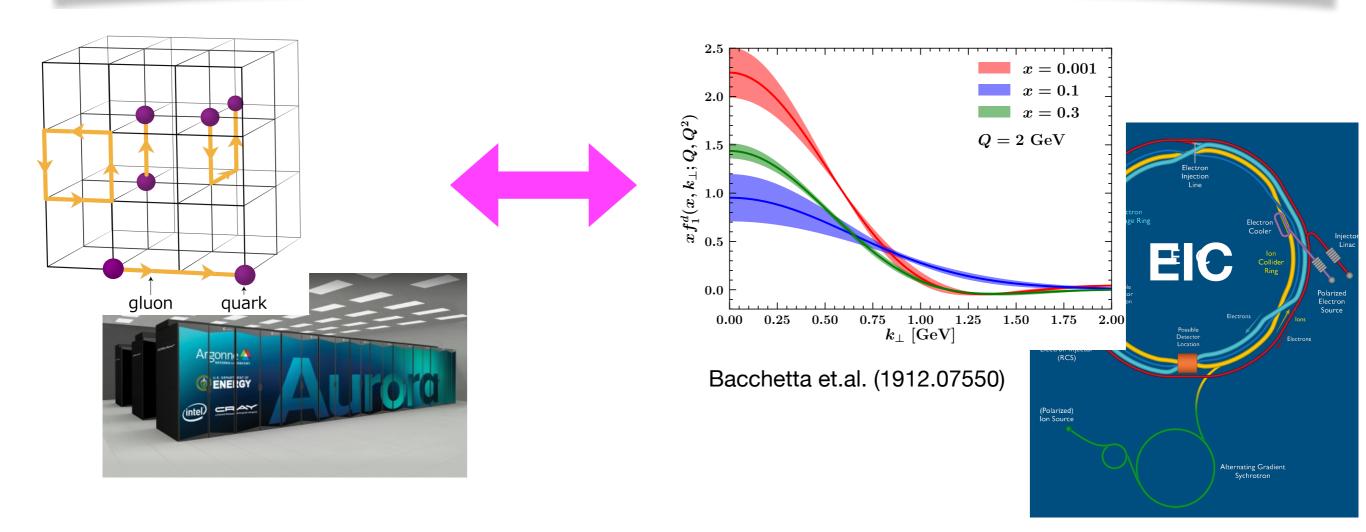
Theoretical Developments in Lattice and Continuum TMDs

Iain Stewart MIT

Parton Distributions and Nucleon Structure
INT workshop
University of Washington, Seattle
September 13, 2022

Proof of Factorization connecting Quasi-TMDs (Lattice) and Collins-TMDs (cross section)

$$\lim_{\tilde{\eta}\to\infty} \tilde{f}_{i/h}(x, \vec{b}_T, \mu, \zeta, x\tilde{P}^z, \tilde{\eta}) = C_i(x\tilde{P}^z, \mu) f_{i/h}^C(x, \vec{b}_T, \mu, \zeta) + \dots$$

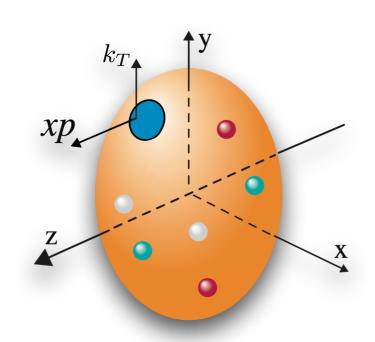


Proof of Factorization connecting Quasi-TMDs (Lattice) and Collins-TMDs (Continuum)

$$\lim_{\tilde{\eta}\to\infty} \tilde{f}_{i/h}(x, \vec{b}_T, \mu, \zeta, x\tilde{P}^z, \tilde{\eta}) = C_i(x\tilde{P}^z, \mu) f_{i/h}^C(x, \vec{b}_T, \mu, \zeta) + \dots$$

Outline

- Introduction
- Setup a General Framework
- Proof
- Implications



$$\Phi_{q \leftarrow h}^{[\gamma^+]}(x,b) = f_1(x,b) + i\epsilon_T^{\mu\nu} b_{\mu} s_{\nu} M f_1$$

Longitudinally Polarized

Quark Polarization

$$f_{q/P}(x, k_T, \mu, \zeta)$$

Unpolarized

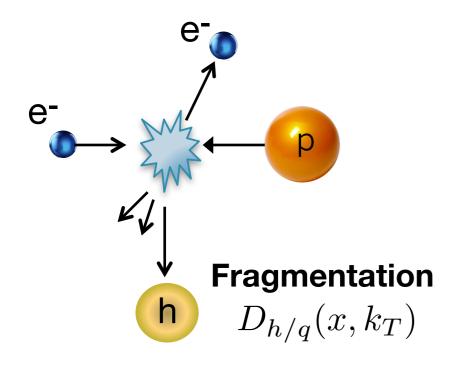
Transversely Po

Iongitudinal & Transverse

			(U)	(L)	(T)
		U	$f_1(x,k_T^2)$		$h_1^{\perp}(x,k_T^2)$ Boer-Mu
Dre	tion		1	Dihadron ii	1 e+e-
q/P(x,	lariza	L	$ _{P}(x,k_T) $	$g_1(x,k_T^2) \longrightarrow \sigma \sim D_{h_1}$ yellow $\sigma \sim D_{h_1}$ yellow $\sigma \sim D_{h_2}$	$D_{h_2/q}^\perp(x,k_T^2)$ $D_{h_2/q}^\perp(x,k_T^2)$
Q,	Nucleon Polarization	Т	$ \frac{f_1^{\perp}(x,k_T^2)}{\mu} $	$g_{1T}(x,k_T^2)$	$h_{1T}^{\perp}(x, k_T^2)$ Transve $h_{1T}^{\perp}(x, k_T^2)$ Pretzelo
$\overrightarrow{P_a}$	W		P_b	h ₁	

Semi-Inclusive DIS

$$\sigma \sim f_{q/P}(x, k_T) D_{h/q}(x, k_T) \quad \sigma \sim f_{q/P}(x, k_T)$$



