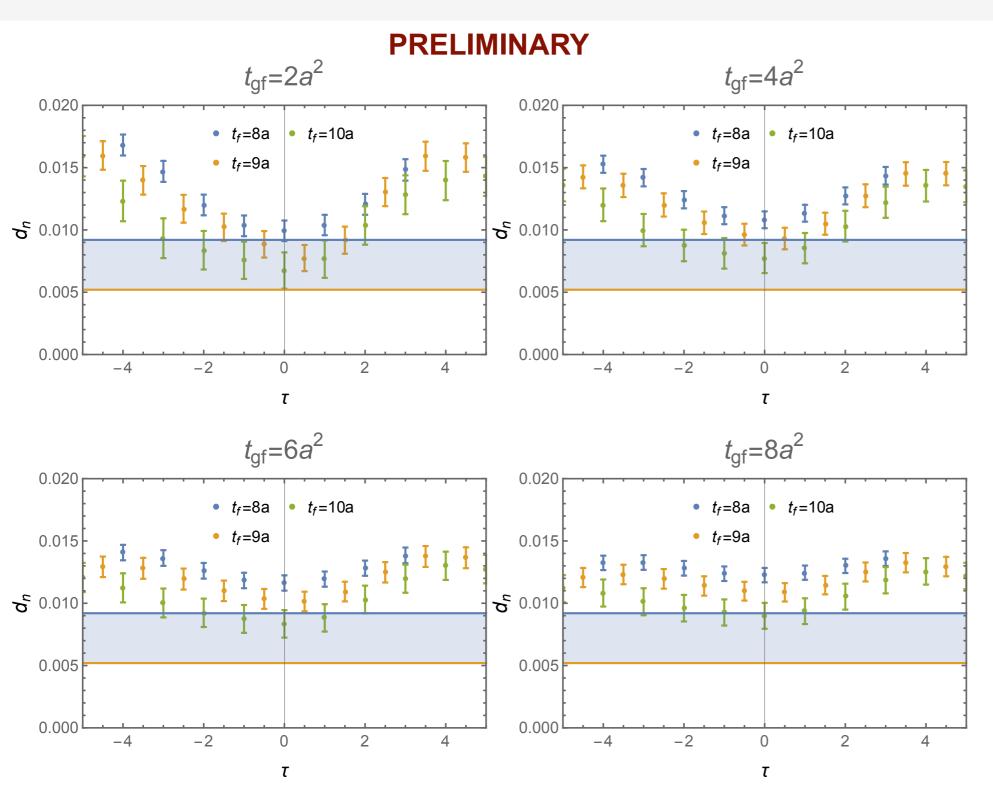
Extract kernel K from lattice data

$$\tilde{K}^{rel}(t_{GF};\omega) = \sqrt{\frac{\tilde{\chi}(t_{GF};\omega)}{\tilde{\chi}(t_{GF0};\omega)}}$$

where

$$\chi(t_{GF}; t_2 - t_1) = \langle q(t_{GF}; t_2) q(t_{GF}; t_1) \rangle$$

Combined Fit: Euclidean Time & Gradient Flow

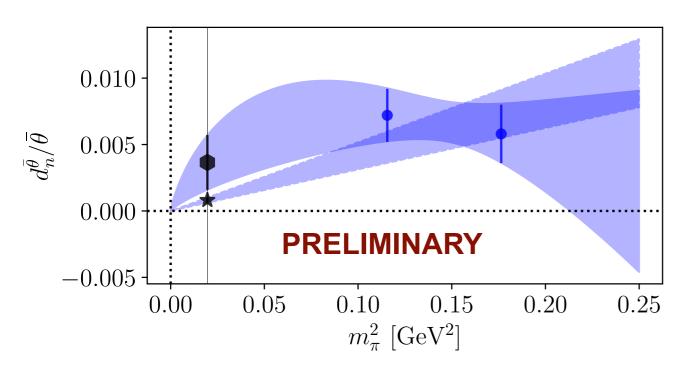


Combined Analysis of (τ_Q, t_{GF}) dependence:

