PAC Jeopardy Issues

Not a summary: Subset of talks



SoLID and Antiquarks

e Question: what will error be in 10 years?
* PDF corrections can be applied after the data is published.
* Involves extrapolation

* Light quarks:
* Present data: x<0.25
* SeaQuest: x<0.45

* Ratio of light sea to strange sea?
* |f needed, do a low y experiment
* Cancels in 3Ca experiment



Low Mass Dark Light
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O
2
of
I~
T T T

-DIS
o Maro= 15 GeV

—0.0010 < £8' < —0.0003 -

APV(Cs)

0.234f
t

0.232[ APVRa")

0.230f

"Anticipated sensitivities"

|€d'| > 0.0008 (light color)—-

X!

Moller
P2

ePol upgraded i _
SuperKEKB 7

i

There is probably discovery space for SoLID, (caveat: in the range M>10-30 Geyv, effects on other

gbservabes should be checked.
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High Mass Dark Light

Constraints of new W mass versus PV
Thomas and Wang, arXiv: 2205.01911

S w Issues
oast 7T D1 1. No study of other observables

2. Assumes new W mass undoes EWPO limits
3. Deserves a mention
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Using Cs value from Dzuba et al., Phys Rev Lett 109 (2012) 203003 .
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Status of Anomalies in Standard Model Tests

Clues for BSM Physics??

1. W mass from CDF
g-2
3. Lack of u-e universality in B decays
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“Although these extensions could reconcile
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Should we use the ideas behind the Standard Model
to exclude BMS models?




SMEFT analysis dominates BSM motivation
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Mention Leptophobic Z’

* Limited parameter space
e Cannot be ruled out.



Internal Radiative Corrections:

Radiator function

Observed cross section:

Convolution of cross section ® radiator functions

Ak o
do°™(P, q) = /2k0 ZRn(II K)d6'O (P, g — k)

Shifted kinematics

observed momentum transfer Q? = —(/ — I)?,

- shifted momentum transfer Q> = —(/ — I' — k)?
observed Bjorken x = Q°/2P - (I —I')

=» shifted Bjorken X = Q%/2P - (I — I' — k)

Use Q° = xyS = Q° = XjS

do®®(x, Q%) = /dx/ dyZanxxyyd“(o)(,Q)

d“(o) theory prediction for cross section without radiation
(sometimes called “true” — a misnomer)

H. Spiesberger (Mainz) 29. 6. 2022 10/30



Properties of leptonic radiation

Cont.

J F

with partial fractioning, write: R,(/, /', k) = PR & + ...

@ initial state radiation, k - / small for < (e, y) — 0

o final state radiation, k - I’ small for <t(eqy,y) — O

e Compton peak, @2 small for pr(eouw) ~ pr(7)

ISR, FSR: narrow peaks, width ~ /m;,/E;: collinear or mass singularities
2
upon angular integration: large logarithm o @ log % ~ 10 %
7
AE

Note: additional large logarithms from experimental cuts o log =
max

For high precision: have to keep non-logarithmic terms

H. Spiesberger (Mainz) 29. 6. 2022 11/30



Example of Rn

Peaking approximation looks OK for
evaluation of errors due to cross sections
and asymmetries

Q2_vertex vs. W_vertex for 6 GeV that
includes only internal radiations
(Djangoh simulation)
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Plan for Radiative Corrections

* External
e Cross section and A errors dominate: experimental

* Internal
e Cross section and A errors dominate: experimental

* Loops
* Integrals go to low Q? corrections: need work; probably OK
» Effects of diagrams with different quarks: difficult, but effect is probably small

* Higher order

* Can be done by theorists with some effort



Many corrections
Theorists are aware of them

Theory Errors (Hobbs) ,
Do not expect them to dominate

achieving highest (PDF) impact of PVDIS: mastery of small Q Do not belong in eXperimentaI budget

TJH and Melnitchouk, PRD77, 114023 (2008)

iii

— p-Z interference accesses unique flavor currents in nucleon
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Motivation for d/u by Accardi (also Thia)
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Consensus is that PVDIS with protons is even more important



