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➡ Developments on the side of many body methods (IMSRG, CC, SCGF, QMC, 
etc.)


➡ Developments of chiral nuclear forces ( faster convergence)→

An initio nuclear methods

ℋ |Ψ⟩ = E |Ψ⟩

“we interpret the ab initio 
method to be a systematically 

improvable approach for 
quantitatively describing nuclei 
using the finest resolution scale 

possible while maximizing its 
predictive capabilities.”

A. Ekström et al, Front. Phys.11 (2023) 29094
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A. Tichai EFB25 - European conference on few-body problems in physics

… and ab initio today!
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Coupled cluster method

Reference state (Hartree-Fock):     |Ψ⟩

e−TℋeT |Ψ⟩ ≡ ℋ̄ |Ψ⟩ = E |Ψ⟩

Expansion: T = ∑ ti
aa†

aai + ∑ tij
aba

†
aa†

b aiaj + . . .

Include correlations through  operator eT

similarity transformed 
Hamiltonian

singles doubles

coefficients obtained 
through coupled cluster 

equations

←
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Coupled cluster method

✓ Controlled approximation 
through truncation in 


✓ Polynomial scaling with  
(predictions for 100Sn, 208Pb)


✓ Size extensive 


✓ Works most efficiently for 
doubly magic nuclei
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�-decay, a process that changes a neutron into
a proton (and vice versa), is the dominant de-
cay mode of atomic nuclei. This decay o↵ers a
unique window to physics beyond the standard
model, and is at the heart of microphysical pro-
cesses in stellar explosions and the synthesis of
the elements in the Universe [1–3]. For 50 years,
a central puzzle has been that observed �-decay
rates are systematically smaller than theoretical
predictions. This was attributed to an apparent
quenching of the fundamental coupling constant
gA ' 1.27 in the nucleus by a factor of about 0.75
compared to the �-decay of a free neutron [4].
The origin of this quenching is controversial and
has so far eluded a first-principles theoretical un-
derstanding. Here we address this puzzle and
show that this quenching arises to a large extent
from the coupling of the weak force to two nucle-
ons as well as from strong correlations in the nu-
cleus. We present state-of-the-art computations
of �-decays from light and medium-mass nuclei
to 100Sn. Our results are consistent with exper-
imental data, including the pioneering measure-
ment for 100Sn [5, 6] (see Fig. 1). These theoret-
ical advances are enabled by systematic e↵ective
field theories of the strong and weak interactions
[7] combined with powerful quantum many-body
techniques [8, 9, 64]. This work paves the way
for systematic theoretical predictions for funda-
mental physics problems. These include the syn-
thesis of heavy elements in neutron star mergers
[11–13] and the search for neutrino-less double-�-
decay [3], where an analogous quenching puzzle
is a major source of uncertainty in extracting the
neutrino mass scale [14].

Gamow-Teller transitions are a form of �-decay in
which the spins of the �-neutrino pair emitted during

|MGT|
2

FIG. 1. Gamow-Teller strength |MGT|2 for the �-decay of
100Sn calculated in this work compared to data (“Hinke et
al.” [5]), systematics (“Batist et al.” [6]), and other models
[extreme single-particle model (ESPM), shell-model Monte-
Carlo (SMMC), large-space shell-model (LSSM), and finite
Fermi systems (FFS)] from Ref. [5]. Hollow symbols repre-
sent results obtained with the standard Gamow-Teller opera-
tor (�⌧ ), full symbols also include two-body currents (2BC),
and partially filled symbols show values following from the
multiplication of the computed Gamow-Teller strength by
the square of a phenomenological quenching factor. Each of
our 100Sn calculations carry a conservatively estimated uncer-
tainty of about 10% (not shown).

the nuclear decay are aligned. Remarkably, calculated
Gamow-Teller strengths appear to reproduce most of the
experimental data if the fundamental constant gA ' 1.27
characterizing the coupling of the weak interaction to
a nucleon is quenched by a factor of q ⇠ 0.75 [15–18].
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Coupled-cluster calculations of neutrinoless double-beta decay in 48Ca
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We use coupled-cluster theory and nuclear interactions from chiral e↵ective field theory to compute
the nuclear matrix element for the neutrinoless double-beta decay of 48Ca. Benchmarks with the
no-core shell model in several light nuclei inform us about the accuracy of our approach. For 48Ca
we find a relatively small matrix element. We also compute the nuclear matrix element for the
two-neutrino double-beta decay of 48Ca with a quenching factor deduced from two-body currents
in recent ab-initio calculation of the Ikeda sum-rule in 48Ca [Gysbers et al., Nature Physics 15,
428–431 (2019)].

Introduction and main result.— Neutrinoless double-
beta (0⌫��) decay is a hypothesized electroweak process
in which a nucleus undergoes two simultaneous beta de-
cays but emits no neutrinos [1]. The observation of this
lepton-number violating process would identify the neu-
trino as a Majorana particle (i.e. as its own antiparti-
cle) [2] and provide insights into both the origin of neu-
trino mass [3, 4] and the matter-antimatter asymmetry in
the universe [5]. Experimentalists are working intently to
observe the decay all over the world; current lower limits
on the lifetime are about 1026 y [6–8], and sensitivity will
be improved by two orders of magnitude in the coming
years.

Essential for planning and interpreting these experi-
ments are nuclear matrix elements (NMEs) that relate
the decay lifetime to the Majorana neutrino mass scale
and other measures of lepton-number violation. Un-
fortunately, these matrix elements are not well known
and cannot be measured. Computations based on di↵er-
ent models and techniques lead to numbers that di↵er
by factors of three to five (see Ref. [9] for a recent re-
view). Compounding these theoretical challenges is the
recent discovery that, within chiral e↵ective field theory
(EFT) [10–13], the standard long-range 0⌫�� decay oper-
ator must be supplemented by an equally important zero-
range (contact) operator of unknown strength [14]. Ef-
forts to compute the strengths of this contact term from
quantum chromodynamics (QCD) [15, 16] and attempts
to better understand its impact are underway [17].

The task theorists face at present is to provide more
accurate computations of 0⌫�� NMEs, including those
associated with contact operators, and quantify their un-
certainties. In this Letter, we employ the coupled-cluster
method to perform first-principle computations of the
matrix element that links the 0⌫�� lifetime of 48Ca with
the Majorana neutrino mass scale. Among the dozen
or so candidate nuclei for 0⌫�� decay experiments [18],
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FIG. 1. (Color online) Comparison of the NME for the 0⌫��
decay of 48Ca, calculated within various approaches (see text
for details). The coupled-cluster results use both the CCSD
and CCSDT-1 approximations with both the spherical and
deformed reference states. For IMSRG+GCM, the double
bars show the e↵ects of uncertainty in model-space size; other-
wise they show those of uncertainty in short-range correlation
functions.