- ullet ground state $\langle N|G\widetilde{G}|N
 angle$
- ullet excited state(s) $\langle N | G \widetilde{G} | N
 angle_{
 m exc}$
- $\ ^{\circ}$ "contact" amplitudes $\langle N\left(G\widetilde{G}\right)|N\rangle$
- ullet N $ar{f N}$ annihilation by G $ar{f G}$ $\left< {
 m vac} | G \widetilde{f G} | N ar{N}
 ight>$
- grey band: "summation analysis"

Fit $\langle N(t_{sep}) \ q(t_{GF}, \tau_Q) \ \bar{N}(0) \rangle \sim K(t_{GF}, |\tau_Q - \tau_Q'|) \otimes \langle N(t_{sep}) \ q(\tau_Q) \ \bar{N}(0) \rangle$

Extrapolation to the Physical Point

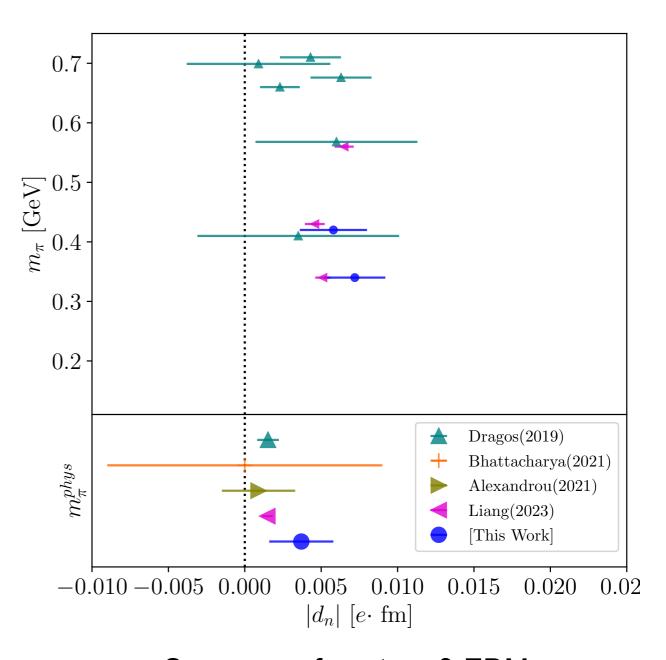


Chiral extrapolation

[Hockings, van Kolck (2005)]

$$d_n(m_\pi) = C_1 m_\pi^2 + C_2 m_\pi^2 \log \frac{m_\pi^2}{m_N^2}$$

(Only multiplicative O(a^2) corrections with chiral-symmetric lattice fermions)



Summary of neutron θ-EDM from Lattice QCD

Summary

- Novel method to compute nEDM from local topological charge Results consistent with earlier works (and also with zero) Potential method of choice for physical-point calculations with large V₄
- Important cross-check for E.D. form-factor calculations Controllable space cut-off of "disconnected" CPv interaction
- Current results compatible with zero; more statistics, additional pion-mass point needed Potential method of choice for physical-point calculations with large V₄

Outlook: nEDM from other CPv Operators

- EDM of the Proton : background field requires only energy shift (acc. cancels out)
- Background field method may reduce errors in calculations of nEDM from other "disconnected" CPv interactions: Weinberg, isoscalar (strange quark cEDM?)
- Simplified contractions for 4-quark CPv operators (L-R, SUSY)

$$\mathcal{O}_{\varphi ud}^{(1)} = \frac{1}{3} (\bar{u}u) (\bar{d}\gamma_5 d) + (\bar{u}T^A u) (\bar{d}\gamma_5 T^A d) - [u \leftrightarrow d]$$

$$\mathcal{O}_{quqd}^{(1)} = (\bar{u}\gamma_5 u) (\bar{d}d) + (\bar{u}u) (\bar{d}\gamma_5 d)$$

$$- [(\bar{u}u)(\bar{d}d) \leftrightarrow (\bar{u}d)(\bar{d}u)]$$

$$\mathcal{O}_{quqd}^{(8)} = (\bar{u}\gamma_5 T^A u) (\bar{d}T^A d) + (\bar{u}T^A u) (\bar{d}\gamma_5 T^A d)$$

$$- [(\bar{u}u)(\bar{d}d) \leftrightarrow (\bar{u}d)(\bar{d}u)]$$

