Constraints on the dense nuclear matter EOS from Au+Au collisions in the BES FXT range

August 21, 2023 - August 25, 2023

Agnieszka Sorensen

University of Washington

INT WORKSHOP INT-20R-1C

Chirality and Criticality: Novel Phenomena in Heavy-Ion Collisions

The EOS = key to understanding fundamental properties of QCD matter

J. Xu, A. Carbone, Z. Zhang, C.-M. Ko, Phys. Rev. C 100, 2, 024618 (2019) arXiv:1904.09669

The EOS is a common effort within the nuclear physics community

A. Sorensen *et al.*, arXiv:2301.13253

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions *

Agnieszka Sorensen¹, Kshitij Agarwal², Kyle W. Brown^{3,4}, Zbigniew Chajecki⁵, Paweł Danielewicz^{3,6}, Christian Drischler⁷, Stefano Gandolfi⁸, Jeremy W. Holt^{9,10}, Matthias Kaminski¹¹, Che-Ming Ko^{9,10}, Rohit Kumar³, Bao-An Li¹², William G. Lynch^{3,6}, Alan B. McIntosh¹⁰, William G. Newton¹², Scott Pratt^{3,6}, Oleh Savchuk^{3,13}, Maria Stefaniak¹⁴, Ingo Tews⁸, ManYee Betty Tsang^{3,6}, Ramona Vogt^{15,16}, Hermann Wolter¹⁷, Hanna Zbroszczyk¹⁸

Endorsing authors:

Navid Abbasi¹⁹, Jörg Aichelin^{20,21}, Anton Andronic²², Steffen A. Bass²³, Francesco Becattini^{24,25}, David Blaschke^{26,27,28}, Marcus Bleicher^{29,30}, Christoph Blume³¹, Elena Bratkovskaya^{14,29,30}, B. Alex Brown^{3,6}, David A. Brown³², Alberto Camaiani³³, Giovanni Casini²⁵, Katerina Chatziioannou^{34,35}, Abdelouahad Chbihi³⁶, Maria Colonna³⁷, Mircea Dan Cozma³⁸, Veronica Dexheimer³⁹, Xin Dong⁴⁰, Travis Dore⁴¹, Lipei Du⁴², José A. Dueñas⁴³, Hannah Elfner^{14,21,29,30}, Wojciech Florkowski⁴⁴, Yuki Fujimoto¹, Richard J. Furnstahl⁴⁵, Alexandra Gade^{3,6}, Tetyana Galatyuk^{14,46}, Charles Gale⁴², Frank Geurts⁴⁷, Sašo Grozdanov^{48,49}, Kris Hagel¹⁰, Steven P. Harris¹, Wick Haxton^{40,50}, Ulrich Heinz⁴⁵, Michal P. Heller⁵¹, Or Hen⁵², Heiko Hergert^{3,6}, Norbert Herrmann⁵³, Huan Zhong Huang⁵⁴, Xu-Guang Huang^{55,56,57}, Natsumi Ikeno^{10,58}, Gabriele Inghirami¹⁴, Jakub Jankowski²⁶, Jiangyong Jia^{59,60}, José C. Jiménez⁶¹, Joseph Kapusta⁶², Behruz Kardan³¹, Iurii Karpenko⁶³, Declan Keane³⁹, Dmitri Kharzeev^{60,64}, Andrej Kugler⁶⁵, Arnaud Le Fèvre¹⁴, Dean Lee^{3,6}, Hong Liu⁶⁶, Michael A. Lisa⁴⁵, William J. Llope⁶⁷, Ivano Lombardo⁶⁸, Manuel Lorenz³¹, Tommaso Marchi⁶⁹ Larry McLerran¹, Ulrich Mosel⁷⁰, Anton Motornenko²¹, Berndt Müller²³, Paolo Napolitani⁷¹ Joseph B. Natowitz¹⁰, Witold Nazarewicz^{3,6}, Jorge Noronha⁷², Jacquelyn Noronha-Hostler⁷², Grażyna Odyniec⁴⁰, Panagiota Papakonstantinou⁷³, Zuzana Paulínyová⁷⁴, Jorge Piekarewicz⁷⁵, Robert D. Pisarski⁶⁰, Christopher Plumberg⁷⁶, Madappa Prakash⁷, Jørgen Randrup⁴⁰ Claudia Ratti⁷⁷, Peter Rau¹, Sanjay Reddy¹, Hans-Rudolf Schmidt^{2,14}, Paolo Russotto³⁷, Radoslaw Ryblewski⁷⁸, Andreas Schäfer⁷⁹, Björn Schenke⁶⁰, Srimoyee Sen⁸⁰, Peter Senger⁸¹, Richard Seto⁸², Chun Shen^{67,83}, Bradley Sherrill^{3,6}, Mayank Singh⁶², Vladimir Skokov^{83,84}, Michał Spaliński^{85,86}, Jan Steinheimer²¹, Mikhail Stephanov⁸⁷, Joachim Stroth^{14,31}, Christian Sturm¹⁴, Kai-Jia Sun⁸⁸, Aihong Tang⁶⁰, Giorgio Torrieri^{89,90}, Wolfgang Trautmann¹⁴, Giuseppe Verde⁹¹, Volodymyr Vovchenko⁷⁷, Ryoichi Wada¹⁰, Fuqiang Wang⁹², Gang Wang⁵⁴, Klaus Werner²⁰, Nu Xu⁴⁰, Zhangbu Xu⁶⁰, Ho-Ung Yee⁸⁷, Sherry Yennello^{9,10,93}, Yi Yin⁹⁴