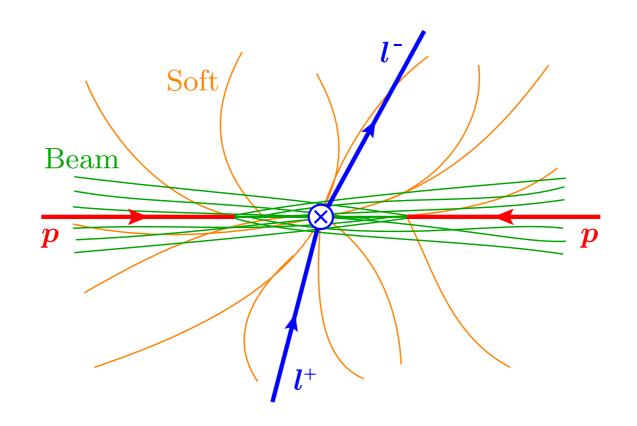
TMD Factorization (Drell Yan)

corrections

CSS (Collins, Soper, Sterman)
SCET (Soft Collinear Effective Theory)

$$\frac{d\sigma}{dQdYdq_T^2} = H(Q,\mu) \int d^2\vec{b}_T \; e^{i\vec{q}_T \cdot \vec{b}_T} \; f_q(x_a,\vec{b}_T,\mu,\zeta_a) \; f_q(x_b,\vec{b}_T,\mu,\zeta_b) \Big[1 + \mathcal{O}\Big(\frac{q_T^2}{Q^2}\Big) \Big]$$
 Hard virtual
$$\zeta_a \zeta_b = Q^4$$

$$f_q(x, \vec{b}_T, \mu, \zeta) \sim Z_{\rm uv} B_q / \sqrt{S_q}$$



TMD Definitions

Beam Function

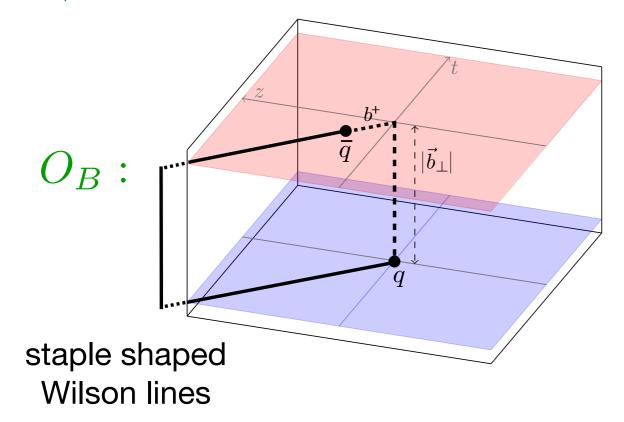
Soft factor

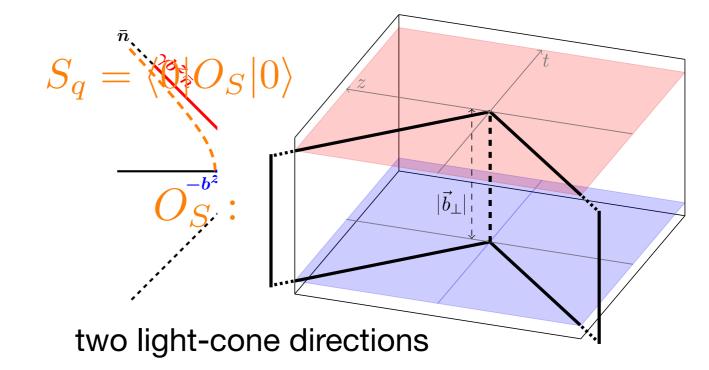
$$f_q(x, \vec{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{uv}}(\epsilon, \mu, \zeta) \lim_{\tau \to 0} B_q(x, \vec{b}_T, \epsilon, \tau, \zeta) / \sqrt{S_q(b_T, \epsilon, \tau)}$$

UV limit rapidity limit

$$B_{q/p} = FT_{b^+ \to x} \Omega_{q/p}$$

$$\Omega_{q/p} = \langle p | O_B | p \rangle$$





Sum large logarithms:
$$\ln(Q^2b_T^2) \sim \ln \frac{Q^2}{q_T^2}$$

$$f_q(x, \vec{b}_T, \mu, \zeta) = \exp\left[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_{\mu}^q(\mu', \zeta_0)\right] \exp\left[\frac{1}{2} \gamma_{\zeta}^q(\mu, b_T) \ln \frac{\zeta}{\zeta_0}\right] f_q(x, \vec{b}_T, \mu_0, \zeta_0)$$
CS kernel boundary data

 μ = renormalization scale

$$\zeta$$
 = Collins-Soper parameter
= $2(xP^+e^{-y_n})^2$

Nonperturbative contributions in both

$$b_T^{-1} \sim \Lambda_{\rm QCD}$$

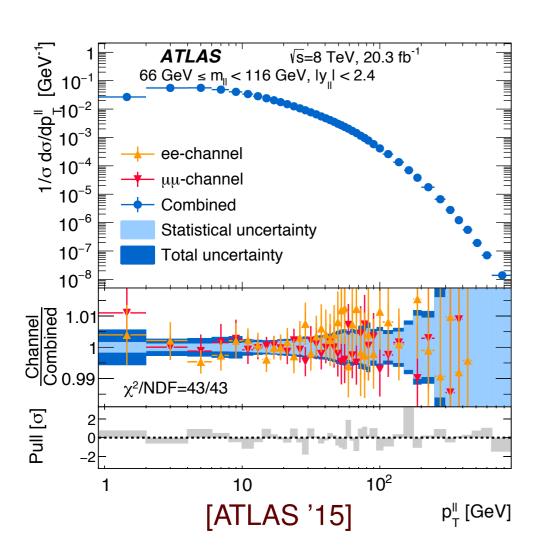
Targets for Lattice Calculations

Scales:

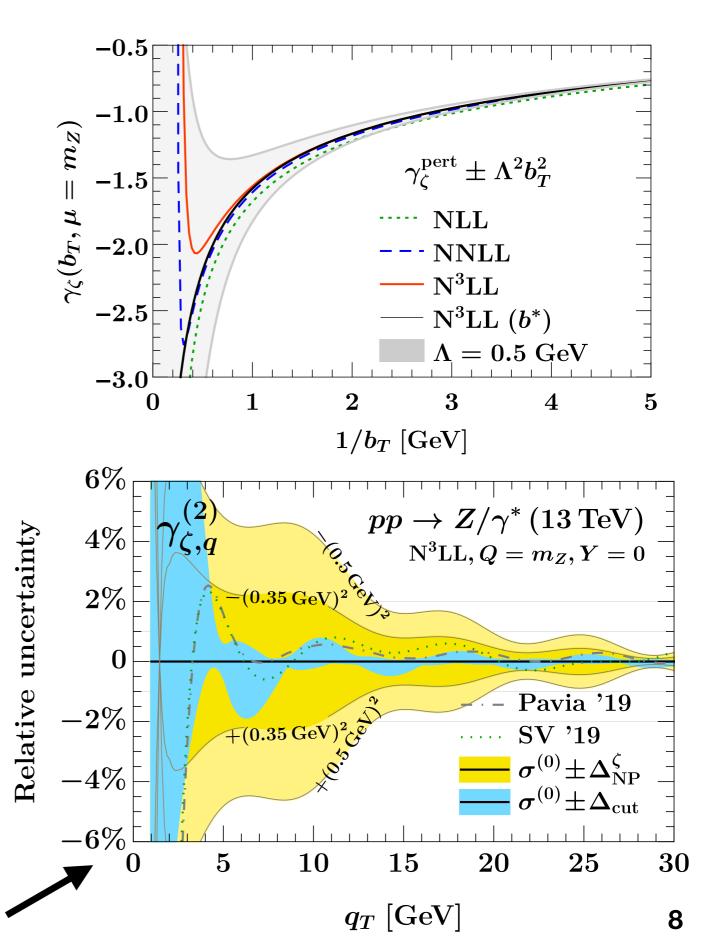
in lattice calculation or model: $\mu_0, \sqrt{\zeta_0} \sim \text{GeV}$ in cross-section: $\mu, \sqrt{\zeta} \sim Q$

