
Novel transition dynamics 
of the topological object in 

chiral soliton lattice
Noriyuki Sogabe 

University of Illinois Chicago (UIC)

1

In a collaboration with Kentaro Nishimura (KEK)

Topological Phases of Matter: From Low to High Energy 
INT, March 8, 2023



Classification of transitions

2

Phase transition

First order Second order

ContinuousDiscontinuous

Lev Landau



Classification of transitions
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Phase transition

First order Second order

ContinuousDiscontinuous

Instability type Nucleation type

Trivial Topological

Local order parameter

Lev Landau

P. G. de Gennes
P. G. de Gennes, “Phase transition and turbulence: An introduction,” 

in Fluctuations, Instabilities, and Phase Transitions edited by T. Riste (Springer, 1975) 



Nucleation-type transition
• Order parameter with a topological constraint 

• E.g., Type-II superconductors, chiral magnets, cholesteric 
liquid crystals, etc.
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From “Superconductivity,” Volume 2, Edited by R. D. Parks (1969)  
See also I. E. Dzyaloshinsky (1964) and P. G. de Gennes and J. Prost (1993)

Meisner Mixed state

Hc1 Hc2

Normal

Wikipedia
−4πM ∝ log ( 1

H − Hc1 )
Hc1 Hc2 H

−4πM

Universal logarithmic behavior



Diffusion

Dynamics of second-order 
phase transitions

• Instability-type transitions:
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• What about nucleation-type transitions?

Critical slowing down of hydrodynamic modes, such as relaxation, 
diffusion, and velocity of Nambu-Goldstone modes

Equilibrium

E.g., Liquid-gas critical point:

Diffusion rate → 0

- The motion of topological objects, e.g., domain walls, vortices, etc.



QCD phase diagram
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B 

Hadron

µB 

T Quark-Gluon plasma (QGP)

Color superconductivity

～1012 K

～1012 kg/cm3

D. T. Son and M. A. Stephanov (2008), T. Brauner and N. Yamamoto (2017)

B > BCSL

Chiral soliton latticeQCD vacuum 
or Nuclear matter



Chiral soliton lattice (CSL)

• Violating parity 

• Carrying topological charges 

• Breaks translational symmetry

The anomaly-related ground state of QCD at finite µB & B>BCSL
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T. Brauner and N. Yamamoto (2017)

Neutral pion 
configuration:   (z)ϕ

Soliton

z in the unit mπ-1

ϕ(z)
∂zϕ(z)

l(B)
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CSL transition dynamics
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NS and K. Nishimura (in preparation)

• The motion of the topological soliton slows down 

• The local relaxation rate kept finite
(as B → BCSL )

A novel feature near the nuclear-type transition
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Chiral soliton lattice (CSL)
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Formulation

Setup

Dynamics near the CSL transition

Outline



Setup
• Two-flavor QCD at finite T, µB, and B  

• Finite quark mass 

• Hydrodynamic variables: 

• Neglect the other axial charges, vector charges, and 
energy and momentum densities

q̄q ∼ e2iϕt3 ρ = q̄γ0γ5t3q

Neutral pion Axial isospin charge
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Outline

Chiral soliton lattice (CSL)



• Most general Hamiltonian density at finite µB and B

ℋ0 = f 2
π

2 (∇ϕ)2 − f 2
πm2

π cos ϕ

ℋρ = 1
2χ

ρ2

- Kinetic + mass

- χ : Axial isospin susceptibility

C.f., chiral Lagrangian

ℋanom = − μB
4π2 B ⋅ ∇ϕ

S = 1
4π2 ∫ dx4 ϕE ⋅ B S = − 1

4π2 ∫ dx4 ϕ∇A0 ⋅ B ∼ ∫ dx4 A0 ∇ϕ ⋅ B

Scalar potential

• “Quick derivation” from the anomaly:

- See D. Son and M. Stephanov (2008)

favors inhomogeneity
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Hamiltonian



• Poisson bracket:  

• Derivative expansion:

Low-energy dynamics
• A low-energy effective description with dissipation

∂tϕ(x) = ∫ dy [ϕ(x), ρ(y)] δH
δρ(y) − γϕ(∇) δH

δϕ(x)
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[ϕ(x), ρ(y)] = δ(x − y)

Reversible Dissipative

γϕ(∇) = κ + '(∇2)

Relaxation rate

Chaikin and Lubensky (1995)  
See also D. T. Son (2000) 



• Nonlinear and dissipative generalization of previous works 

• Work in 1+1 d (B = Bez)
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D. Son (2000), D. Son and M. Stephanov (2002)