48Ca stands out for its fairly simple structure, making it
amenable for an accurate description based on chiral EFT
and state-of-the-art many-body methods [19]. By vary-
ing the details of our calculations, we will estimate the
uncertainty of our prediction. To gauge the quality of our
approach we also compute the two-neutrino double-beta
decay of 48Ca and compare with data. Our results will di-
rectly inform 0⌫�� decay experiments that use 48Ca [20]
and serve as an important stepping stone towards the
accurate prediction of NMEs in 76Ge, 130Te, and 136Xe,
which are candidate isotopes of the next-generation 0⌫��
decay experiments. Calculations in those nuclei presum-
ably require larger model spaces, inclusion of tri-axial
deformation, and symmetry projection.
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Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian ℋ |Ψ⟩ = E |Ψ⟩
➡order of expansion

➡ low energy constants fit to data

5



Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

Electroweak currents

ℋ |Ψ⟩ = E |Ψ⟩

Jμ = (ρ, ⃗j)

➡order of expansion

➡ low energy constants fit to data

➡order of expansion

➡2-body currents important

5



Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

Electroweak currents

Coupled cluster method 𝒜 = ⟨Ψm |Jμ |Ψn⟩

ℋ |Ψ⟩ = E |Ψ⟩

Jμ = (ρ, ⃗j)

➡order of expansion

➡ low energy constants fit to data

➡order of expansion

➡2-body currents important

➡ truncation in correlations

➡model space dependence

5



Nuclear response

nuclear 
responses

Jμ = (ρ, ⃗j)|Ψ⟩

σ ∝ Lμν Rμν

lepton 
tensor

γ, W±, Z0

 
Rμν(ω, q) = ∑

f

⟨Ψ |J†
μ(q) |Ψf⟩⟨Ψf |Jν(q) |Ψ⟩δ(E0 + ω − Ef )

6



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩
Many-body problem

7



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

consistent FSI treatment

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem

7



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

consistent FSI treatment

MULTINUCLEON 

KNOCKOUT (2P2H)

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem

7



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

consistent FSI treatment

MULTINUCLEON 

KNOCKOUT (2P2H)

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem Probability density of finding nucleon 
 in ground state nucleus(E, p)

Spectral 

function

Impulse Approximation
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Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

consistent FSI treatment

MULTINUCLEON 

KNOCKOUT (2P2H)

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem Probability density of finding nucleon 
 in ground state nucleus(E, p)

Spectral 

function

Impulse Approximation

Possible 
comparison 

within the same 
framework

7



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

Electroweak responses

MULTINUCLEON 

KNOCKOUT (2P2H)

νμ

⟨ψf | ̂j |ψA⟩

Many-body problem

8



Lorentz Integral Transform (LIT)

9

 
Sμν(σ, q) = ∫ dωK(ω, σ)Rμν(ω, q) = ⟨Ψ |J†

μ K(ℋ − E0, σ) Jν |Ψ⟩

Lorentzian kernel: 

 KΛ(ω, σ) =

1
π

Λ
Λ2 + (ω − σ)2

continuum spectrum

∫
 

Rμν(ω, q) = ∑
f

⟨Ψ |J†
μ |Ψf⟩⟨Ψf |Jν |Ψ⟩δ(E0 + ω − Ef )

 has to be inverted to get access to Sμν Rμν

Integral 

transform



Lorentz Integral Transform

Λ = 20 MeV

Longitudinal isoscalar 
response on 4He 


at q=300 MeV

Integral transform

Inversion

10



Electromagnetic responses 40Ca

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

✓ CC singles & doubles


✓ two different chiral 
Hamiltonians


✓ inversion procedure

JES, B. Acharya, S. Bacca, G. Hagen; arXiV: 2310.03109

dσ
dωdq e

= σM(υLRL + υTRT)

11



Chiral expansion for 40Ca
(Electromagnetic responses)

✓ Two orders of chiral expansion

✓ Convergence better for lower q (as 

expected)

✓ Higher order brings results closer to the 

data

B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022)
JES, B. Acharya, S. Bacca, G. Hagen; arXiV: 2310.03109
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SΛ(ω)

ω

ChEK method
Chebyshev Expansion of integral Kernel

A. Roggero Phys.Rev.A 102 (2020) 2, 022409

JES, A. Roggero Phys.Rev.E 105 (2022) 055310

 13

SΛ(ω′￼) = ∫ KΛ(ω′￼, ω)R(ω)dωIntegral transform

expansion in Chebyshev 
polynomials

KΛ(ω, σ) = ∑
k

ck(σ)Tk(ω)

Gaussian, Lorentzian, etc.



Histograms using ChEK

Integral transform 
expanded in 
Chebyshev 

polynomials

Λ = 𝒪(0.1MeV)

14

• Sum-rules


• Flux folding


• Histogram


• …

Φ ≈ Φ̃ = ∫ f(ω′￼)∫ KΛ(ω′￼, ω)R(ω)dωdω′￼



Histograms using ChEK

Integral transform 
expanded in 
Chebyshev 

polynomials

Build histogram

Λ = 𝒪(0.1MeV)

14

• Sum-rules


• Flux folding


• Histogram


• …

Φ = ∫ f(ω)R(ω)dω

Φ ≈ Φ̃ = ∫ f(ω′￼)∫ KΛ(ω′￼, ω)R(ω)dωdω′￼

|Φ − Φ̃ | < ϵestimated error 



Chebyshev Expansion of integral Kernel

V E RY  


P R E L I M I N A RY

➡ No assumption about the shape of the response


➡ Rigorous error estimation


➡ Convenient when the response has a complicated structure

ChEK method

4He photoabsorption

8
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γ(
ω
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m

b]

LIT-CCSD 
Arkatov et al.
Nilsson et al.
Raut et al.

4He

FIG. 5. (Color online) Comparison of the 4He dipole cross sec-
tion calculated with LIT-CCSD and experimental data from
Arkatov et al. [60], Nilsson et al. [61] and Raut et al. [62].
The grey and blue bands di↵er simply by a shift of the the-
oretical threshold (grey) to the experimental one (dark/blue)
(see text).

as

�
E1
� (!) = 4⇡2

↵!S(!) , (47)

with ↵ being the fine structure constant. Arkatov et
al. [60] measured the photodisintegration cross section
spanning a quite large energy range. More recent data
by Nilsson et al. [61] and Raut et al. [62] cover a nar-
rower range (see Ref. [49] for an update on all the mea-
surements and calculations). In Figure 5, the grey curve
represents the calculation where the theoretical threshold
is used in the inversion. One notices that this is not as the
experimental one, because the used Hamiltonian misses
the contribution of the three-body force to the binding
energies of 4He and3H. Thus, as typically done in the
literature, to take this trivial binding e↵ect into account
we shift the theoretical (grey) curve to the experimental
threshold (note that the consistent theoretical threshold
is still used in the inversion procedure). It is evident that
the theory describes the experimental data qualitatively,
so it is interesting to address heavier nuclei.