Nonperturbative Contributions to DY Cross Sections

Collins-Soper kernel

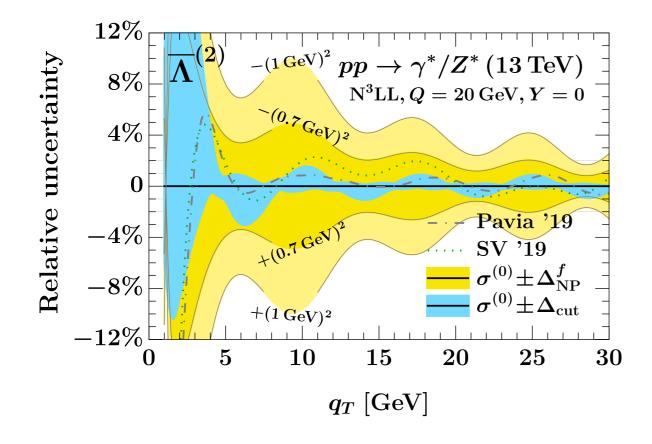


Ebert, Michel, IS, Sun (arXiv:2201.07237) [without need for b* scheme]

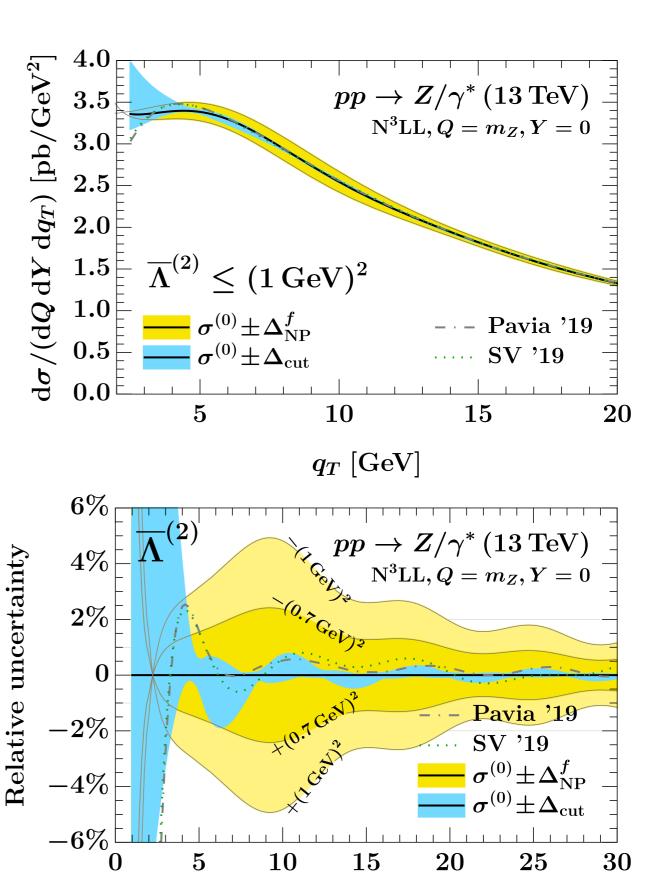


Nonperturbative Contributions to DY Cross Sections

Boundary TMD PDF



Ebert, Michel, IS, Sun (arXiv:2201.07237) [without need for b* scheme]



 $q_T \ [{
m GeV}]$

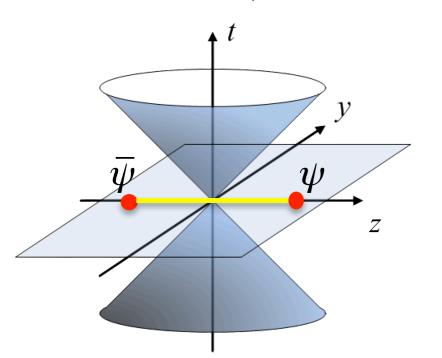
9

Large Momentum EFT: Quasi-PDFs

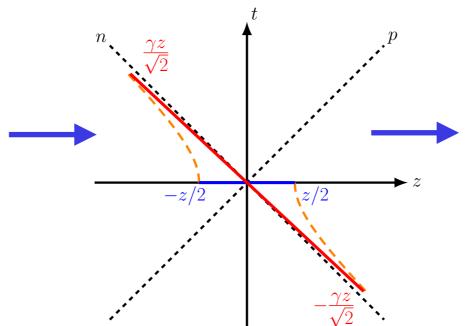
Xiangdong Ji 2013

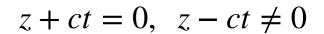
$$\Lambda_{\rm QCD} \ll P^z$$
 (finite large P^z)

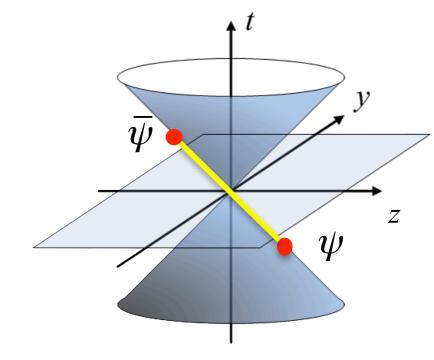
$$t = 0, z \neq 0$$



Related by Lorentz boost







quasi-PDF computable with Lattice QCD

Perturbative matching coefficient

 $\tilde{f}_i(x, P^z, \tilde{\mu}) = \int_{-1}^1 \frac{dy}{|y|} C_{ij}(\frac{x}{y}, \frac{\tilde{\mu}}{P^z}, \frac{\mu}{yP^z}) f_j(y, \mu) + \mathcal{O}(\frac{M^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2})$

