# Transport simulations for extracting the properties of dense nuclear matter

## Agnieszka Sorensen

Institute for Nuclear Theory, University of Washington



July 30, 2024 INT PROGRAM INT-24-2B "Heavy Ion Physics in the EIC Era"



# Transport simulations for extracting the properties of dense nuclear matter

## Outline:

- 1. Introduction
- 2. Results: historic & recent
- 3. Future opportunities



## Dense nuclear matter properties = common interest in nuclear physics



A. Sorensen et al., Prog. Part. Nucl. Phys. 134, 104080 (2024) arXiv:2301.13253

Agnieszka Sorensen

Properties of dense nuclear matter:

- necessary input to studies of neutron stars & their mergers, supernovae
- reflected in the structure of heavy nuclei
- necessary input to simulations of heavy-ion collisions
- test beds for theories & models
- conveniently "summarized" in the equation of state (EOS)















![](_page_5_Picture_6.jpeg)

## Microscopic transport model simulations of heavy-ion collisions

- 2 types of models:
  - Boltzmann-Uehling-Uhlenbeck (BUU): evolve the distribution function of the system
  - Quantum Molecular Dynamics (QMD): evolve wave packets associated with particles

![](_page_6_Figure_4.jpeg)

Chapter on "Microscopic transport description of dense nuclear matter dynamics" in a recent review: L. Du, A. Sorensen, M. Stephanov, "The QCD phase diagram and Beam Energy Scan physics: a theory overview", Quark-Gluon Plasma 6, Int. J. Mod. Phys. E (available online), arXiv: 2402.10183

## Agnieszka Sorensen

- 2-body interactions ("pure" QMD) - gradients of single-particle energies = mean-field (BUU, QMD)

- based on measured cross sections for scatterings and decays - cross sections may be modified in the medium

• take nucleons from the initial state (nuclei about to collide) • evolve them in time

• compute observables and compare with experiment

![](_page_6_Picture_14.jpeg)

![](_page_6_Picture_15.jpeg)

![](_page_6_Picture_16.jpeg)

![](_page_6_Picture_17.jpeg)

## Sketch of a heavy-ion collision evolution and development of flow

![](_page_7_Figure_1.jpeg)

![](_page_7_Picture_3.jpeg)

## Sketch of a heavy-ion collision evolution and development of flow

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_3.jpeg)

# Transport simulations for extracting the properties of dense nuclear matter

## Outline:

- 1. Introduction
- 2. Results: historic & recent
- 3. Future opportunities

![](_page_9_Picture_5.jpeg)

## Constraints on the EOS come from comparisons to transport models

![](_page_10_Figure_1.jpeg)

Agnieszka Sorensen

197Au+197Au @ 0.15-10 GeV/u  $\sqrt{s_{\rm NN}} = 1.95 - 4.72 \, {\rm GeV}$ 

observables: proton flow (Plastic Ball, EOS, E877, E895) model used: **pBUU** w/ nucleons,  $\Delta$ , N\*(1440), pions; EOS parametrized by K<sub>0</sub>; momentum dependence P. Danielewicz, R. Lacey, W. G. Lynch, Science **298**,1592–1596 (2002)

![](_page_10_Picture_6.jpeg)

## Standard way of modeling the EOS: Skyrme potential

![](_page_11_Figure_2.jpeg)

Agnieszka Sorensen

The most common form of the EOS is the "Skyrme potential":  $U(n_B) = A\left(\frac{n_B}{n_0}\right) + B\left(\frac{n_B}{n_0}\right)^{\tau}$ 

P. Danielewicz, R. Lacey, W. G. Lynch, Science 298, 1592–1596 (2002), arXiv:nucl-th/0208016

![](_page_11_Figure_6.jpeg)

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

## Standard way of modeling the EOS: Skyrme potential

P. Danielewicz, R. Lacey, W. G. Lynch,

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_4.jpeg)

## VDF model: relativistic potentials with two 1st order phase transitions

**A. Sorensen**, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

## Results from UrQMD with (non-relativistic) VDF

J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch, M. Bleicher, Eur. Phys. J. C 82, 10, 911 (2022) arXiv:2208.12091

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_4.jpeg)

![](_page_14_Picture_5.jpeg)

## Better suited for Bayesian analyses: piecewise parametrization of $c_s^2$

Piecewise parametrization of  $c_s^2(n_B)$ :

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

1-to-1 relation to the single-particle potential  $U(n_R)$ :

 $U(n_B) = \begin{cases} U_{\text{Sk}}(n_B) & n_B < n_1 = 2n_0 \\ U_1(n_B) & n_1 < n_B < n_2 \\ \cdots & U_k(n_B) & n_k < n_B < n_{k+1} \end{cases}$ 

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

Agnieszka Sorensen

![](_page_15_Figure_7.jpeg)