V. APPLICATION TO 16O

The 4He benchmark suggests that the LIT-CCSD
method can be employed for the computation of the
dipole response, and that theoretical uncertainties with
respect to the model space and the inversion of the LIT
are well controlled. Thus, we turn our attention to a
stable medium-mass nucleus, such as 16O.

First, we investigate the convergence of the LIT as a
function of the model space size. In Figure 6, we present

the LITs for � = 20 MeV (panel (a)) and � = 10 MeV
(panel (b)) with Nmax ranging from 8 up to 18. The
convergence is rather good and it is better for the larger
value of �. As indicated above, the smaller the width
�, the more di�cult is to converge in a LIT calculation.
For � = 10 a small di↵erence of about about 2% between
Nmax = 16 and Nmax = 18 is found.
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(b)

FIG. 6. (Color online) Convergence of L(!0,�) in 16O at
� = 20 MeV (a) and � = 10 (b) for di↵erent values of Nmax

and an HO frequency of ~⌦ = 26 MeV.

Before inverting the transform, it is first interesting to
investigate the ~⌦-dependence of our results and com-
pare the theory with the integral transform of data. In
Figure 7, LITs from our LIT-CCSD calculations with the
largest model space size of Nmax = 18 and two di↵er-
ent HO frequencies of ~⌦ = 20 and 26 MeV are shown.
As one can notice, there is a residual ~⌦ dependence of
roughly 4%, which is small and can be considered as the
error bar of the numerical calculation. Overall, the the-
oretical error associated of our LIT for � = 10 MeV in
the LIT-CCSD scheme amounts to 5%.
The photodisintegration data measured by Ahrens et

al. [63] cover a broad energy range. Therefore it is possi-
ble to apply the LIT (Eq. (3)) on the response function
extracted from the data by Eq. (47). This allows us to
compare the experimental and theoretical results, as done
in Figure 7 (the area between the grey lines represents the
data error band). Our theoretical predictions agree with
the experimental LIT within the uncertainties in almost

S. Bacca, N. Barnea, G. Hagen, G. Orlandini; Phys.Rev.C 90 (2014) 6

15



Low/high energies

Ĥ |ψA⟩ = E |ψA⟩

MULTINUCLEON 

KNOCKOUT (2P2H)

Many-body problem Probability density of finding nucleon 
 in ground state nucleus(E, p)

Spectral 

function

Impulse Approximation

16



• Spectral reconstruction using expansion in 
Chebyshev polynomials + building histograms


• Uncertainty sources:


✓ 


✓ Kernel’s width 

K(ω, σ) =
N

∑
k=0

ck(σ)Tk(ω)

Λ

16O spectral function

17



16O spectral function
Error propagation to cross sections

growing q momentum transfer  final state interactions play minor role→

q

FSI

Phenomenological optical potential
Ep+q → Ep+q + ReU(tkin)

E. D. Cooper et al.  Phys.Rev.C 47, 297–311 

18



16O spectral function
Error propagation to cross sections

• Comparison 
with T2K long 
baseline  
oscillation 
experiment


•  events


• Spectral function 
implemented 
into NuWro 
Monte Carlo 
generator

ν

CC0π

JES , S. Bacca arXiv:2309.00355
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νμ +16 O → μ− + X
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• Bayesian inference:  explore the space of 17 low energy constants of nuclear 
Hamiltonian 
                                          
 

• posterior predictive distributions  
                                         

pr(θ |D) ∝ ℒ(θ)pr(θ)

{y(θ) : θ ∼ pr(θ |D)}

Robust uncertainty quantification

ARTICLES
https://doi.org/10.1038/s41567-022-01715-8
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Neutron stars are extreme astrophysical objects whose interi-
ors may contain exotic new forms of matter. The structure 
and size of neutron stars are linked to the thickness of the 

neutron skin in atomic nuclei via the neutron-matter equation of 
state1–3. The nucleus 208Pb is an attractive target for exploring this 
link in both experimental4,5 and theoretical2,6,7 studies owing to the 
large excess of neutrons and its simple structure. Mean-field cal-
culations predict a wide range for Rskin(208Pb) because the isovector 
parts of nuclear energy density functionals are not well constrained 
by binding energies and charge radii2,7–9. Additional constraints may 
be obtained10 by including the electric dipole polarizability of 208Pb, 
though this comes with a model dependence11 which is difficult to 
quantify. In general, the estimation of systematic theoretical uncer-
tainties is a challenge for mean-field theory.

In contrast, precise ab initio computations, which provide a path 
to comprehensive uncertainty estimation, have been accomplished 
for the neutron-matter equation of state12–14 and the neutron skin in 
the medium-mass nucleus 48Ca (ref. 15). However, up to now, treat-
ing 208Pb within the same framework was out of reach. Owing to 
breakthrough developments in quantum many-body methods, such 
computations are now becoming feasible for heavy nuclei16–19. The  
ab initio computation of 208Pb we report herein represents a signifi-
cant step in mass number from the previously computed tin iso-
topes16,17 (Fig. 1). The complementary statistical analysis in this work 
is enabled by emulators (for mass number A ≤ 16) which mimic the 
outputs of many-body solvers but are orders of magnitude faster.

In this paper, we develop a unified ab initio framework to link 
the physics of nucleon–nucleon scattering and few-nucleon systems 

to properties of medium- and heavy-mass nuclei up to 208Pb,  
and ultimately to the nuclear-matter equation of state near satura-
tion density.

Linking models to reality
Our approach to constructing nuclear interactions is based on chi-
ral effective field theory (EFT)20–22. In this theory, the long-range 
part of the strong nuclear force is known and stems from pion 
exchanges, while the unknown short-range contributions are repre-
sented as contact interactions; we also include the Δ isobar degree 
of freedom23. At next-to-next-to leading order in Weinberg’s power 
counting, the four pion–nucleon low-energy constants (LECs) are 
tightly fixed from pion–nucleon scattering data24. The 13 additional 
LECs in the nuclear potential must be constrained from data.

