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e Now LIGO + 11 EM observations,
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e No way to avoid choosing a prior
distribution
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Quilting an EOS for supernovae and mergers
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EOS as a Probability Distribution

Probabillity distribution for EOSs

Probability density peaks at lower
values because of influence of NS
radius observations

Nine sample EOS tables available
now!

Current work on propagating
neutrino opacities so that they are
consistent with the underlying EOS

Currently working on core-collapse
simulations with these new EOSs
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Open source code

e | strongly believe that our community continually does itself a disservice by not making our
code open source (there is a growing list of open-source progress ... particularly on the
astronomy side)

e O2scl/Ozsclpy, a python interface

o Skyrme interaction, TOV, tidal deformability

o SFHo example, compute, plot and analyze the SFHo EOS

o DSH example, plot a new DSH EOS table

o Coming soon: openMP/MPI parallel MCMC with an adaptive emulator
e UTK EOS

o Jable format

o Other helpful documentation, e.g. on chemical potentials



Thermal Emission from Neutron Stars

o After ~ 10 years, the neutron star is

isothermal = one temperature = T

dT
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¢ Assume only neutrons and protons

e Age taken from, e.g., association with a
supernova remnant
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e Connected to composition of dense
matter, neutron superfluidity, and proton
superconductivity




Slides Omitted

e | omitted a couple slides describing unpublished work. Please ask me
about them as | am happy to discuss them further.



Nuclear Physics of Multi-Messenger Mergers

e Understanding neutron star mergers will require a coordinated effort between many

communities
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Nuclear

AE‘h‘ﬂthSics \
Multi-Messenger
Physics of Dense

Astrophysics of
Parameter - Neutron Stars
Measurement
Matter End-to-end
observables
Meutron star
Chiral Tides
Effective Field il <
MNeutrino Meutron star

v Theory
Opacities mergers — ———— ¢ Post-merger

Remnants

High Densities
and QCD

Finite
Temperatures

Experimental
MNuclear
Observables

Modeling the

Nucleosynthesis
— Nuclear Guunterparts
Heating Disk and jet
simulations
N3AS |
Collaboration I{llnnm:ae

e Nuclear structure theory, low-energy nuclear theory, high-energy nuclear theory, nuclear
experiment, astrophysics theory, astronomical observations, gravitational wave observations




Questions

e How large are density fluctuations in mergers? Do we need strange crusts?

e What are all of the neutron star mass functions?

e Do we need muons out of beta equilibrium?

e |s pion condensation relevant for mergers even though it might not be relevant for cold NSs?

e How can we estimate the systematic uncertainties associated with inferring the properties of
dense matter from the post-merger signal?

e How do we share our generative likelihoods for multimessenger inference?

e \What open-source codes do we need to make progress”?



Summary

Leveraging neutron star observations to learn about QCD and the nucleon-nucleon
interaction

New multi-messenger inference and new EOS tables
NS cooling data will provide the strongest constraint on the radius, modulo systematics

Generative models are important to properly address prior distributions