![](_page_15_Picture_8.jpeg)

## Sensitivity of HIC observables to the EOS at different beam energies

Mean-field piecewise-parametrized by values of  $c_s^2$  for  $n_i < n_B < n_j$ :

![](_page_16_Figure_2.jpeg)

Agnieszka Sorensen

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996

![](_page_16_Figure_5.jpeg)

## Sensitivity of HIC observables to the EOS at different beam energies

Mean-field piecewise-parametrized by values of  $c_s^2$  for  $n_i < n_B < n_i$ :

![](_page_17_Figure_2.jpeg)

Agnieszka Sorensen

![](_page_17_Figure_4.jpeg)

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

![](_page_17_Figure_6.jpeg)

![](_page_18_Figure_1.jpeg)

The maximum a posteriori probability (MAP) parameters are  $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$ 

Agnieszka Sorensen

Bayesian analysis of BES FXT flow in BUU with varying  $K_0$ ,  $c_{[2,3]n_0}^2$ ,  $c_{[3,4]n_0}^2$ 

![](_page_18_Figure_5.jpeg)

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

![](_page_19_Figure_1.jpeg)

The maximum a posteriori probability (MAP) parameters are  $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$ 

Agnieszka Sorensen

![](_page_19_Figure_4.jpeg)

![](_page_19_Figure_5.jpeg)

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

## EOS of symmetric nuclear matter: selected (*few*) results

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

## Bayesian analysis of flow data in UrQMD

![](_page_21_Figure_1.jpeg)

proton mean transverse kinetic energy  $\langle m_T \rangle - m_0$ :  $\sqrt{s_{\rm NN}} \in [3.83, 8.86] \text{ GeV}$ 

proton elliptic flow  $v_2$  at midrapidity:  $\sqrt{s_{\rm NN}} \in [2.24, 4.72] \text{ GeV}$ 

13 points = excluding  $\langle m_T \rangle - m_0$ at the two lowest collision energies  $\sqrt{s_{\rm NN}} = 3.83, 4.29 \,\,{\rm GeV}$ 

## — — MEAN **—**—**—** MAP 250200 [MeV]150Experimental inference 13 data points 100 50 $-50^{L}_{0}$

300

Agnieszka Sorensen

M. Omana Kuttan, J. Steinheimer, K. Zhou, H. Stoecker, Phys. Rev. Lett. **131** 20, 202303 (2023) arXiv:2211.11670

$$V(n_B) = \begin{cases} V_{\text{CMF}} & n_B \le 2n_0 \\ \sum_{i=1}^7 \theta_i \left(\frac{n_B}{n_0} - 1\right)^i + C & n_B > 2n_0 \end{cases}$$

![](_page_21_Figure_10.jpeg)

## EOS of symmetric nuclear matter: selected (few) results

![](_page_22_Figure_1.jpeg)

**A. Sorensen** *et al.*, Prog. Part. Nucl. Phys. **134**, 104080 (2024) arXiv:2301.13253

Agnieszka Sorensen

![](_page_22_Figure_4.jpeg)

L. Du, **A. Sorensen**, M. Stephanov, Int. J. Mod. Phys. E (available online), arXiv: 2402.10183

![](_page_22_Picture_6.jpeg)

## Outline:

- 1. Introduction
- 2. Results: historic & recent
- 3. Future opportunities:

  - in-medium scattering cross-sections
  - cluster production

# Transport simulations for extracting the properties of dense nuclear matter

- momentum-dependence of nuclear matter interactions

![](_page_23_Picture_10.jpeg)

## Golden age for studies of the EOS

![](_page_24_Figure_1.jpeg)

matter & address outstanding problems

![](_page_24_Figure_3.jpeg)

Nucl. reactions + astro

Fundamental sym.

Agnieszka Sorensen

## Dense Nuclear Matter Equation of State from Heavy-Ion Collisions \*

Agnieszka Sorensen<sup>1</sup>, Kshitij Agarwal<sup>2</sup>, Kyle W. Brown<sup>3,4</sup>, Zbigniew Chajecki<sup>5</sup>, Paweł Danielewicz<sup>3,6</sup>, Christian Drischler<sup>7</sup>, Stefano Gandolfi<sup>8</sup>, Jeremy W. Holt<sup>9,10</sup>, Matthias Kaminski<sup>11</sup>, Che-Ming Ko<sup>9,10</sup>, Rohit Kumar<sup>3</sup>, Bao-An Li<sup>12</sup>, William G. Lynch<sup>3,6</sup>, Alan B. McIntosh<sup>10</sup>, William G. Newton<sup>12</sup>, Scott Pratt<sup>3,6</sup>, Oleh Savchuk<sup>3,13</sup>, Maria Stefaniak<sup>14</sup>, Ingo Tews<sup>8</sup>, ManYee Betty Tsang<sup>3,6</sup>, Ramona Vogt<sup>15,16</sup>, Hermann Wolter<sup>17</sup>, Hanna Zbroszczyk<sup>18</sup>

