
Subleading Power 
Discussion
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• Choice of Basis for subleading power operators (L.G.’s talk)

Topics

• Lattice Limits: when does Euclidean (LaMET) work (A.V’s talk)

• Factorization ok?:  Glauber interactions @ Subleading Power

• Endpoint Divergences@ Subl.Power, impede factorization?

• Resummation:  form of RGE at subleading power
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“Factorization Violation”

• Measurement doesn’t factor:  no simple factorization with universal 
functions.  (eg. Jade jet algorithm)

My Definition:     The expected form for a factorization formula 
                          is invalid. 

Reasons Factorization can fail:

• Divergent convolutions, not controlled by ones regulation procedures.  
(Requires more careful construction.) � 1

0

dx

x2
��(x, µ)

Interactions that couple other modes and  spoil factorization. •

cancel in proof for Drell-Yan
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with M
DIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with M
DY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S
�
i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S
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� 
n̄ · p1 n̄ · (P�p1)

n̄ · P

n · p2 n · (P̄�p2)

n · P̄

�

⌘ S� E(p1?, p2?),

spectator-spectator 
Glauber exchange

•

pT dependent

Collinear Wilson Line universality fails.   
examples studied by Collins, Qiu,  Aybat, Rogers, … H1 + H2 � H3 + H4 + X

back-to-back�H3,H4

•

•

•
CSS



• Factorization ok?:  Glauber interactions @ Subleading Power

easy to state precisely what is required in SCET 
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2
?
= �~q 2

?
< 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h
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In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
?

factors, so we adopt the

n n

ss

n n

ss

……
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FIG. 16. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in quark-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon, shown by two equivalent

diagrams which exploit a localized or factorized notation.
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FIG. 17. One Soft Gluon Matching for the Lipatov Operator in SCET appearing in gluon-quark scattering.

a) Full theory graphs. b) EFT Lipatov Operator graph with one soft gluon.

the one-gluon Feynman rule from the soft component of this Glauber operator, which is OAB
s in

Eq. (32), directly generates the full Lipatov vertex without use of the equations of motion.

The same matching calculation can be carried out when one or both of the collinear quark lines

in Fig. 16 are replaced by collinear gluons. The corresponding graphs for the matching calculation

with the top line replaced by an n-collinear gluon are shown in Fig. 17. The result is
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= Fig. 17b ,

where the SCET graph is given by the Feynman rule for Ogq

nsn̄. Here the graph with the 4-gluon

vertex does not contribute at this order in the power expansion (it is suppressed by O(�)) and

hence can be neglected. Once again the same universal soft operator OAB
s is responsible for the

LSCETII = L(0)
s ( s, As) +

X

n

L(0)
n (⇠n, An) + Lhard(field products)

+ L(0)
G ( s, As, ⇠ni , Ani)

+
X

j

L(j)
subl.power(field products)

only         can break factorization, even at subleading power

question is simply how it interferes with subleading power operators 

L(0)
G



• Endpoint Divergences @ Subl.Power, do they impede factorization?

SCET literature: 

• ,   are subleading power (we must turn convert a 
spectator quark from soft to collinear) & have endpoint singularities.

These processes involve sums of contributions, including terms

 with both soft & collinear components. 

 [Bauer, Pirjol, Stewart; Beneke, Feldmann; Neubert et.al. (~2001) … ]

B → πℓν B → ππ

• Rapidity regulators; and how they work at subleading power

 [Chiu, Jain, Neill, Rothstein (2012);  …,  ]

• Zero-bin subtractions avoid double counting between collinear 

and soft regions at subleading power  

 [Manohar & Stewart  hep-ph/0605001 ]

• eg. Annihilation channel for   and soft-collinear overlaps

  [Arnesen, Ligeti, Rothstein, & I.S. (2006) ]

B → ππ

Z 1

0

dx

x

�(x)

x
⇠

Z

0

dx

x
=?