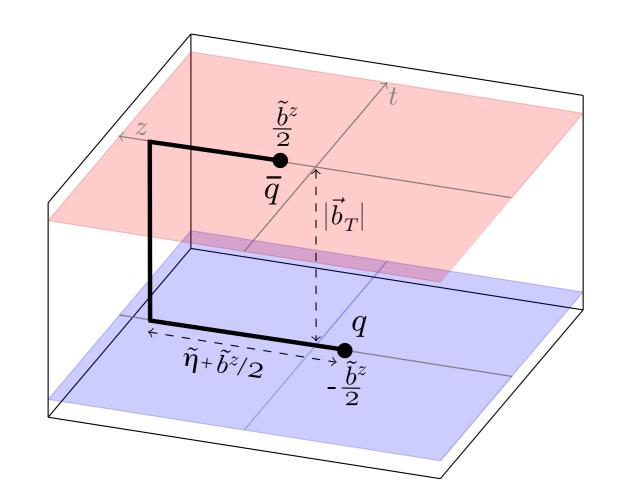
PDF

Power corrections

quasi-PDF and PDF: same IR physics

Requirements for a useful Lattice-TMD

- Lattice:
- 1. Equal time correlators \vec{B}
- 2. Finite length staples $\tilde{\eta}$ = finite
- Physics: 1. Same IR physics as physical TMDs
 - 2. Cancel linear divergences (need soft factor 5)
 - 3. Relation to physical TMDs: $\tilde{f} \rightarrow f$



$$ilde{f} \sim Z_{
m UV} ilde{B}/\sqrt{ ilde{S}}$$

Two approaches:

- Lorentz Invariant method (MHENS TMDs)

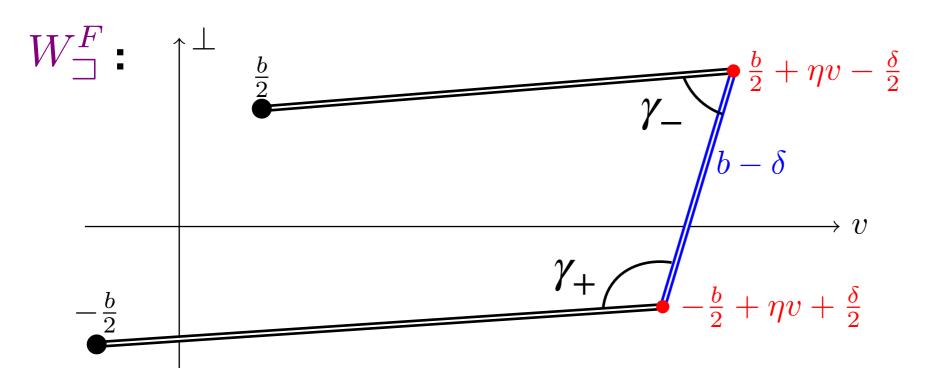
Literature:

- MHENS:Musch, Hägler, Engelhardt, Negele, Schäfer ('10, '11, '15) Pioneered Lattice studies of TMDs, exploit Lorentz Invariance ratios to cancel soft, focus on moments ($b^z \rightarrow 0$)
- Ji, Sun, Xiong, Yuan ('14); Ji, Link, Yuan, Zhang, Zhao ('18) Quasi TMDs, propose factorization ($\eta = \infty$), calculate C
- Ebert, Stewart, Zhao ('18, '19, '19)
 Propose factorization (finite η) and CS kernel method,
 IR tests, calculate C
- Ji, Liu, Liu ('19, '19)
 Proposal for diagrammatic proof of factorization
 Proposed proper quasi-soft factor & indirect lattice method
- Vladimirov, Schäfer ('20)
 Factorization analysis

Make clear connection between lattice (MHENS, Quasi) and physical (Collins, JMY, ...) schemes

Introduce a universal Beam Function:

$$\Omega_{q/h}^{[\Gamma]}(b, P, \epsilon, \eta v, \boldsymbol{\delta}) = \left\langle h(P) \middle| \bar{q}_i \left(\frac{b}{2} \right) \frac{\Gamma}{2} W_{\square}^F(b, \eta v, \delta) q_i \left(-\frac{b}{2} \right) \middle| h(P) \right\rangle$$



MHENS: $\delta = 0$

Quasi: $b - \delta = b_T$

Collins: also works

Path Length:

$$L_{\square} = |\eta v - \delta/2| + |\eta v + \delta/2| + |b - \delta|$$

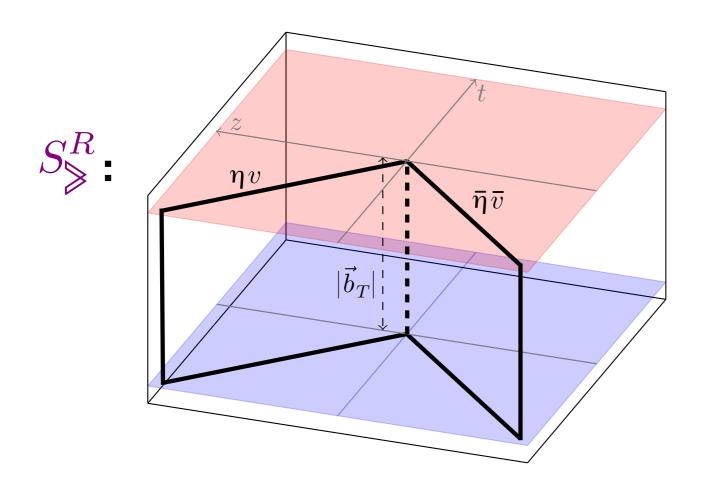
Cusp angles:

$$\cosh \gamma_{\pm} = \frac{(\eta v \pm \delta/2) \cdot (b - \delta)}{|\eta v \pm \delta/2| |b - \delta|}$$

These matter for Renormalization

General Soft Function (finite η)

$$S^{R}(b, \epsilon, \eta v, \bar{\eta}\bar{v}) = \frac{1}{d_{B}} \left\langle 0 \middle| \text{Tr} \left[S_{\geqslant}^{R}(b, \eta v, \bar{\eta}\bar{v}) \right] \middle| 0 \right\rangle$$



Path Length:

$$L_{\geqslant} = 2|\bar{\eta}\bar{v}| + 2|\eta v| + 2|b|$$

- Needed to match IR structure (Ebert, IS, Zhao '19)
- ullet Needed to cancel η linear div. in Ω
- No direct method to calculate on the Lattice.
- Indirect method exists to calculate proper quasi-Soft Fn (Ji, Liu, Liu '19)

Can parameterize Ω with 10 Lorentz Invariants:

$$P^{2}, \quad b^{2}, \quad \eta^{2}v^{2}, \quad P \cdot b, \quad \frac{P \cdot (\eta v)}{\sqrt{P^{2}|(\eta v)^{2}|}}, \quad \frac{b \cdot (\eta v)}{\sqrt{|b^{2}(\eta v)^{2}|}},$$

$$\frac{\delta^{2}}{b^{2}}, \quad \frac{b \cdot \delta}{b^{2}}, \quad \frac{P \cdot \delta}{P \cdot b}, \quad \frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}.$$

6 like Musch et.al.