## **Endorsing authors:**

Navid Abbasi<sup>19</sup>, Jörg Aichelin<sup>20,21</sup>, Anton Andronic<sup>22</sup>, Steffen A. Bass<sup>23</sup>, Francesco Becattini<sup>24,25</sup>, David Blaschke<sup>26,27,28</sup>, Marcus Bleicher<sup>29,30</sup>, Christoph Blume<sup>31</sup>, Elena Bratkovskaya<sup>14,29,30</sup>, B. Alex Brown<sup>3,6</sup>, David A. Brown<sup>32</sup>, Alberto Camaiani<sup>33</sup>, Giovanni Casini<sup>25</sup>, Katerina Chatziioannou<sup>34,35</sup>, Abdelouahad Chbihi<sup>36</sup>, Maria Colonna<sup>37</sup>, Mircea Dan Cozma<sup>38</sup>, Veronica Dexheimer<sup>39</sup>, Xin Dong<sup>40</sup>, Travis Dore<sup>41</sup>, Lipei Du<sup>42</sup>, José A. Dueñas<sup>43</sup>, Hannah Elfner<sup>14,21,29,30</sup> Wojcjech Elorkowski<sup>44</sup> Yuki Eujimoto<sup>1</sup> Richard J. Eurnstahl<sup>45</sup>

## highest cited of all\* WPs for the 2023 LRP! \*published (arXiv, journal, etc.)

José C. Jiménez<sup>61</sup>, Joseph Kapusta<sup>62</sup>, Behruz Kardan<sup>31</sup>, Iurii Karpenko<sup>63</sup>, Declan Keane<sup>39</sup>, Dmitri Kharzeev<sup>60,64</sup>, Andrej Kugler<sup>65</sup>, Arnaud Le Fèvre<sup>14</sup>, Dean Lee<sup>3,6</sup>, Hong Liu<sup>66</sup>, Michael A. Lisa<sup>45</sup>, William J. Llope<sup>67</sup>, Ivano Lombardo<sup>68</sup>, Manuel Lorenz<sup>31</sup>, Tommaso Marchi<sup>69</sup> Larry McLerran<sup>1</sup>, Ulrich Mosel<sup>70</sup>, Anton Motornenko<sup>21</sup>, Berndt Müller<sup>23</sup>, Paolo Napolitani<sup>71</sup>. Joseph B. Natowitz<sup>10</sup>, Witold Nazarewicz<sup>3,6</sup>, Jorge Noronha<sup>72</sup>, Jacquelyn Noronha-Hostler<sup>72</sup>, Grażyna Odyniec<sup>40</sup>, Panagiota Papakonstantinou<sup>73</sup>, Zuzana Paulínyová<sup>74</sup>, Jorge Piekarewicz<sup>75</sup>, Robert D. Pisarski<sup>60</sup>, Christopher Plumberg<sup>76</sup>, Madappa Prakash<sup>7</sup>, Jørgen Randrup<sup>40</sup> Claudia Ratti<sup>77</sup>, Peter Rau<sup>1</sup>, Sanjay Reddy<sup>1</sup>, Hans-Rudolf Schmidt<sup>2,14</sup>, Paolo Russotto<sup>37</sup>. Radoslaw Ryblewski<sup>78</sup>, Andreas Schäfer<sup>79</sup>, Björn Schenke<sup>60</sup>, Srimoyee Sen<sup>80</sup>, Peter Senger<sup>81</sup> Richard Seto<sup>82</sup>, Chun Shen<sup>67,83</sup>, Bradley Sherrill<sup>3,6</sup>, Mayank Singh<sup>62</sup>, Vladimir Skokov<sup>83,84</sup>, Michał Spaliński<sup>85,86</sup>, Jan Steinheimer<sup>21</sup>, Mikhail Stephanov<sup>87</sup>, Joachim Stroth<sup>14,31</sup> Christian Sturm<sup>14</sup>, Kai-Jia Sun<sup>88</sup>, Aihong Tang<sup>60</sup>, Giorgio Torrieri<sup>89,90</sup>, Wolfgang Trautmann<sup>14</sup> Giuseppe Verde<sup>91</sup>, Volodymyr Vovchenko<sup>77</sup>, Ryoichi Wada<sup>10</sup>, Fuqiang Wang<sup>92</sup>, Gang Wang<sup>54</sup>, Klaus Werner<sup>20</sup>, Nu Xu<sup>40</sup>, Zhangbu Xu<sup>60</sup>, Ho-Ung Yee<sup>87</sup>, Sherry Yennello<sup>9,10,93</sup>, Yi Yin<sup>94</sup>

![](_page_24_Figure_15.jpeg)

![](_page_24_Picture_16.jpeg)

## Momentum-dependence of nuclear matter interactions

Momentum-dependence of interactions is a necessary component

Measured in scattering experiments (at  $n_0$ ):

Influence: flow from a hard EOS looks like flow from a soft EOS with *p*-dependence!