Agnieszka Sorensen

Hot QCD

Cold QCD

Nucl. reactions + astro

Fundamental sym.

The QCD phase diagram: great interest in behavior at high n_R

The QCD phase diagram: great interest in behavior at high n_B

The QCD phase diagram: great interest in behavior at high n_R

Relativistic viscous hydrodynamic simulations with LQCD EOS: amazing agreement with data from high-energy collisions

C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. 110 (2013) 1, 012302, arXiv:1209.6330

fast equilibration = hydro applies

Hadronic transport simulations:

systems out of equilibrium = microscopic approach needed

J. Mohs, S. Ryu, H. Elfner, J. Phys. G 47 (2020) 6, 065101 arXiv:1909.05586

~155 MeV 6 MESONS AND BARYONS NP

Transport model simulations of heavy-ion collisions

- Boltzmann-Uehling-Uhlenbeck (BUU)-type codes:
 - solve coupled Boltzmann equations

with the method of test particles: the distribution is *over* sampled with a *large* number of discrete test-particles, which are evolved according to the single-particle EOMs (test particles probe the evolution in the phase space)

- collision term based on measured cross-sections for scatterings and decays
- Quantum Molecular Dynamics (QMD)-type codes - solve molecular dynamics problem (evolve nucleons according to their EOMs)

 - collisions based on measured cross-sections for scatterings and decays

Agnieszka Sorensen

$$\forall i: \qquad \frac{\partial f_i}{\partial t} + \frac{d\mathbf{x}_i}{dt} \frac{\partial f_i}{\partial \mathbf{x}_i} + \frac{d\mathbf{p}_i}{dt} \frac{\partial f_i}{\partial \mathbf{p}_i} = I_{\text{coll}}^{(i)}$$

- forces from gradients of single-particle energies (mean-fields: needs a robust density calculation!)

- forces: in principle distance-dependent particle-particle interactions, in practice: often mean-fields!

Transport model simulations of heavy-ion collisions

- Boltzmann-Uehling-Uhlenbeck (BUU)-type codes:
 - solve coupled Boltzmann equations

with the meth test-particles, (test particles

- forces from gi
- collision term
- Quantum Mole - solve molecul

Transport *automatically* includes:

- unstable regions of the phase diagram
- effects due to the interplay between participants and spectators
- baryon, strangeness, charge transport/diffusion

- collisions based on measured cross-sections for scatterings and decays

Agnieszka Sorensen

- forces: in principle distance-dependent particle-particle interactions, in practice: often mean-fields!