+4 that fix scheme category

Choices for various TMDs:

Continuum TMDs

Lattice TMDs

	Collins / LR	JMY	Quasi	MHENS
b^{μ}	$(0,b^-,b_\perp)$	$(0,b^-,b_\perp)$	$(0, b_T^x, b_T^y, \tilde{b}^z)$	$(0, b_T^x, b_T^y, \tilde{b}^z)$
v^{μ}	$\left(-e^{2y_B}, 1, 0_\perp\right)$	$(v^-e^{2y_B'}, v^-, 0_\perp)$	(0,0,0,-1)	$(0, v^x, v^y, v^z)$
δ^{μ}	$(0,b^-,0_\perp)$	$(0,b^-,0_\perp)$	$(0,0,0,\tilde{b}^z)$	$(0,0,0_\perp)$
P^{μ}	$\frac{m_h}{\sqrt{2}}(e^{y_P}, e^{-y_P}, 0_\perp)$	$\frac{m_h}{\sqrt{2}}(e^{y_P}, e^{-y_P}, 0_\perp)$	$m_h(\cosh y_{\tilde{P}}, 0, 0, \sinh y_{\tilde{P}})$	$m_h \left(\cosh y_P, \frac{P^x}{m_h}, \frac{P^y}{m_h}, \sinh y_P\right)$

$$\Omega_{q/h}^{[\Gamma]}(b, P, \epsilon, \eta v, \delta)$$
 $S^{R}(b, \epsilon, \eta v, \bar{\eta}\bar{v})$

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} Z_{\text{UV}}^R \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
LR	$\lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
JMY	$\lim_{\frac{v^-}{v^+} \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]}\left[b, P, \mu, -\infty v, b^- n_b\right]$	$S^{R}\left[b_{\perp},\mu,-\infty v,-\infty \tilde{v}\right]$
Quasi	$\lim_{a \to 0} Z_{\text{UV}} \frac{B_{i/h}}{\sqrt{\tilde{S}^R}}$	$\Omega_{q/h}^{[\gamma^{0,z}]}(\tilde{b},\tilde{P},a,\tilde{\eta}\hat{z},\tilde{b}^z\hat{z})$	$S^{R}\left[b_{\perp}, a, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }\right]$
MHENS		$\Omega_{q/h}^{[\Gamma]}(b,P,a,\eta v,0)$	

$$\Omega_{q/h}^{[\Gamma]}(b, P, \epsilon, \eta v, \delta)$$
 $S^{R}(b, \epsilon, \eta v, \bar{\eta}\bar{v})$

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} Z_{\text{UV}}^R \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}\left[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B})\right]$
LR	$\lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
JMY	$\lim_{\frac{v^-}{v^+} \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \mu, -\infty v, b^- n_b \right]$	$S^{R}\left[b_{\perp},\mu,-\infty v,-\infty \tilde{v}\right]$
Quasi	$\lim_{a \to 0} Z_{\text{UV}} \frac{B_{i/h}}{\sqrt{\tilde{S}^R}}$	$\Omega_{q/h}^{[\gamma^{0,z}]}(\tilde{b},\tilde{P},a,\tilde{\eta}\hat{z},\tilde{b}^z\hat{z})$	$S^{R}\left[b_{\perp}, a, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }\right]$
MHENS		$\Omega_{q/h}^{[\Gamma]}(b,P,a,\eta v,0)$	

Collins:

$$f_{i/h}^C(x, \vec{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{uv}}^R(\epsilon, \mu, \zeta) \lim_{y_B \to -\infty} \frac{B_{i/h}^C(x, \vec{b}_T, \epsilon, y_P - y_B)}{\sqrt{S_C^R(b_T, \epsilon, 2y_n, 2y_B)}}$$

$$B_{q_i/h}^C(x, \vec{b}_T, \epsilon, y_P - y_B) = \int \frac{db^-}{2\pi} e^{-ib^-(xP^+)} \Omega_{q_i/h}^{[\gamma^+]} [b, P, \epsilon, -\infty n_B(y_B), b^- n_b]$$

$$n_B^{\mu}(y_B) = (-e^{2y_B}, 1, 0_{\perp})$$
 17

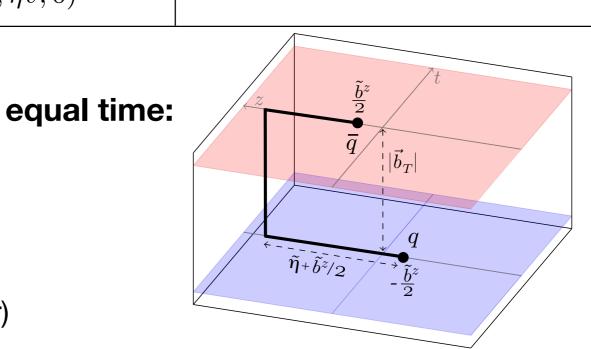
$$\Omega_{q/h}^{[\Gamma]}(b, P, \epsilon, \eta v, \delta)$$
 $S^{R}(b, \epsilon, \eta v, \bar{\eta}\bar{v})$

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} Z_{\text{UV}}^R \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
LR	$\lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
JMY	$\lim_{\frac{v^-}{v^+} \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \mu, -\infty v, b^- n_b \right]$	$S^{R}\left[b_{\perp},\mu,-\infty v,-\infty \tilde{v}\right]$
Quasi	$\lim_{a \to 0} Z_{\text{UV}} \frac{B_{i/h}}{\sqrt{\tilde{S}^R}}$	$\Omega_{q/h}^{[\gamma^{0,z}]}(ilde{b}, ilde{P},a, ilde{\eta}\hat{z}, ilde{b}^z\hat{z})$	$S^{R}\left[b_{\perp}, a, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }\right]$
MHENS		$\Omega_{q/h}^{[\Gamma]}(b,P,a,\eta v,0)$	

Quasi Beam:

 $\tilde{B}_{i/h}^{[\tilde{\Gamma}]}(x, \vec{b}_T, a, \tilde{\eta}, x\tilde{P}^z)$ $= \int \frac{d\tilde{b}^z}{2\pi} e^{i\tilde{b}^z(x\tilde{P}^z)} \Omega_{q_i/h}^{[\tilde{\Gamma}]}(\tilde{b}, \tilde{P}, a, \tilde{\eta}\hat{z}, \tilde{b}^z\hat{z})$

a = lattice spacing (UV regulator)



$$\Omega_{q/h}^{[\Gamma]}(b, P, \epsilon, \eta v, \delta)$$
 $S^{R}(b, \epsilon, \eta v, \bar{\eta}\bar{v})$

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} Z_{\text{UV}}^R \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
LR	$\lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
JMY	$\lim_{\frac{v^-}{v^+} \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \mu, -\infty v, b^- n_b \right]$	$S^{R}\left[b_{\perp},\mu,-\infty v,-\infty \tilde{v}\right]$
Quasi	$\lim_{a \to 0} Z_{\text{UV}} \frac{B_{i/h}}{\sqrt{\tilde{S}^R}}$	$\Omega_{q/h}^{[\gamma^{0,z}]}(ilde{b}, ilde{P},a, ilde{\eta}\hat{z}, ilde{b}^z\hat{z})$	$S^{R}\left[b_{\perp},a,-\tilde{\eta}\frac{n_{A}(y_{A})}{ n_{A}(y_{A}) },-\tilde{\eta}\frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }\right]$
MHENS		$\Omega_{q/h}^{[\Gamma]}(b,P,a,\eta v,0)$	