Annihilation is real at lowest order
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FIG. 1: Three types of factorization contributions to annihilation amplitudes which are the same

order in η = ΛQCD/mb. a) shows Q(4)
i which has ≥ 1 hard gluon and factorizes at the scale

mb. The rapidity parameter, ζ = p−/p+, controls the MS-factorization between soft momenta

(B), n-collinear momenta (M2), and n̄-collinear momenta (M1). b) shows the time-ordered prod-

uct Q(2)
i L(1)

ξq , which involves factorization at mb and
√

mbΛ. c) shows the time-ordered product

Q(1)
i [L(1)

ξq ]3, which factorizes at the scale
√

mbΛ and does not need a hard gluon. Graphs a) and b)
are of order αs(µh), while c) is αs(µi)2.

power corrections to B → M1M2 is listed in Table I. A subset of these terms contribute

to the annihilation amplitudes. To see which, we note that terms with a Q(0,1)
i and only

one L(1)
ξq do not contribute to annihilation at either leading or next-to-leading order; the

weak operator is not high enough order in λ to contain an extra n–n̄ pair, and there are

not enough Lξq’s to produce the pair through a soft quark exchange. To rule out these

terms it was important that we are not considering isosinglet final states, which receive

emission annihilation contributions already at leading order. The term Q(2)
i [L(1)

ξq ]2 does not

contribute to annihilation because we find that all annihilation type contractions are further

power suppressed when matched onto SCETII.

Time-ordered products with either a Q(j≥2) or with three Lξq’s do contribute to annihi-

lation. Examples of these two types are shown in Figs. IIb and IIc. Compared to Q(4)
i , only

the time-ordered product Q(2)L(1)
ξq contributes at lowest order in αs. For terms with three

Lξq’s, all graphs have at least two contracted hard-collinear gluons and so are O(α2
s(µi)).

Graphs with a Q(2,3) start with one αs(µh), and will have an additional αs(µi) from a hard

collinear gluon, unless it remains uncontracted in matching onto SCETII. The uncontracted

gluon costs an additional λ in the matching onto SCETII, so only the time-ordered product
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But they do not introduce a phase.
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A soft rescattering annihilation 
contribution DOES have a strong
phase, but is one higher order in �s

in �s expansion

Might be large if intermediate scale �s
expansion did not converge here

hep-ph/0611356

However:

� �+
B(k) �M1(y) �3M2(x1, x2)

Arnesen et al.

Slide from my talk at CKM 2006 in San Diego



Solution to endpoint divergence problem has been worked out 

  explicitly in SCET for several (simpler) examples

see talk by Julian Strohm at SCET 2022 for a review

Motivation

Endpoint Divergences spoil Factorization Theorems at Next-to-

Leading Power (NLP) preventing even the Resummation of Classic

2 ! 1 and 1 ! 2 Processes like Thrust, DIS and DY.

Only two Factorization Theorems for processes with endpoint divergences

have been established so far, for B ! �cJK and h ! ��.

[Beneke, Vernazza; 0810.3575]

[Liu, Mecaj, Neubert, Wang; 1912.08818, 2009.04456, 2009.06779]

We will present a NLP Factorization Theorem for Thrust in the

O↵-Diagonal Channel, which is free of endpoint divergences.

For o↵-diagonal channels, the leading logarithms already exhibit

non-trivial structure in contrast to diagonal channels.

[Moult, Stewart, Vita, Zhu; 1804.04665][Beneke et al.; 1809.10631]
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NLP Endpoint Factorization and

Resummation of O↵-Diagonal ”Gluon” Thrust

Julian Strohm

Technische Universität München

SCET 2022

21. April 2022

Joint Work with Martin Beneke, Mathias Garny, Sebastian Jaskiewicz,

Robert Szafron, Leonardo Vernazza, and Jian Wang.
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we referred to this as the “Soft Quark Sudakov”

arXiv:2207.14199

Simplest example to look at: 

Julian Strohm SCET 2022



• Resummation:  form of RGE at subleading power

Known for many operators in SCET

 [Beneke et.al. (2004); Neubert et.al. (2004), …,

  Beneke et.al. (2017, 2018); Vladimirov, Moos, Scimemi (2021) ]

In general at subleasing power we get a combination of

   cusp anomalous dimension terms (dble. logs), 

   convolutions from the hard region (DGLAP), and 

   convolutions from the soft region

Harder to solve in general

Factorization theorems are sums of factorized terms, and RGEs 

  in general are not multiplicative, but can mix into new operators

  eg. thrust, threshold resummation     

  [Moult, I.S., Vita, Zhu (arXiv:1804.04665), Beneke et.al. (arXiv:2205.04479), … ] 

δ(k − . . . ) → θ(k − . . . )