Intermediate-energy heavy-ion collisions probe wide ranges of density and temperature

Agnieszka Sorensen

• Hadronic transport is necessary to interpret the results: BES FXT, HADES, CBM, FRIB, FRIB400

EOS from flow observables in heavy-ion collisions

 $v_n \equiv \left\langle \cos(n\phi) \right\rangle$

Standard way of modeling the EOS: Skyrme potential

Agnieszka Sorensen

The most common form of the EOS is the "Skyrme potential": $U(n_B) = A\left(\frac{n_B}{n_0}\right) + B\left(\frac{n_B}{n_0}\right)$

Science 298, 1592–1596 (2002), arXiv:nucl-th/0208016

Standard way of modeling the EOS: Skyrme potential

P. Danielewicz, R. Lacey, W. G. Lynch,

Standard way of modeling the EOS: Skyrme potential

Relativistic vector density functional (VDF) model

A. Sorensen, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635 inspired by relativistic Landau Fermi-liquid theory: G. Baym, S. A. Chin, Nucl. Phys. A 262, 527 (1976)

1) Postulate the energy density of the system:

$$\mathscr{E}_{N} = \mathscr{E}_{N}[f_{\mathbf{p}}] = g \int \frac{d^{3}p}{(2\pi)^{3}} \epsilon_{\mathrm{kin}} f_{\mathbf{p}} + \sum_{i=1}^{N} C_{i} (j_{\mu} j^{\mu})^{\frac{b_{i}}{2}-1} \left[j^{0} j^{0} - g^{00} \left(\frac{b_{i}-1}{b_{i}} \right) j_{\lambda} j^{\lambda} \right]$$
$$\mathscr{E}_{N} \Big|_{\substack{\mathrm{rest} \\ \mathrm{frame}}} = g \int \frac{d^{3}p}{(2\pi)^{3}} \sqrt{\overrightarrow{p}^{2} + m^{2}} f_{\mathbf{p}} + \sum_{i=1}^{N} \frac{C_{i}}{b_{i}} n_{B}^{b_{i}} \qquad \text{mean-field interacti} \\ \text{parameterized by } C_{i} \text{ and } C_{i}$$

2) Quasiparticle energy:

$$\varepsilon_{\mathbf{p}} \equiv \frac{\delta \mathscr{E}[f_{\mathbf{p}}]}{\delta f_{\mathbf{p}}} = \epsilon_{\mathrm{kin}} +$$

3) Get EOMs:

$$\frac{dx^{i}}{dt} \equiv -\frac{\partial \varepsilon_{\mathbf{p}}}{\partial p_{i}} ,$$

Agnieszka Sorensen

$$j_{\mu}j^{\mu} = n_B^2$$

$$\epsilon_{\rm kin} = \sqrt{\left(\overrightarrow{p} - \sum_{i=1}^N C_i(j_{\mu}j^{\mu})^{\frac{b_i}{2} - 1} \overrightarrow{j}\right)}$$

← Lorentz covariant

lons $d b_i$

$$\sum_{i=1}^{N} C_i (j_{\mu} j^{\mu})^{\frac{b_i}{2} - 1} j^0$$

input to transport code; use in Boltzmann eq. to obtain $T^{\mu\nu}$

$$=g\int \frac{d^3p}{(2\pi)^3} T \ln \left[1 + e^{-\beta(\varepsilon_{\mathbf{p}} - \mu_B)}\right] + \sum_{i=1}^N C_i \frac{b_i - 1}{b_i} n_B^{b_i}$$