We use history matching25,26 to explore the modelling capabili-
ties of ab initio methods by identifying a non-implausible region 
in the vast parameter space of LECs, for which the model output 
yields acceptable agreement with selected low-energy experimen-
tal data (denoted herein as history-matching observables). The 
key to efficiently analyse this high-dimensional parameter space 
is the use of emulators based on eigenvector continuation27–29 that 
accurately mimic the outputs of the ab initio methods but at sev-
eral orders of magnitude lower computational cost. We consider 
the following history-matching observables: nucleon–nucleon 
scattering phase shifts up to an energy of 200 MeV; the energy, 
radius and quadrupole moment of 2H; and the energies and radii 
of 3H, 4He and 16O. We perform five waves of this global param-
eter search (Extended Data Figs. 1 and 2), sequentially ruling out 

Ab initio predictions link the neutron skin of 208Pb 
to nuclear forces
Baishan Hu! !1,11, Weiguang Jiang! !2,11, Takayuki Miyagi! !1,3,4,11, Zhonghao Sun5,6,11, Andreas Ekström2, 
Christian Forssén! !2 ✉, Gaute Hagen! !1,5,6, Jason D. Holt! !1,7, Thomas Papenbrock! !5,6, 
S. Ragnar Stroberg8,9 and Ian Vernon10

Heavy atomic nuclei have an excess of neutrons over protons, which leads to the formation of a neutron skin whose thickness 
is sensitive to details of the nuclear force. This links atomic nuclei to properties of neutron stars, thereby relating objects that 
differ in size by orders of magnitude. The nucleus 208Pb is of particular interest because it exhibits a simple structure and is 
experimentally accessible. However, computing such a heavy nucleus has been out of reach for ab initio theory. By combining 
advances in quantum many-body methods, statistical tools and emulator technology, we make quantitative predictions for the 
properties of 208Pb starting from nuclear forces that are consistent with symmetries of low-energy quantum chromodynamics. 
We explore 109 different nuclear force parameterizations via history matching, confront them with data in select light nuclei and 
arrive at an importance-weighted ensemble of interactions. We accurately reproduce bulk properties of 208Pb and determine 
the neutron skin thickness, which is smaller and more precise than a recent extraction from parity-violating electron scattering 
but in agreement with other experimental probes. This work demonstrates how realistic two- and three-nucleon forces act in a 
heavy nucleus and allows us to make quantitative predictions across the nuclear landscape.
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 5. If step 4(a) is true, we generate a number of acceptable runs from the !nal 
non-implausible volume Q

final

, sampled according to scienti!c need.
The ab initio model for the observables we consider includes at most 17 

parameters: 4 subleading pion–nucleon couplings, 11 nucleon–nucleon contact 
couplings and two short-ranged 3N couplings. To identify a set of non-implausible 
parameter samples, we performed iterative history matching in four waves using 
observables and implausibility measures, as summarized in Extended Data Fig. 
1b. For each wave, we employ a sufficiently dense Latin hypercube set of several 
million candidate parameter samples. For the model evaluations, we utilized fast 
computations of neutron–proton scattering phase shifts and efficient emulators 
for the few- and many-body history-matching observables. See Extended Data 
Table 1 and Extended Data Fig. 2 for the list of history-matching observables and 
information on the errors that enter the implausibility measure in equation (3). 
The input volume for wave 1 incorporates the naturalness expectation for LECs, 
but still includes large ranges for the relevant parameters as indicated by the panel 
ranges in Extended Data Fig. 1a. In all four waves, the input volume for c1,2,3,4 is a 
four-dimensional hypercube mapped onto the multivariate Gaussian probability 
density function (PDF) resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. In wave 1 and wave 2, we sampled all relevant parameter 
directions for the set of included two-nucleon observables. In wave 3, the 3H and 
4He observables were added such that the 3N force parameters cD and cE can also be 
constrained. Since these observables are known to be rather insensitive to the four 
model parameters acting solely in P waves, we ignored this subset of the inputs 
and compensated by slightly enlarging the corresponding method errors. This 
is a well-known emulation procedure called inactive parameter identification25. 
For wave 4, we considered all 17 model parameters and added the ground-state 
energy and radius of 16O to the set Z

4

 and emulated the model outputs for 
5 × 108 parameter samples. By including oxygen data, we explore the modelling 
capabilities of our ab initio approach. Extended Data Fig. 1a summarizes the 
sequential non-implausible volume reduction, wave-by-wave, and indicates the set 
of 4,337 non-implausible samples after the fourth wave. Note that the use of history 
matching would, in principle, allow a detailed study of the information content of 
various observables in heavy-mass nuclei. Such an analysis, however, requires an 
extensive set of reliable emulators and lies beyond the scope of the present work. 
The volume reduction is determined by the maximum implausibility cut-off in 
equation (4) with additional confirmation from the optical depths (which indicate 
the density of non-implausible samples; see equations (25) and (26) in ref. 71). 
The non-implausible samples summarize the parameter region of interest and 
can directly provide insight regarding the interdependences between parameters 
induced by the match to observed data. This region is also where we would 
expect the posterior distribution to reside, and we note that our history-matching 
procedure has allowed us to reduce its size by more than seven orders of magnitude 
compared with the prior volume (Extended Data Fig. 1b).

As a final step, we confront the set of non-implausible samples from 
wave 4 with neutron–proton scattering phase shifts such that our final set of 
non-implausible samples has been matched with all history-matching observables. 
For this final implausibility check, we employ a slightly less strict cut-off and allow 
the first, second and third maxima of Ii(θ) (for z

i

∈ Z
final

) to be 5.0, 4.0 and 3.0, 
respectively, accommodating the more extreme maxima we may anticipate when 
considering a significantly larger number of observables. The end result is a set of 
34 non-implausible samples that we use for predicting 48Ca and 208Pb observables, 
as well as the equation of state of both symmetric nuclear matter and pure neutron 
matter.

Posterior predictive distributions. The 34 non-implausible samples from the final 
history-matching wave are used to compute energies, radii of proton and neutron 
distributions and electric dipole polarizabilities (αD) for 48Ca and 208Pb. They are 
also used to compute the electric and weak charge form factors for the same nuclei 
at a relevant momentum transfer, and the energy per particle of infinite nuclear 
matter at various densities to extract key properties of the nuclear equation of state 
(see below). These results are shown in Fig. 3(blue circles).

