Uncertainty quantification in coupled cluster theory Joanna Sobczyk

Theoretical Physics Uncertainties to Empower Neutrino Experiments, 31 Oct 2023

Precision Physics, Fundamental Interaction and Structure of Matter

Alexander von Humboldt Stiftung/Foundation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101026014

An initio nuclear methods

 $\mathscr{H} | \Psi \rangle = E | \Psi \rangle$

"we interpret the ab initio method to be a systematically improvable approach for quantitatively describing nuclei using the finest resolution scale possible while maximizing its predictive capabilities."

A. Ekström et al, Front. Phys.11 (2023) 29094

- Developments on the side of many body methods (IMSRG, CC, SCGF, QMC, etc.)
- Developments of chiral nuclear forces (\rightarrow faster convergence)

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle$

Include correlations through e^T operator

similarity transformed Hamiltonian

$$e^{-T}\mathscr{H}e^{T}|\Psi\rangle\equiv\bar{\mathscr{H}}|\Psi\rangle=E|\Psi\rangle$$

Expansion:
$$T = \sum t_a^i a_a^{\dagger} a_i + \sum t_{ab}^{ij} a_a^{\dagger} a_b^{\dagger} a_i a_j + \dots$$

singles doubles

←coefficients obtained through coupled cluster equations

Coupled cluster method

- ✓ Controlled approximation through truncation in *T*
- ✓ Polynomial scaling with A (predictions for ¹⁰⁰Sn, ²⁰⁸Pb)
- ✓ Size extensive
- ✓ Works most efficiently for doubly magic nuclei

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$\mathscr{H} | \Psi \rangle = E | \Psi \rangle$$

- order of expansion
- low energy constants fit to data

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$\mathscr{H} | \Psi \rangle = E | \Psi \rangle$$

- ➡ order of expansion
- low energy constants fit to data

Electroweak currents

$$J^{\mu} = (\rho, \vec{j})$$

- order of expansion
- 2-body currents important

Ab initio nuclear theory for neutrinos

Nuclear chiral Hamiltonian

$$\mathscr{H} | \Psi \rangle = E | \Psi \rangle$$

- order of expansion
- Iow energy constants fit to data

Electroweak currents

$$J^{\mu} = (\rho, \vec{j})$$

- order of expansion
- 2-body currents important

Coupled cluster method

$$\mathscr{A} = \langle \Psi_m | J_\mu | \Psi_n \rangle$$

- truncation in correlations
- model space dependence

	2N force	3N force	4N force
LO	\times +-+		
NLO	X ka ka M ==		
N2LO		$\texttt{H+H-X}\times$	
N3LO	× < ≈	<u> .↓</u> ; - <x< td=""><td></td></x<>	

Nuclear response

 $\hat{H} | \psi_A \rangle = E | \psi_A \rangle$

Many-body problem

7

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

Electroweak responses consistent FSI treatment

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

Electroweak responses consistent FSI treatment

7

Electroweak responses consistent FSI treatment

 ν_{μ}

7

Electroweak responses consistent FSI treatment

 ν_{μ}

$$\hat{H} | \psi_A \rangle = E | \psi_A \rangle$$

Many-body problem

Lorentz Integral Transform (LIT)

$$R_{\mu\nu}(\omega,q) = \int_{f} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

continuum spectrum
Integral
transform

$$S_{\mu\nu}(\sigma,q) = \int d\omega K(\omega,\sigma) R_{\mu\nu}(\omega,q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathscr{R} - E_{0},\sigma) J_{\nu} | \Psi \rangle$$

Lorentzian kernel: $K_{\Lambda}(\omega, \sigma) = \frac{1}{\pi} \frac{\Lambda}{\Lambda^2 + (\omega - \sigma)^2}$

 $S_{\mu\nu}$ has to be inverted to get access to $R_{\mu\nu}$

Lorentz Integral Transform

Electromagnetic responses ⁴⁰Ca

$$\frac{d\sigma}{d\omega dq}\Big|_e = \sigma_M \left(v_L R_L + v_T R_T \right)$$

- \checkmark CC singles & doubles
- ✓ two different chiral Hamiltonians
- ✓ inversion procedure

Chiral expansion for ⁴⁰Ca (Electromagnetic responses)

- ✓ Two orders of chiral expansion
- ✓ Convergence better for lower q (as expected)
- Higher order brings results closer to the data

B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022) JES, B. Acharya, S. Bacca, G. Hagen; arXiV: 2310.03109

ChEK method

Chebyshev Expansion of integral Kernel

A. Roggero Phys.Rev.A 102 (2020) 2, 022409 JES, A. Roggero Phys.Rev.E 105 (2022) 055310

Histograms using ChEK

Integral transform expanded in Chebyshev polynomials

$$\Phi\approx \tilde{\Phi} = \int f(\omega') \int K_{\Lambda}(\omega',\omega) R(\omega) d\omega d\omega'$$

- Sum-rules
- Flux folding
- Histogram

• ...

Histograms using ChEK

Integral transform expanded in Chebyshev polynomials

$$\Phi \approx \tilde{\Phi} = \int f(\omega') \int K_{\Lambda}(\omega', \omega) R(\omega) d\omega d\omega'$$

- Sum-rules
- Flux folding
- Histogram \bullet

...