Quasi TMD:

$$\tilde{f}_{i/h}^{[\tilde{\Gamma}]}(x,\vec{b}_{T},\mu,\tilde{\zeta},x\tilde{P}^{z}) = \lim_{\substack{\tilde{\eta}\to\infty\\a\to 0}} Z'_{uv}(\mu,\tilde{\mu})Z_{uv}(a,\tilde{\mu},y_{n}-y_{B}) \frac{\tilde{B}_{i/h}^{[\tilde{\Gamma}]}(x,\vec{b}_{T},a,\tilde{\eta},x\tilde{P}^{z})}{\sqrt{S^{R}[b_{\perp},a,-\tilde{\eta}\frac{n_{A}(y_{A})}{|n_{A}(y_{A})|},-\tilde{\eta}\frac{n_{B}(y_{B})}{|n_{B}(y_{B})|}]}}$$

Finite η Collins soft function

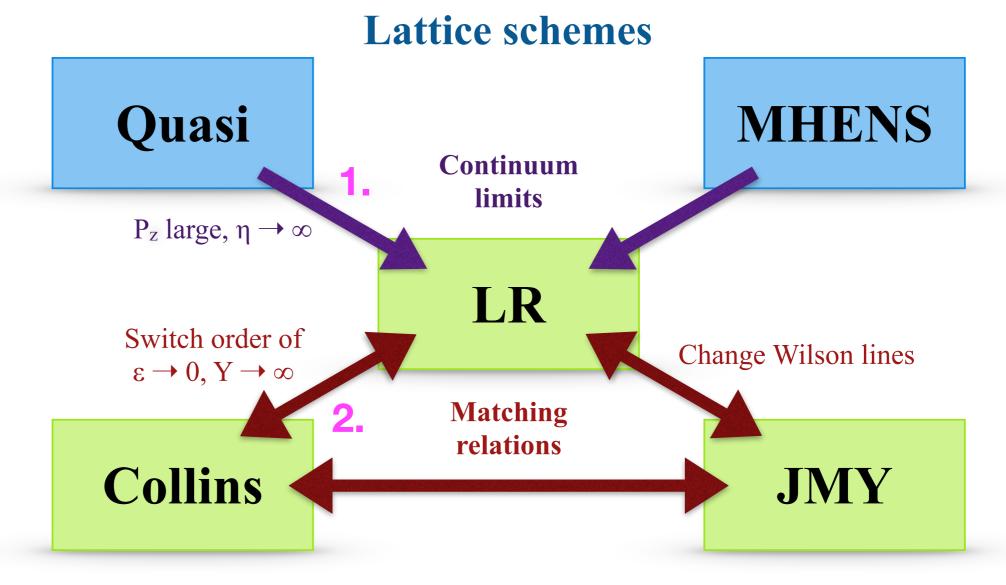
(In ratio: limit $\tilde{\eta} \to \infty$ exists)

$$\Omega_{q/h}^{[\Gamma]}(b, P, \epsilon, \eta v, \delta)$$
 $S^{R}(b, \epsilon, \eta v, \bar{\eta}\bar{v})$

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} Z_{\text{UV}}^R \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B})]$
LR	$\lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b \right]$	$S^{R}[b_{\perp}, \epsilon, -\infty n_{A}(y_{A}), -\infty n_{B}(y_{B})]$
JMY	$\lim_{\frac{v^-}{v^+} \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]} \left[b, P, \mu, -\infty v, b^- n_b \right]$	$S^{R}\left[b_{\perp},\mu,-\infty v,-\infty \tilde{v}\right]$
Quasi	$\lim_{a \to 0} Z_{\text{UV}} \frac{B_{i/h}}{\sqrt{\tilde{S}^R}}$	$\Omega_{q/h}^{[\gamma^{0,z}]}(\tilde{b},\tilde{P},a,\tilde{\eta}\hat{z},\tilde{b}^z\hat{z})$	$S^{R}\left[b_{\perp}, a, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }\right]$
MHENS		$\Omega_{q/h}^{[\Gamma]}(b, P, a, \eta v, 0)$	

LR scheme: new,

differs from Collins only by order of (UV & rapidity) limits, useful for our proof



Continuum schemes

Steps:

- 1. Quasi \rightarrow LR: related by large rapidity ($P^z \gg \Lambda_{\rm QCD}$)

 IF we properly map variables,

 take $|\eta| \rightarrow \infty$
- 2. LR → Collins: UV ren. & non-trivial Matching coefficient

	Collins / LR	Quasi	MHENS
b^2	$-b_T^2$	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2 - (\tilde{b}^z)^2$
$(\eta v)^2$	$-2\eta^2 e^{2y_B}$	$- ilde{\eta}^2$	$-\eta^2 \vec{v}^{2}$
$P \cdot b$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$	$-m_h \tilde{b}^z \sinh y_{\tilde{P}}$	$m_h \sinh y_P \tilde{b}^z + P^x b_T^x + P^y b_T^y$
$\frac{b \cdot (\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$-\frac{b^-e^{y_B}}{\sqrt{2}b_T}\mathrm{sgn}(\eta)$	$\frac{\tilde{b}^z}{\sqrt{(\tilde{b}^z)^2 + b_T^2}} \operatorname{sgn}(\eta)$	$\frac{b_T^x v^x + b_T^y v^y + \tilde{b}^z v^z}{\sqrt{v_T^2 + (v^z)^2} \sqrt{b_T^2 + (\tilde{b}^z)^2}}$
$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh(y_P - y_B)\operatorname{sgn}(\eta)$	$\sinh y_{\tilde{P}} \operatorname{sgn}(\eta)$	$\frac{P^x v^x + P^y v^y + m_h v^z \sinh y_P}{\sqrt{v_T^2 + (v^z)^2} \sqrt{m_h^2 + P_x^2 + P_y^2}}$
$\frac{\delta^2}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{b \cdot \delta}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1	0
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1	0
P^2	m_h^2	m_h^2	m_h^2