To make quantitative predictions, with a statistical interpretation, for 
Rskin(208Pb) and other observables, we use the same 34 parameter sets to extract 
representative samples from the posterior PDF p(θ|D

cal

). Bulk properties (energies 
and charge radii) of 48Ca together with the structure-sensitive 2+ excited-state 
energy of 48Ca are used to define the calibration data set D

cal

. The IMSRG and 
CC convergence studies make it possible to quantify the method errors. These are 
summarized in Extended Data Table 1. The EFT truncation errors are quantified 
by adopting the EFT convergence model74,75 for observable y
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with observable coefficients ci that are expected to be of natural size, and the 
expansion parameter Q = 0.42 following our Bayesian error model for nuclear 
matter at the relevant density (see below). The first sum in the parenthesis is the 
model prediction yk(θ) of observable y at truncation order k in the chiral expansion. 
The second sum than represents the model error because it includes the terms 

that are not explicitly included. We can quantify the magnitude of these terms by 
learning about the distribution for ci, which we assume to be described by a single 
normal distribution per observable type with zero mean and a variance parameter 
c̄

2. We employ the nuclear-matter error analysis for the energy per particle of 
symmetric nuclear matter (described below) to provide the model error for E/A in 
48Ca and 208Pb. For radii and electric dipole polarizabilities, we employ the next-to 
leading order and next-to-next-to leading order interactions of ref. 60 and compute 
these observables at both orders for various Ca, Ni and Sn isotopes. The reference 
values yref are set to r0 A1/3 for radii (with r0 = 1.2 fm) and to the experimental 
value for αD. From these data, we extract c̄2 and perform the geometric sum of the 
second term in equation (5). The resulting standard deviations for model errors are 
summarized in Extended Data Table 1.

At this stage, we can approximately extract samples from the parameter 
posterior p(θ|D

cal

) by employing the established method of sampling/importance 
resampling33,76. We assume a uniform prior probability for the non-implausible 
samples, and we introduce a normally distributed likelihood L(D

cal

|θ), assuming 
independent experimental, method and model errors. The prior for c1,2,3,4 is the 
multivariate Gaussian resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. Defining importance weights
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we draw samples θ* from the discrete distribution {θ1, …, θn} with probability 
mass qi on θi. These samples are then approximately distributed according to the 
parameter posterior that we are seeking33,76.

Although we are operating with a finite number of n = 34 representative 
samples from the parameter PDF, it is reassuring that about half of them are within 
a factor of two from the most probable one in terms of the importance weight 
(Extended Data Fig. 5). Consequently, our final predictions will not be dominated 
by a very small number of interactions. In addition, as we do not anticipate the 
parameter PDF to be of a particularly complex shape, based on the results of the 
history match, consideration of the various error structures in the analysis and 
on the posterior predictive distributions (PPDs) shown in Fig. 3, and as we are 
mainly interested in examining such lower one- or two-dimensional PPDs, this 
sample size was deemed sufficient and the corresponding sampling error assumed 
subdominant. We use these samples to draw corresponding samples from

PPD

parametric

= {y
k

(θ) : θ ∼ p(θ|D
cal

)}. (7)

This PPD is the set of all model predictions computed over likely values of the 
parameters, that is, drawing from the posterior PDF for θ. The full PPD is then 
defined, in analogy with equation (7), as the set evaluation of y which is the sum

y = y

k

+ ϵ

method

+ ϵ

model

, (8)

where we assume method and model errors to be independent of the parameters. 
In practice, we produce 104 samples from this full PPD for y by resampling the 
34 samples of the model PPD in equation (7) according to their importance 
weights, and adding samples from the error terms in equation (8). We perform 
model checking by comparing this final PPD with the data used in the iterative 
history-matching step, and in the likelihood calibration. In addition, we find that 
our predictions for the measured electric dipole polarizabilities of 48Ca and 208Pb as 
well as bulk properties of 208Pb serve as a validation of the reliability of our analysis 
and assigned errors (Fig. 2 and Extended Data Table 1).

In addition, we explored the sensitivity of our results to modifications of the 
likelihood definition. Specifically, we used a Student t distribution (ν = 5) to see 
the effects of allowing heavier tails, and we introduced an error covariance matrix 
to study the effect of possible correlations (with ρ ≈ 0.7) between the errors in 
the binding energy and radius of 48Ca. In the end, the differences in the extracted 
credibility regions was ~1%, and we therefore present only results obtained with 
the uncorrelated, multivariate normal distribution.

Our final predictions for Rskin(208Pb), Rskin(48Ca) and nuclear-matter properties 
are presented in Fig. 3 and Extended Data Table 2. For these observables, we use 
the Bayesian machine learning error model described below to assign relevant 
correlations between equation-of-state observables. For the model errors in 
Rskin(208Pb) and L, we use a correlation coefficient of ρ = 0.9 as motivated by the 
strong correlation between the observables computed with the 34 non-implausible 
samples. Note that S, L and K are computed at the specific saturation density of the 
corresponding non-implausible interaction.

Bayesian machine learning error model. Similar to equation (1), the predicted 
nuclear matter observables can be written as

y = y

k

(ρ) + ε

k

(ρ) + ε

method

(ρ), (9)

where yk(ρ) is the CC prediction using our EFT model truncated at order k, εk(ρ) 
is the EFT truncation (model) error and εmethod(ρ) is the CC method error. In this 
work, we apply a Bayesian machine learning error model14 to quantify the density 
dependence of both the method and truncation errors. The error model is based 
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 5. If step 4(a) is true, we generate a number of acceptable runs from the !nal 
non-implausible volume Q

final

, sampled according to scienti!c need.
The ab initio model for the observables we consider includes at most 17 

parameters: 4 subleading pion–nucleon couplings, 11 nucleon–nucleon contact 
couplings and two short-ranged 3N couplings. To identify a set of non-implausible 
parameter samples, we performed iterative history matching in four waves using 
observables and implausibility measures, as summarized in Extended Data Fig. 
1b. For each wave, we employ a sufficiently dense Latin hypercube set of several 
million candidate parameter samples. For the model evaluations, we utilized fast 
computations of neutron–proton scattering phase shifts and efficient emulators 
for the few- and many-body history-matching observables. See Extended Data 
Table 1 and Extended Data Fig. 2 for the list of history-matching observables and 
information on the errors that enter the implausibility measure in equation (3). 
The input volume for wave 1 incorporates the naturalness expectation for LECs, 
but still includes large ranges for the relevant parameters as indicated by the panel 
ranges in Extended Data Fig. 1a. In all four waves, the input volume for c1,2,3,4 is a 
four-dimensional hypercube mapped onto the multivariate Gaussian probability 
density function (PDF) resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. In wave 1 and wave 2, we sampled all relevant parameter 
directions for the set of included two-nucleon observables. In wave 3, the 3H and 
4He observables were added such that the 3N force parameters cD and cE can also be 
constrained. Since these observables are known to be rather insensitive to the four 
model parameters acting solely in P waves, we ignored this subset of the inputs 
and compensated by slightly enlarging the corresponding method errors. This 
is a well-known emulation procedure called inactive parameter identification25. 
For wave 4, we considered all 17 model parameters and added the ground-state 
energy and radius of 16O to the set Z