VDF model: two 1st order phase transitions

- **A. Sorensen**, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635 Systems with two 1st order phase transitions: nuclear and "quark/hadron", or "QGP-like"
 - degrees of freedom: nucleons
 - "QGP-like" PT: "more dense" matter coexists with "less dense" matter
 - minimal model: 4 interactions terms = 8 parameters to fix:

$$P = g \int \frac{d^3 p}{(2\pi)^3} T \ln \left[1 + e^{-\beta(\varepsilon_p - \mu_B)} \right] + \sum_{i=1}^{N=4} C_i \frac{b_i}{k}$$

 C_i and b_i are fitted to reproduce: $n_0 = 0.160 \text{ fm}^{-3}, E_{\rm B} = -16.3 \text{ MeV}$ $T_{\rm c}^{\rm (N)} = 18 \text{ MeV}, n_{\rm c}^{\rm (N)} = 0.375 n_{\rm O}$ $T_{\rm c}^{\rm (Q)} = ?, n_{\rm c}^{\rm (Q)} = ?$ $\eta_L = ?, \eta_R = ?$

Agnieszka Sorensen

VDF model: two 1st order phase transitions

A. Sorensen, V. Koch, Phys. Rev. C 104 (2021) 3, 034904, arXiv:2011.06635

11

Results from UrQMD with (non-relativistic) VDF

J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch, M. Bleicher, Eur. Phys. J. C 82, 10, 911 (2022) arXiv:2208.12091

Better suited for detailed studies: piecewise parametrization of c_{c}^{2}

Piecewise parametrization of $c_s^2(n_R)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \cdots \\ c_m^2, & n_m < n_B \end{cases}$$

Single-particle potential $U(n_B) = \alpha(n_B)n_B$:

$$U(n_B) = \begin{cases} U_{\rm Sk}(n_B) ,\\ \left[U_{\rm Sk}(n_1) + \mu^*(\rho_1) \right] \left(\frac{\rho}{n_1}\right)^{c_1^2} - \mu^*(n_B) \\\\ \left[U_{\rm Sk}(n_1) + \mu^*(n_1) \right] \left(\frac{n_B}{n_k}\right)^{c_k^2} \prod_{i=2}^k \left(\frac{n_i}{n_i}\right)^{c_k^2} \end{cases}$$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996

Agnieszka Sorensen

$$n_1 < n_B < n_2$$

 $\frac{n_i}{n_{i-1}} \Big)^{c_{i-1}^2} - \mu^*(n_B) , \qquad n_k < n_B < n_{k+1}$

Gradients of $U(n_R)$ enter the EOMs!

Better suited for detailed studies: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_R)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

Single-particle potential $U(n_B) = \alpha(n_B)n_B$:

$$U(n_B) = \begin{cases} U_{\rm Sk}(n_B) ,\\ \left[U_{\rm Sk}(n_1) + \mu^*(\rho_1) \right] \left(\frac{\rho}{n_1}\right)^{c_1^2} - \mu^*(n_B) \\\\ \left[U_{\rm Sk}(n_1) + \mu^*(n_1) \right] \left(\frac{n_B}{n_k}\right)^{c_k^2} \prod_{i=2}^k \left(\frac{n_i}{n_i}\right)^{c_k^2} \end{cases}$$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996

Agnieszka Sorensen

Gradients of $U(n_R)$ enter the EOMs!

Hadronic transport with c_s^2 -parametrized mean-fields

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Generalized VDF (n_R -dependent interaction coefficients): mean-field potential piecewise parametrized by (constant) values of c_s^2 for $n_i < n_B < n_i$

Agnieszka Sorensen

Hadronic transport with c_s^2 -parametrized mean-fields

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Generalized VDF (n_B -dependent interaction coefficients): mean-field potential piecewise parametrized by (constant) values of c_s^2 for $n_i < n_B < n_i$

Agnieszka Sorensen

STAR and E895 data cannot be simultaneously described

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996

STAR and E895 data cannot be simultaneously described

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996

The maximum a posteriori probability (MAP) parameters are $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$