<u>ep 1</u>		${\bf Collins} \ / \ {\bf LR}$	Quasi	MHENS
	b^2	$-b_T^2$	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2 - (\tilde{b}^z)^2$
	$(\eta v)^2$	$-2\eta^2 e^{2y_B}$	$- ilde{\eta}^2$	$-\eta^2 \vec{v}^{2}$
	$P \cdot b$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$	$-m_h \tilde{b}^z \sinh y_{\tilde{P}}$	$m_h \sinh y_P \tilde{b}^z + P^x b_T^x + P^y b_T^y$
	$\frac{b \cdot (\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$-\frac{b^-e^{y_B}}{\sqrt{2}b_T}\mathrm{sgn}(\eta)$	$\frac{\tilde{b}^z}{\sqrt{(\tilde{b}^z)^2 + b_T^2}} \operatorname{sgn}(\eta)$	$\frac{b_T^x v^x + b_T^y v^y + \tilde{b}^z v^z}{\sqrt{v_T^2 + (v^z)^2} \sqrt{b_T^2 + (\tilde{b}^z)^2}}$
	$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh(y_P - y_B)\operatorname{sgn}(\eta)$	$\sinh y_{ ilde{P}} \operatorname{sgn}(\eta)$	$\frac{P^x v^x + P^y v^y + m_h v^z \sinh y_P}{\sqrt{v_T^2 + (v^z)^2} \sqrt{m_h^2 + P_x^2 + P_y^2}}$
sinh	$1(y_P - y_B) =$	$= \sinh y_{\tilde{P}}$	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
	$\Rightarrow y_{\tilde{P}} = y_P$	$-y_B$	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
	$\frac{P \cdot \delta}{P \cdot b}$	1	1	0
	$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1	0
	P^2	m_h^2	m_h^2	m_h^2

	Collins / LR	Quasi	MHENS
b^2	$-b_T^2$	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2 - (\tilde{b}^z)^2$
$(\eta v)^2$	$-2\eta^2 e^{2y_B}$	$- ilde{\eta}^2$	$-\eta^2 \vec{v}^{2}$
$P \cdot b$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$	$-m_h \tilde{b}^z \sinh y_{\tilde{P}}$	$m_h \sinh y_P \tilde{b}^z + P^x b_T^x + P^y b_T^y$

$$y_P$$
, b^- finite Boost quasi by $y_B = y_P - y_{\tilde{P}}$

$$\tilde{P}^z = m_h \sinh y_{\tilde{P}} \gg \Lambda_{\text{QCD}} \quad (y_{\tilde{P}} \to \infty, y_B \to -\infty)$$

$$-m_h \tilde{b}^z \sinh y_{\tilde{P}} = m_h \sqrt{2} e^{y_B} b^- \sinh(y_P - y_B) \xrightarrow{y_B \to -\infty} \frac{m_h}{\sqrt{2}} b^- e^{y_P}$$

	$\frac{1}{2}\sqrt{b_T^2+(b^z)^2}$
	$+ m_h v^z \sinh y_P$
	$\sqrt{m_h^2 + P_x^2 + P_y^2}$
IP	
	0

$\frac{b \cdot \delta}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$rac{P \cdot \delta}{P \cdot b}$	1	1	0
$rac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1	0
P^2	m_h^2	m_h^2	m_h^2

	Collins / LR	Quasi	MHENS
b^2	$-b_T^2$	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2 - (\tilde{b}^z)^2$
$(\eta v)^2$	$-2\eta^2 e^{2y_B}$	$- ilde{\eta}^2$	$\tilde{\eta} = \sqrt{2}e^{y_B}\eta$
$P \cdot b$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$	$-m_h \tilde{b}^z \sinh y_{\tilde{P}}$	$m_h \sinh y_P \tilde{b}^z + P^x b_T^x + P^y b_T^y$
$\frac{b \cdot (\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$-\frac{b^-e^{y_B}}{\sqrt{2}b_T}\mathrm{sgn}(\eta)$	$\frac{\tilde{b}^z}{\sqrt{(\tilde{b}^z)^2 + b_T^2}} \operatorname{sgn}(\eta)$	$\frac{\tilde{b}^z}{dz} = \frac{\sqrt{2}b^-e^{y_B}}{dz} \xrightarrow{y_B \to -\infty} 0$
$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh(y_P - y_B)\operatorname{sgn}(\eta)$		$b_T = b_T$ $\sqrt{v_T + (v^*)^2} \sqrt{m_h + r_{\bar{x}} + r_{\bar{y}}}$
$\frac{\delta^2}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{b \cdot \delta}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1	0
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	Also	$\frac{\tilde{\zeta} = \zeta}{1}$	0
P^2	m_h^2	m_h^2	m_h^2

<u>Step 1</u> Quasi → LR

$$\tilde{f}_{i/h}^{[\tilde{\Gamma}]}(x,\vec{b}_{T},\mu,\tilde{\zeta},x\tilde{P}^{z}) = \lim_{\substack{\tilde{\eta}\to\infty\\a\to 0}} Z'_{uv}(\mu,\tilde{\mu})Z_{uv}(a,\tilde{\mu},y_{n}-y_{B}) \frac{\tilde{B}_{i/h}^{[\tilde{\Gamma}]}(x,\vec{b}_{T},a,\tilde{\eta},x\tilde{P}^{z})}{\sqrt{S^{R}\left[b_{\perp},a,-\tilde{\eta}\frac{n_{A}(y_{A})}{|n_{A}(y_{A})|},-\tilde{\eta}\frac{n_{B}(y_{B})}{|n_{B}(y_{B})|}\right]}}$$

Quasi and LR have same UV renormalization

Quasi and LR have same $\tilde{\eta} \to \infty$ limit

Thus Quasi = LR after expansion

Step 2 Quasi=LR → Collins

LR and Collins differ by order of $y_R \to -\infty$ and $\epsilon \to 0$ limits

LaMET: this induces a matching coefficient

$$\begin{split} \tilde{f}_{q_i/h}(x, \vec{b}_T, \mu, \tilde{\zeta}, x \tilde{P}^z) \\ &= C_q(x \tilde{P}^z, \mu) f_{q_i/h}(x, \vec{b}_T, \mu, \tilde{\zeta}) + \mathcal{O}(\tilde{y}_P^k e^{-\tilde{y}_P}) \\ &= C_q(x \tilde{P}^z, \mu) \exp\left[\frac{1}{2} \gamma_{\zeta}^q(\mu, b_T) \ln \frac{\tilde{\zeta}}{\zeta}\right] f_{q_i/h}(x, \vec{b}_T, \mu, \zeta) + \mathcal{O}(\tilde{y}_P^k e^{-\tilde{y}_P}) \end{split}$$

• Note: if we were satisfied relating Quasi to LR then there would be no C_i

Result

Same steps work for any spin structure & for gluon TMDs

$$\tilde{f}_{i/h}(x, \vec{b}_T, \mu, \tilde{\zeta}, x\tilde{P}^z, \tilde{\eta}) = C_i(x\tilde{P}^z, \mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^i(\mu, b_T) \ln \frac{\tilde{\zeta}}{\zeta}\right] f_{i/h}^C(x, \vec{b}_T, \mu, \zeta)$$

$$\times \left\{ 1 + \mathcal{O}\left[\frac{b_T}{\tilde{\eta}}, \frac{1}{\tilde{x}P^z\tilde{\eta}}, \frac{1}{(x\tilde{P}^zb_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right] \right\}$$

- Direct diagrammatic proof exists at one-loop for all channels (see Stella's talk after lunch)
- All orders diagrammatic proof is in progress (Ji et.al.)