4

 and emulated the model outputs for 
5 × 108 parameter samples. By including oxygen data, we explore the modelling 
capabilities of our ab initio approach. Extended Data Fig. 1a summarizes the 
sequential non-implausible volume reduction, wave-by-wave, and indicates the set 
of 4,337 non-implausible samples after the fourth wave. Note that the use of history 
matching would, in principle, allow a detailed study of the information content of 
various observables in heavy-mass nuclei. Such an analysis, however, requires an 
extensive set of reliable emulators and lies beyond the scope of the present work. 
The volume reduction is determined by the maximum implausibility cut-off in 
equation (4) with additional confirmation from the optical depths (which indicate 
the density of non-implausible samples; see equations (25) and (26) in ref. 71). 
The non-implausible samples summarize the parameter region of interest and 
can directly provide insight regarding the interdependences between parameters 
induced by the match to observed data. This region is also where we would 
expect the posterior distribution to reside, and we note that our history-matching 
procedure has allowed us to reduce its size by more than seven orders of magnitude 
compared with the prior volume (Extended Data Fig. 1b).

As a final step, we confront the set of non-implausible samples from 
wave 4 with neutron–proton scattering phase shifts such that our final set of 
non-implausible samples has been matched with all history-matching observables. 
For this final implausibility check, we employ a slightly less strict cut-off and allow 
the first, second and third maxima of Ii(θ) (for z

i

∈ Z
final

) to be 5.0, 4.0 and 3.0, 
respectively, accommodating the more extreme maxima we may anticipate when 
considering a significantly larger number of observables. The end result is a set of 
34 non-implausible samples that we use for predicting 48Ca and 208Pb observables, 
as well as the equation of state of both symmetric nuclear matter and pure neutron 
matter.

Posterior predictive distributions. The 34 non-implausible samples from the final 
history-matching wave are used to compute energies, radii of proton and neutron 
distributions and electric dipole polarizabilities (αD) for 48Ca and 208Pb. They are 
also used to compute the electric and weak charge form factors for the same nuclei 
at a relevant momentum transfer, and the energy per particle of infinite nuclear 
matter at various densities to extract key properties of the nuclear equation of state 
(see below). These results are shown in Fig. 3(blue circles).

To make quantitative predictions, with a statistical interpretation, for 
Rskin(208Pb) and other observables, we use the same 34 parameter sets to extract 
representative samples from the posterior PDF p(θ|D

cal

). Bulk properties (energies 
and charge radii) of 48Ca together with the structure-sensitive 2+ excited-state 
energy of 48Ca are used to define the calibration data set D

cal

. The IMSRG and 
CC convergence studies make it possible to quantify the method errors. These are 
summarized in Extended Data Table 1. The EFT truncation errors are quantified 
by adopting the EFT convergence model74,75 for observable y
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with observable coefficients ci that are expected to be of natural size, and the 
expansion parameter Q = 0.42 following our Bayesian error model for nuclear 
matter at the relevant density (see below). The first sum in the parenthesis is the 
model prediction yk(θ) of observable y at truncation order k in the chiral expansion. 
The second sum than represents the model error because it includes the terms 

that are not explicitly included. We can quantify the magnitude of these terms by 
learning about the distribution for ci, which we assume to be described by a single 
normal distribution per observable type with zero mean and a variance parameter 
c̄

2. We employ the nuclear-matter error analysis for the energy per particle of 
symmetric nuclear matter (described below) to provide the model error for E/A in 
48Ca and 208Pb. For radii and electric dipole polarizabilities, we employ the next-to 
leading order and next-to-next-to leading order interactions of ref. 60 and compute 
these observables at both orders for various Ca, Ni and Sn isotopes. The reference 
values yref are set to r0 A1/3 for radii (with r0 = 1.2 fm) and to the experimental 
value for αD. From these data, we extract c̄2 and perform the geometric sum of the 
second term in equation (5). The resulting standard deviations for model errors are 
summarized in Extended Data Table 1.

At this stage, we can approximately extract samples from the parameter 
posterior p(θ|D

cal

) by employing the established method of sampling/importance 
resampling33,76. We assume a uniform prior probability for the non-implausible 
samples, and we introduce a normally distributed likelihood L(D
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|θ), assuming 
independent experimental, method and model errors. The prior for c1,2,3,4 is the 
multivariate Gaussian resulting from a Roy–Steiner analysis of pion–nucleon 
scattering data73. Defining importance weights
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we draw samples θ* from the discrete distribution {θ1, …, θn} with probability 
mass qi on θi. These samples are then approximately distributed according to the 
parameter posterior that we are seeking33,76.

Although we are operating with a finite number of n = 34 representative 
samples from the parameter PDF, it is reassuring that about half of them are within 
a factor of two from the most probable one in terms of the importance weight 
(Extended Data Fig. 5). Consequently, our final predictions will not be dominated 
by a very small number of interactions. In addition, as we do not anticipate the 
parameter PDF to be of a particularly complex shape, based on the results of the 
history match, consideration of the various error structures in the analysis and 
on the posterior predictive distributions (PPDs) shown in Fig. 3, and as we are 
mainly interested in examining such lower one- or two-dimensional PPDs, this 
sample size was deemed sufficient and the corresponding sampling error assumed 
subdominant. We use these samples to draw corresponding samples from
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This PPD is the set of all model predictions computed over likely values of the 
parameters, that is, drawing from the posterior PDF for θ. The full PPD is then 
defined, in analogy with equation (7), as the set evaluation of y which is the sum
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where we assume method and model errors to be independent of the parameters. 
In practice, we produce 104 samples from this full PPD for y by resampling the 
34 samples of the model PPD in equation (7) according to their importance 
weights, and adding samples from the error terms in equation (8). We perform 
model checking by comparing this final PPD with the data used in the iterative 
history-matching step, and in the likelihood calibration. In addition, we find that 
our predictions for the measured electric dipole polarizabilities of 48Ca and 208Pb as 
well as bulk properties of 208Pb serve as a validation of the reliability of our analysis 
and assigned errors (Fig. 2 and Extended Data Table 1).

In addition, we explored the sensitivity of our results to modifications of the 
likelihood definition. Specifically, we used a Student t distribution (ν = 5) to see 
the effects of allowing heavier tails, and we introduced an error covariance matrix 
to study the effect of possible correlations (with ρ ≈ 0.7) between the errors in 
the binding energy and radius of 48Ca. In the end, the differences in the extracted 
credibility regions was ~1%, and we therefore present only results obtained with 
the uncorrelated, multivariate normal distribution.