Agnieszka Sorensen

Bayesian analysis of STAR flow data with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran,

The maximum a posteriori probability (MAP) parameters are $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$ D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran,

Bayesian analysis of STAR flow data with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

EOS of symmetric nuclear matter: selected results

Momentum-dependent mean-fields are a necessary component

Measured in scattering experiments:

Momentum-dependent mean-fields are a necessary component

Work in progress: Flexible momentum-dependent mean-fields

Measured in scattering experiments:

VSDF model:
$$\mathscr{C}_{N,M} = g \int \frac{d^3 p}{(2\pi)^3} c_{kin}^* f_{\mathbf{p}} + \sum_{i=1}^N A_k^0 j_0 - g^{00} \sum_{i=1}^N \left(\frac{b_i - 1}{b_i}\right) A_k^\lambda j_\lambda + g^{00} \sum_{m=1}^M G_m \left(\frac{d_m - 1}{d_m}\right) n_s^{d_m}$$

A. Sorensen, "Density Functional Equation of State and Its Application to the Phenomenology of Heavy-Ion Collisions," arXiv:2109.08105, Sorensen:2021zxd

Agnieszka Sorensen

Solution: vector+scalar density functional model (VSDF) Challenge: scalar fields are costly to compute

$${}^{0}\sum_{i=1}^{N} \left(\frac{b_{i}-1}{b_{i}}\right) A_{k}^{\lambda} j_{\lambda}$$

$$A_{k}^{\mu} = C_{k} (j_{\lambda} j^{\lambda})^{\frac{b_{k}}{2}-1} j^{\mu} , \qquad j_{\mu} j^{\mu} = n_{B}^{2} , \qquad j^{\mu} = g \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}-A}{\epsilon_{kin}^{*}}$$

$$m^* = m_0 - \sum_{m=1}^{M} G_m n_s^{d_m - 1} \qquad n_s = g \int \frac{d^3 p}{(2\pi)^3} \frac{m^*}{\epsilon_{\rm kin}^*}$$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

Agnieszka Sorensen

Phys. Rev. C 105 3, 034906 (2022), arXiv:2012.11454

Realistic description of light cluster production needed:

- coalescence: doesn't take into account the dynamic role of light clusters throughout the evolution
- nucleon/pion catalysis: consider as separate degrees of freedom (pBUU, SMASH), produced through N or π
- the Holy Grail: dynamical production through potentials

collisions

STAR, Phys. Lett. B **827**, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

Agnieszka Sorensen

Strange baryons are not well described - the results may depend on:

- nucleon-hyperon and fryperon-hyperon interactions
- in-medium modifications of interactions

Models of interactions exists and could be tested; interactions could be based on those obtained within first-principle calculations (e.g., HALQCD collaboration)

HAL QCD, Nucl. Phys. A 998 121737 (2020), arXiv:1912.08630

STAR, Phys. Lett. B **827**, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

STAR, Phys. Lett. B **827**, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

Better modeling is necessary

Ideas to explore:

- threshold effects,
- light cluster production,
- neutron-proton effective mass splitting, ...

Strong efforts by the Transport Model Evaluation Project (TMEP) collaboration to identify code-dependencies and best model practices!

Precision era of heavy-ion collisions

Very high-quality, high-statistics data are imminent from BES FXT, HADES, CBM, FRIB, FRIB400: perhaps observables are now available which were previously inaccessible?

Summary

What's different, new, exciting about *now*?

- New analyses, new understanding: e.g., triangular flow, quark number scaling, cumulants
- New detectors, new data: unprecedented measurements, from ultra-precise triple-differential flow observables to hyperonhyperon interactions
- New computing capabilities: large-scale simulations possible with state-of-the-art, benchmarked hadronic transport codes
- New approach to constraining the EOS: Bayesian analyses using flexible parametrizations of the EOS

Agnieszka Sorensen

Thank you for your attention