![](_page_25_Figure_4.jpeg)

![](_page_25_Picture_8.jpeg)

## Momentum-dependence of nuclear matter interactions

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_3.jpeg)

## In-medium scattering cross-sections

![](_page_27_Figure_6.jpeg)

![](_page_27_Picture_9.jpeg)

## Cluster production

![](_page_28_Figure_1.jpeg)

Description of light cluster production needed:

- coalescence/clustering: doesn't take into account the dynamic role of light clusters throughout the evolution
- dynamic nucleon/pion catalysis: consider as separate degrees of freedom, produced
- dynamical production through potentials???

STAR, Phys. Lett. B 827, 137003 (2022), arXiv:2108.00908 D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996 **A. Sorensen** et al., Prog. Part. Nucl. Phys. **134**, 104080 (2024), arXiv:2301.13253

![](_page_28_Figure_8.jpeg)

![](_page_28_Picture_10.jpeg)

## Cluster production

![](_page_29_Figure_1.jpeg)

Description of light cluster production needed:

- coalescence/clustering: doesn't take into account the dynamic role of light clusters throughout the evolution
- dynamic nucleon/pion catalysis: consider as separate degrees of freedom, produced through *N* or  $\pi$  collisions
- dynamical production through potentials???

STAR, Phys. Lett. B 827, 137003 (2022), arXiv:2108.00908 D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996 **A. Sorensen** et al., Prog. Part. Nucl. Phys. **134**, 104080 (2024), arXiv:2301.13253

Agnieszka Sorensen

![](_page_29_Figure_8.jpeg)

Phys. Rev. C 105 3, 034906 (2022), arXiv:2012.11454

![](_page_29_Picture_10.jpeg)

![](_page_29_Picture_12.jpeg)

![](_page_29_Picture_13.jpeg)

## Describing proton flow is not enough

![](_page_30_Figure_1.jpeg)

STAR, Phys. Lett. B **827**, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253, to appear in JPPNP

![](_page_30_Picture_4.jpeg)

![](_page_30_Picture_5.jpeg)

## Describing proton flow is not enough

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

## Summary

- nuclear matter:
  - density, isospin, and momentum dependence of nuclear interactions
  - in-medium cross sections
  - cluster production mechanisms
- Needed for interpreting low- $\sqrt{s_{NN}}$  experiments (STAR FXT, HADES, FRIB, CBM, FRIB400)

![](_page_32_Figure_7.jpeg)

Agnieszka Sorensen

• Description of heavy-ion collisions at low energies constrains multiple fundamental properties of

![](_page_32_Picture_12.jpeg)

## **Open questions**

• How to reconcile various effects affecting the extraction of the EOS? (momentum dependence, in-medium cross sections, cluster production...) Can we move away from phenomenology and toward clear guidance from theory? Some ideas in A. Sorensen et al., Prog. Part. Nucl. Phys. 134, 104080 (2024) arXiv:2301.13253

- What are the limits of microscopic transport? (dense systems, change of degrees of freedom, short-range correlations, etc.)
- nuclear physics? (e.g., strangeness interactions important for physics of neutron stars)
- Could any of that be of use for physics at the EIC?

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions \*

Agnieszka Sorensen<sup>1</sup>, Kshitij Agarwal<sup>2</sup>, Kyle W. Brown<sup>3,4</sup>, Zbigniew Chajecki<sup>5</sup>, Paweł Danielewicz<sup>3,6</sup>, Christian Drischler<sup>7</sup>, Stefano Gandolfi<sup>8</sup>, Jeremy W. Holt<sup>9,10</sup>, Matthias Kaminski<sup>11</sup>, Che-Ming Ko<sup>9,10</sup>, Rohit Kumar<sup>3</sup>, Bao-An Li<sup>12</sup>, William G. Lynch<sup>3,6</sup>, Alan B. McIntosh<sup>10</sup>, William G. Newton<sup>12</sup>, Scott Pratt<sup>3,6</sup>, Oleh Savchuk<sup>3,13</sup>, Maria Stefaniak<sup>14</sup>, Ingo Tews<sup>8</sup>, ManYee Betty Tsang<sup>3,6</sup>, Ramona Vogt<sup>15,16</sup>, Hermann Wolter<sup>17</sup>, Hanna Zbroszczyk<sup>18</sup>

• Besides the extraction of the EOS, how can low energy studies / transport inform other sub-fields in

![](_page_33_Picture_13.jpeg)

![](_page_33_Picture_14.jpeg)