∂tϕ = ρ
χ

+ f 2
πκ (−m2

π sin ϕ + ∇2ϕ)

∂tρ = f 2
π ∇2ϕ − m2

π f 2
π sin ϕ + λ

χ
∇2ρ

∵ Conservation law
λ: Axial isospin conductivity

NS and K. Nishimura (in preparation)

Both are essential for the relaxation process to the CSL

Low-energy dynamics
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Outline

Chiral soliton lattice (CSL)



Stationary solution
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∂2
zϕ̄ = m2

π sin ϕ̄ − β∂2
z sin ϕ̄

β ≡ κλm2
π
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cos ϕ(zmπ /k)
2 = sn(zmπ /k, k)

Jacobi elliptic function Elliptic modulus

• Analytic solution at :β = 0

l(k) = 2kK(k)
mπ

Periodic length:

NS and K. Nishimura (in preparation)

ϕ̄(z)

z /(period)

K(k): The complete elliptic function of the first kind



B dependence
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• Energy minimization condition (β=0):  

BCSL = 16πmπ f 2
π

μ

• Periodic length:

See T. Brauner and N. Yamamoto (2017) for details

δEtot [ϕ = ϕ̄]
δk

= 0 ⇔ E(k)
k

= B
BCSL

E(k): The complete elliptic function of the second kind

Critical magnetic field: 

l(B) = l (k (B/BCSL)) → ∞

E(k)
k

k

Determine k (B/BCSL)

B
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Topological charges
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NB = − ∫
l

0
dz

∂ℋ
∂μB

= B
4π2 ∫

l

0
dz∂zϕ = B

2π

M = − ∫
l

0
dz

∂ℋ
∂B

= 1
4π2 μ∫

l

0
dz∂zϕ = μB

2π

Baryon number:

Magnetization:

ℋ = f 2
π

2 (∂zϕ)2 − f 2
πm2

π cos ϕ + 1
2χ

ρ2 − μBB
4π2 ∂zϕ

Quantized per unit lattice

D. T. Son and M. A. Stephanov (2008) 
T. Brauner and N. Yamamoto (2017)



Logarithmic “critical” 
behavior of CSL in QCD

• An asymptotic form of K(k) and E(k) for
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l(B) ≃ log 8
1 − BCSL/B

B ≃ BCSL (k ≃ 1)

(NB)tot = L
l(B) NB ∼ 1

log 8
1 − BCSL /B

(Same as Mtot)

B/BCSL

∼ (NB)tot

NS and K. Nishimura (in preparation)
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• Total baryon number and magnetization:
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Outline

Chiral soliton lattice (CSL)



Dynamics near BCSL

• System size L = 8 mπ-1 and vary B(L/nkink)                  

• The dissipative process to the nkink  state 

• Initial and boundary conditions:
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(I) ϕ(0, z) = 0 , ϕ(t, L) = 2πnkinkθ(t − t0)

(II) ϕ(0, z) = 2nkinkπz /L , ϕ(t, L) = 2nkinkπ

- An initial configuration ≠ the kink states

-   
- The transition from the vacuum (B = 0) to the nkink state at t0

B(t) = B (L /nkink) θ(t − t0)

nkink = 1

nkink = 6

nkink = 2
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Case (II)
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B = 1.01 BCSL (nkink = 1)
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Movies 
(time unit: (mπ c)-1; c: pion velocity in the chiral limit)



Case (I)
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Characteristic rate
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• How fast the stationary state approaches near B ~ BCSL? 

• A rate motivated by

ΔU(t) ≡ ∫ dz ϕ(t, z) − ϕ̄(z)

ΔU(τ) = ΔU(tini)
e

τ s.t.

• A qualitative difference between the B dependence of (I) and (II)

NS and K. Nishimura (in preparation)
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Discussion

(I) Slowing down of the soliton motion 
     ∵ Less repulsion from the other solitons 

(II) Finite local relaxation 
     ~ Decay of gapped excited states (ω ~ mπ) 
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A novel class of second-order transitions where the 
motion of a topological object (soliton) only slows down 
(not the local dissipation)

• As the CSL transition approaches, B → BCSL  (from above)

NS and K. Nishimura (in preparation)



Summary
• Low-energy dynamics near the CSL transition 

• The soliton motion slows down while the local relaxation 
keeps finite 

• A universal feature of nuclear-type transition dynamics?
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NS and K. Nishimura (in preparation)

Characteristic time to the ground state depends on 
the initial configuration, whether it forms a solitonic 
structure or not