Our final predictions for Rskin(208Pb), Rskin(48Ca) and nuclear-matter properties 
are presented in Fig. 3 and Extended Data Table 2. For these observables, we use 
the Bayesian machine learning error model described below to assign relevant 
correlations between equation-of-state observables. For the model errors in 
Rskin(208Pb) and L, we use a correlation coefficient of ρ = 0.9 as motivated by the 
strong correlation between the observables computed with the 34 non-implausible 
samples. Note that S, L and K are computed at the specific saturation density of the 
corresponding non-implausible interaction.

Bayesian machine learning error model. Similar to equation (1), the predicted 
nuclear matter observables can be written as

y = y
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(ρ) + ε
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(ρ) + ε
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(ρ), (9)

where yk(ρ) is the CC prediction using our EFT model truncated at order k, εk(ρ) 
is the EFT truncation (model) error and εmethod(ρ) is the CC method error. In this 
work, we apply a Bayesian machine learning error model14 to quantify the density 
dependence of both the method and truncation errors. The error model is based 
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implausible LECs that yield model predictions too far from exper-
imental data. For this purpose, we use an implausibility measure 
(Methods) that links our model predictions and experimental 
observations as

z = M(θ) + ε

exp

+ ε

em

+ ε

method

+ ε

model

, (1)

relating the experimental observations z to emulated ab initio pre-
dictions M(θ) via the random variables ε

exp

, εem, εmethod and εmodel 
that represent experimental uncertainties, the emulator precision, 
method approximation errors and the model discrepancy due to the 
EFT truncation at next-to-next-to leading order, respectively. The 
parameter vector θ corresponds to the 17 LECs at this order. The 
method error represents, for example, model space truncations and 
other approximations in the employed ab initio many-body solv-
ers. The model discrepancy εmodel can be specified probabilistically 
since we assume to operate with an order-by-order improvable EFT 
description of the nuclear interaction (see Methods for details).

The final result of the five history-matching waves is a set of 34 
non-implausible samples in the 17-dimensional parameter space 
of the LECs. We then perform ab initio calculations for nuclear 
observables in 48Ca and 208Pb, as well as for properties of infinite 
nuclear matter.

Ab initio computations of 208Pb
We employ the coupled-cluster (CC)12,30,31, in-medium similarity 
renormalization group (IMSRG)32 and many-body perturbation 
theory (MBPT) methods to approximately solve the Schrödinger 
equation and obtain the ground-state energy and nucleon densities 
of 48Ca and 208Pb. We analyse the model space convergence and use 
the differences between the CC, IMSRG and MBPT results to esti-
mate the method approximation errors (Methods and Extended 
Data Figs. 3 and 4). The computational cost of these methods 
scales (only) polynomially with increasing numbers of nucleons 
and single-particle orbitals. The main challenge in computing 
208Pb is the vast number of matrix elements of the three-nucleon 
(3N) force which must be handled. We overcome this limita-
tion by using a recently introduced storage scheme in which we 
only store linear combinations of matrix elements directly enter-
ing the normal-ordered two-body approximation19 (see Methods  
for details).

Our ab initio predictions for finite nuclei are summarized in 
Fig. 2. The statistical approach that leads to these results is com-
posed of three stages. First, history matching identified a set of 
34 non-implausible interaction parameterizations. Second, model 
calibration is performed by weighting these parameterizations—
serving as prior samples—using a likelihood measure according to 
the principles of sampling/importance resampling33. This yields 34 
weighted samples from the LEC posterior probability density func-
tion (Extended Data Fig. 5). Specifically, we assume independent 
EFT and many-body method errors and construct a normally dis-
tributed data likelihood encompassing the ground-state energy per 
nucleon E/A and the point-proton radius Rp for 48Ca, and the energy 
E

2

+ of its first excited 2+ state. Our final predictions are therefore 
conditional on this calibration data.

We have tested the sensitivity of final results to the likelihood 
definition by repeating the calibration with a non-diagonal covari-
ance matrix or a Student t distribution with heavier tails, finding 
small (~1%) differences in the predicted credible regions. The EFT 
truncation errors are quantified by studying ab initio predictions at 
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Fig. 1 | Trend of realistic ab initio computations for the nuclear A-body 
problem. The bars highlight the years of the first realistic computations 
of doubly magic nuclei. The height of each bar corresponds to the mass 
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Fig. 2 | Ab initio posterior predictive distributions for light to heavy nuclei. 
Model checking is indicated by green (blue) distributions, corresponding to 
observables used for history-matching (likelihood calibration), while pure 
predictions are shown as pink distributions. The nuclear observables shown 
are the quadrupole moment Q, point-proton radii Rp, ground-state energies 
E (or energy per nucleon E/A), 2+ excitation energy E

2

+ and electric dipole 
polarizabilities αD. See Extended Data Table 1 for the numerical specification 
of the experimental data (z), errors (σi), medians (white circle) and 68% 
credibility regions (thick bar). The prediction for Rskin(208Pb) in the bottom 
panel is shown on an absolute scale and compared with experimental 
results using electroweak5 (purple), hadronic34,35 (red), electromagnetic4 
(green) and gravitational wave36 (blue) probes (from top to bottom; see 
Extended Data Fig. 7b for details).
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Various sources of uncertainty taken into account
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• Bayesian analysis of nuclear responses


• Spectral reconstruction method (LIT / ChEK)


• Role played by 2-body currents in LIT-CC predictions


• Spectral function (accounting for FSI, 2-body currents)


• Extension of the formalism to 40Ar

Outlook
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Thank you for attention!



Backup



• Basis functions 

                                 


• Stability of the inversion procedure:


• Vary the parameters ,  and number of basis functions  
(6-9)


• Use LITs of various width  (5, 10, 20 MeV)

RL(ω) =
N

∑
i=1

ciωn0e− ω
βi

n0 βi N

Γ

Details on inversion procedure



Lorentz integral transform

L(σ) = ∫
R(ω)

(ω − σ)2 + Γ2
dω = ∫

R(ω)
(ω + σ̃*)(ω + σ̃)

dω

L(σ) = ∫ dω∑
f

⟨Ψ0 |ρ† 1
ω + σ̃*

|Ψf⟩⟨Ψf |
1

ω + σ̃
ρ |Ψ0⟩δ(ω + E0 − Ef )