Note: The diagrammatic proof provides a cross-check on the LaMET matching between two Continuum Schemes (LR & Collins).

If performed for both finite and infinite $\tilde{\eta}$, then it can also confirm the equality of LR and Quasi.

Implications

Quasi → **Collins**

$$\tilde{f}_{i/h}(x, \vec{b}_T, \mu, \tilde{\zeta}, x\tilde{P}^z, \tilde{\eta}) = C_i(x\tilde{P}^z, \mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu, b_T) \ln \frac{\tilde{\zeta}}{\zeta}\right] f_{i/h}^C(x, \vec{b}_T, \mu, \zeta)$$

- Extract CS Kernel from ratios of quasi-TMDs (Ebert, IS, Zhao '18)
- No mixing of flavors, quarks and gluons, or spin structures (except perhaps by lattice-fermion discretization)
- Ratios can be calculated in x-space

Ebert, Schindler, IS, Zhao '20 Vladimirov, Schafer '20 Ji, Liu, Schaefer, Yuan '20

$$\lim_{\tilde{\eta} \to \infty} \frac{\tilde{B}_{q_i/h}^{\tilde{\Gamma}_1}(x, \vec{b}_T, \mu, \tilde{\eta}, x\tilde{P}^z)}{\tilde{B}_{q_j/h'}^{\tilde{\Gamma}_2}(x, \vec{b}_T, \mu, \tilde{\eta}, x\tilde{P}^z)} = \frac{f_{q_i/h}^{\tilde{\Gamma}_1}(x, \vec{b}_T, \mu, \zeta)}{f_{q_j/h'}^{\tilde{\Gamma}_2}(x, \vec{b}_T, \mu, \tilde{\eta}, x\tilde{P}^z)}$$

• NLL calculation $C_q(x\tilde{P}^z,\mu)^{\mathrm{NLL}} = \exp\left[-2K_{\Gamma}^q(2x\tilde{P}^z,\mu) - K_{\gamma}^q(2x\tilde{P}^z,\mu)\right]$

$$K_{\Gamma}^{q}(\mu_{0},\mu) = -\frac{\Gamma_{0}^{q}}{4\beta_{0}^{2}} \left\{ \frac{4\pi}{\alpha_{s}(\mu_{0})} \left(1 - \frac{1}{r} - \ln r \right) + \left(\frac{\Gamma_{1}^{q}}{\Gamma_{0}^{q}} - \frac{\beta_{1}}{\beta_{0}} \right) (1 - r + \ln r) + \frac{\beta_{1}}{2\beta_{0}} \ln^{2} r \right\} \qquad , \qquad r = \frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}$$

$$K_{\gamma}^{q}(\mu_{0},\mu) = -\frac{\gamma_{C0}^{q}}{2\beta_{0}} \ln r$$

	Collins / LR	Quasi	MHENS
b^2	$-b_T^2$	$-b_T^2 - (\tilde{b}^z)^2$	$-b_T^2 - (\tilde{b}^z)^2$
$(\eta v)^2$	$-2\eta^2 e^{2y_B}$	$- ilde{\eta}^2$	$-\eta^2 \vec{v}^{2}$
$P \cdot b$	$\frac{m_h}{\sqrt{2}}b^-e^{y_P}$	$-m_h \tilde{b}^z \sinh y_{\tilde{P}}$	$m_h \sinh y_P \tilde{b}^z + P^x b_T^x + P^y b_T^y$
$\frac{b \cdot (\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$-\frac{b^-e^{y_B}}{\sqrt{2}b_T}\mathrm{sgn}(\eta)$	$\frac{\tilde{b}^z}{\sqrt{(\tilde{b}^z)^2 + b_T^2}} \operatorname{sgn}(\eta)$	$\frac{b_T^x v^x + b_T^y v^y + \tilde{b}^z v^z}{\sqrt{v_T^2 + (v^z)^2} \sqrt{b_T^2 + (\tilde{b}^z)^2}}$
$\frac{P \cdot (\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh(y_P - y_B) \operatorname{sgn}(\eta)$	$\sinh y_{\tilde{P}} \operatorname{sgn}(\eta)$	$\frac{P^x v^x + P^y v^y + m_h v^z \sinh y_P}{\sqrt{v_T^2 + (v^z)^2} \sqrt{m_h^2 + P_x^2 + P_y^2}}$
$\frac{\delta^2}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{b \cdot \delta}{b^2}$	0	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1	0
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1	0
P^2	m_h^2	m_h^2	m_h^2

Ebert, Schindler, IS, Zhao (arXiv:2201.08401)

• $P \cdot b = 0$ case, our proof applies

MHENS equivalent to Quasi (same soft fn, renormalization, ...)

This case was focus of Musch, Hägler, Engelhardt, Negele, Schäfer

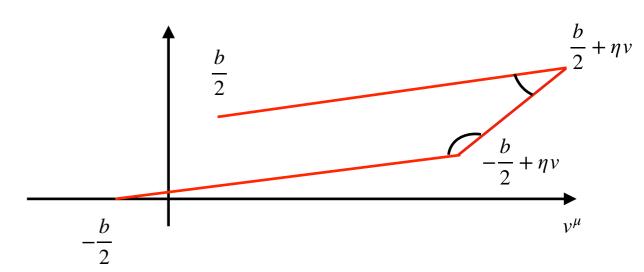
- $P \cdot b \neq 0$ case (x dependence)
 - b^z dependent renormalization

Linear:
$$\propto \left(2 |\eta v| + \sqrt{\tilde{b}_z^2 + b_T^2}\right) / a$$

Cusp: $\propto \left[3 - \frac{2\tilde{b}^z}{b_T} \tan^{-1} \frac{b_T}{\tilde{b}^z}\right] \ln(a)$

• *b*^z - dependent soft function?

Additional challenges



With proper lattice renormalization, Lorentz Inv. compensation, and construction of a suitable soft function, could connect MHENS to LR scheme (thus to Collins).

Conclusion

Quasi-TMD → Collins-TMD Our proof enables rigorous lattice studies

$$\tilde{f}_{i/h}(x, \vec{b}_T, \mu, \tilde{\zeta}, x\tilde{P}^z, \tilde{\eta}) = C_i(x\tilde{P}^z, \mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu, b_T) \ln \frac{\zeta}{\zeta}\right] f_{i/h}^C(x, \vec{b}_T, \mu, \zeta)$$

Lattice Targets:

(see Artur's talk)

- Non-perturbative CS Kernel
- Info on Spin-dependent TMDPDFs (in ratios)
- Info about 3D structure, x and b_T (in ratios)
- proton vs. pion TMD PDFs (in ratios)
- flavor dependence of TMD PDFs (in ratios)
- soft function for TMDs
- TMD PDF with x and b_T (normalization)
- Gluon TMD PDFs