L(σ) = ∑
f

⟨Ψ0 |ρ† 1
Ef − E0 + σ̃*

|Ψf⟩⟨Ψf |
1

Ef − E0 + σ̃
ρ |Ψ0⟩

L(σ) = ∑
f

⟨Ψ0 |ρ† 1
H − E0 + σ̃*

|Ψf⟩⟨Ψf |
1

H − E0 + σ̃
ρ |Ψ0⟩

|Ψ̃⟩⟨Ψ̃ |
We need to solve

(H − E0 + σ̃) |Ψ̃⟩ = ρ |Ψ⟩ Schrodinger-like equation



Longitudinal response 40Ca

Sum over multipoles Underlying oscillator frequency

Inversion
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• Sum-rules


• Flux folding


• Histogram


• …

R(ω)

ω

Φ = ∫ f(ω)R(ω)dω

Φ ≈ Φ̃ = ∫ f(ω′￼)∫ KΛ(ω′￼, ω)R(ω)dωdω′￼

|Φ − Φ̃ | < ϵestimated error 

expansion in Chebyshev 
polynomials

KΛ(ω, σ) = ∑
k

ck(σ)Tk(ω)

ChEK method
Chebyshev Expansion of integral Kernel

A. Roggero Phys.Rev.A 102 (2020) 2, 022409

JES, A. Roggero Phys.Rev.E 105 (2022) 055310

 29



✓ Chiral 
Hamiltonians 
exploiting chiral 
symmetry 
(QCD);  
degrees of 
freedom


✓ counting scheme 
in 


✓ low energy 
constants (LEC) 
fit to data


✓ uncertainty 
assessment

π, N, (Δ)

( Q
Λ )

n

Nuclear hamiltonian
ℋ = ∑

i

p2
i

2m
+ ∑

i<j

vij + ∑
i<j<k

Vijk + . . .

n = 0

n = 2

n = 3

n = 4
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Electroweak currents

J = ∑
i

ji + ∑
i<j

jij + . . .
7

the comparison with Refs. [18] and [7] and helps one to
assess of the size of the contributions of the various terms
in the current operator.

In Table I, we show the CC- and NC-induced inclusive
⌫̄/⌫-d cross sections obtained using the EM500 interac-
tion and current operators of various �EFT orders. The
EM500 interactions contain all e↵ects that are suppressed
by factors of up to (Q/⇤b)4 compared to the leading order
�EFT Hamiltonian. With wave functions obtained by
solving the partial wave Lippmann-Schwinger equations
for this interaction, we vary the order of the weak current
operator at (Q/⇤b)�3,�2,�1,0 to study the order-by-order
convergence of the current in the ⌫̄/⌫-d cross sections.
With increasing energy, the 1B Fermi and Gamow-Teller
operators, which contribute at the leading (Q/⇤b)�3 or-
der, underpredict (overpredict) the ⌫-d (⌫̄-d) cross sec-
tions compared to values obtained with operators up to
(Q/⇤b)0 order. The contributions of the 1B convection
and spin-magnetization currents, which enter at order
(Q/⇤b)�2, amount to about 30% in the ✏ ⇡ 100 MeV re-
gion. The pion-exchange 2B contributions to the vector
current and axial charge operators, which formally enter
at order (Q/⇤b)�1, are smaller than the axial 2B cur-
rent contributions at (Q/⇤b)0. While this is contrary to
expectations from �EFT power counting, a similar con-
vergence pattern was also found by Ref. [18]. Overall,
the inclusion of 2B currents increases the cross section
in all of the four reaction channels by about 3-4% at
✏ ⇡ 100 MeV, which is consistent with the results of
Ref. [18].

Agreement is seen between our 1B results and those of
Ref. [7]. The slight di↵erence of about 1% or less is due to
the AV18 [51] wave functions used by Ref. [7], since the
�EFT 1B operators used in this work are the same as the
phenomenological operators employed in that study. We
agree also within approximately 1% with Ref. [18], which
uses the same interactions for the wave functions but also
includes the (Q/⇤b)1 current operators not considered in
this work.

B. Uncertainty estimates

We now estimate, for the first time on this observable,
the uncertainty from the potential by using the NNLOsim

family of 42 interactions calculated up to the third chiral
order [19, 20]. These have been fitted at seven di↵erent
values of the regulator cuto↵ ⇤ in the 450-600 MeV in-
terval to six di↵erent Tlab ranges in the NN scattering
database. The LECs in this family of interactions were
fitted simultaneously to ⇡N and selected NN scattering
data, the energies and charge radii of 2,3H and 3He, the
quadrupole moment of 2H, as well as the �-decay width of
3H. All of these interactions have the correct long-range
properties, and the di↵erences between them provide a
conservative estimate of the uncertainty due to the short-
distance model ambiguity of �EFT.

In Fig. 1 we show, along with the EM500 curves, the

FIG. 1. (Color online) The NC and CC ⌫̄/⌫-d inclusive cross
sections with the EM500 (black, dashed) and NNLOsim (light
band) interactions.

cross sections calculated using the NNLOsim interactions
as bands. The widths of the bands are estimates of the
uncertainties due to the sensitivity to the �EFT cut-
o↵ and variations in the pool of fit data used to con-
strain the LECs, including ĉ1,3,4 and d̂R in the currents.
These widths grow with ✏ and amount to about 3% at
✏ ⇡ 100 MeV for all of the four processes. They are thus
similar in size to the e↵ect of 2B currents. The interac-
tions and currents in the NNLOsim results are of the same
chiral order, i.e., both of them include all corrections that
are suppressed by factors of up to (Q/⇤b)3 compared to
the leading order. Based on the observed convergence
of the cross sections in Table I, and on the results of
Ref. [18] for higher-order current contributions, we antic-
ipate the size of neglected terms in the chiral expansion of
the weak current operator to be 1% at ✏ ⇡ 100 MeV. This
is smaller than the NNLOsim uncertainties, which are—
in principle as well as in practice— similar in size to the
(Q/⇤b)0 current contributions which we have included
in our calculations. We therefore assign a conservative
estimate of 3% to the nuclear structure uncertainties in
the cross section at 100 MeV ⌫̄/⌫ energy. We now turn
to the question of the sensitivity of these results to the
single-nucleon axial form factor. Ref. [52] analyzed the
world data for ⌫d scattering by employing the calcula-
tions of Refs. [7, 53] to obtain hr2Ai = 0.46 ± 0.22 fm2.

B. Acharya,  S. Bacca

Phys.Rev.C 101 (2020) 1, 015505

ν(ν̄) + d → μ± + X

known to give significant 
contribution for neutrino-

nucleus scattering

Multipole decomposition for 1- 
and 2-body EW currents

NN

NNγ, W ±, Z0

N

Nγ, W ±, Z0

Current decomposition into multipoles 
needed for various ab initio methods: 
CC, No Core Shell Model, In-Medium 

Similarity Renormalization Group

ν(ν̄) + d → ν(ν̄) + X
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