Build histogram

 $\Phi =$

 $|\Phi - \tilde{\Phi}| < \epsilon$ estimated error

ChEK method

Chebyshev Expansion of integral Kernel

- ➡ No assumption about the shape of the response
- ➡ Rigorous error estimation
- Convenient when the response has a complicated structure

Q²/2M

16O spectral function

- Spectral reconstruction using expansion in Chebyshev polynomials + building histograms
- Uncertainty sources:

$$\checkmark K(\omega, \sigma) = \sum_{k=0}^{N} c_k(\sigma) T_k(\omega)$$

✓ Kernel's width Λ

16O spectral function

Error propagation to cross sections

Phenomenological optical potential

E. D. Cooper et al. *Phys.Rev.C* 47, 297–311

growing **q** momentum transfer \rightarrow final state interactions play minor role

16O spectral function

Error propagation to cross sections

- CC 0π events
- Spectral function implemented into NuWro Monte Carlo generator

 $\nu_{\mu} + {}^{16}\mathrm{O} \rightarrow \mu^- + X$

Robust uncertainty quantification

to nuclear forces

Baishan Hu^{®1,11}, Weiguang Jiang^{®2,11}, Takayuki Miyagi^{®1,3,4,11}, Zhonghao Sun^{5,6,11}, Andreas Ekström², Christian Forssén^{®2}, Gaute Hagen^{®1,5,6}, Jason D. Holt^{®1,7}, Thomas Papenbrock^{®5,6}, S. Ragnar Stroberg^{8,9} and Ian Vernon¹⁰

• **Bayesian inference**: explore the space of 17 low energy constants of nuclear Hamiltonian

 $\operatorname{pr}(\theta | D) \propto \mathscr{L}(\theta) \operatorname{pr}(\theta)$

Posterior probability
density functionLikelihood $\mathscr{L}(\theta) \equiv pr(D \mid \theta)$

• posterior predictive distributions

 $\{y(\theta): \theta \sim \operatorname{pr}(\theta \,|\, D)\}$

Robust uncertainty quantification

 $PPD_{parametric} = \{y_k(\theta) : \theta \sim p(\theta|\mathcal{D}_{cal})\}.$

(7)

Various sources of uncertainty taken into account $p(\theta | D_{cal})$

Posterior predictive distributions

 ε_{exp}

21

Outlook

- Bayesian analysis of nuclear responses
- Spectral reconstruction method (LIT / ChEK)
- Role played by 2-body currents in LIT-CC predictions
- Spectral function (accounting for FSI, 2-body currents)
- Extension of the formalism to 4°Ar

https://indico.mitp.uni-mainz.de/event/357

Organizers:

Christian Drischler (Ohio Univ.) Weiguang Jiang (JGU Mainz) Takayuki Miyagi (TU Darmstadt) Joanna Sobczyk (JGU Mainz)

Thank you for attention!

Backup

Details on inversion procedure

• Basis functions

$$R_L(\omega) = \sum_{i=1}^N c_i \omega^{n_0} e^{-\frac{\omega}{\beta_i}}$$

- Stability of the inversion procedure:
 - Vary the parameters n₀, β_i and number of basis functions N (6-9)
 - Use LITs of various width Γ (5, 10, 20 MeV)

Lorentz integral transform

$$L(\sigma) = \int \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} d\omega = \int \frac{R(\omega)}{(\omega + \tilde{\sigma}^*)(\omega + \tilde{\sigma})} d\omega$$

$$L(\sigma) = \int d\omega \sum_{f} \langle \Psi_{0} | \rho^{\dagger} \frac{1}{\omega + \tilde{\sigma}^{*}} | \Psi_{f} \rangle \langle \Psi_{f} | \frac{1}{\omega + \tilde{\sigma}} \rho | \Psi_{0} \rangle \delta(\omega + E_{0} - E_{f})$$

$$L(\sigma) = \sum_{f} \langle \Psi_{0} | \rho^{\dagger} \frac{1}{E_{f} - E_{0} + \tilde{\sigma}^{*}} | \Psi_{f} \rangle \langle \Psi_{f} | \frac{1}{E_{f} - E_{0} + \tilde{\sigma}} \rho | \Psi_{0} \rangle$$

We need to solve

$$(H - E_0 + \tilde{\sigma}) | \tilde{\Psi} \rangle = \rho | \Psi \rangle \qquad \text{Schroding}$$

Schrodinger-like equation

Longitudinal response ⁴⁰Ca

ChEK method

Chebyshev Expansion of integral Kernel

$$\Phi = \int f(\omega) R(\omega) d\omega$$

- Sum-rules
- Flux folding
- Histogram

• ...

$$R(\omega) = \int f(\omega') \int K_{\Lambda}(\omega', \omega) R(\omega) d\omega d\omega'$$

expansion in Chebyshev polynomials

estimated error

$$K_{\Lambda}(\omega,\sigma) = \sum_{k} c_{k}(\sigma) T_{k}(\omega)$$

 $|\Phi - \tilde{\Phi}| < \epsilon$

A. Roggero Phys.Rev.A 102 (2020) 2, 022409 JES, A. Roggero Phys.Rev.E 105 (2022) 055310

Nuclear hamiltonian

$$\mathscr{H} = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

- ✓ Chiral Hamiltonians exploiting chiral symmetry (QCD); π , N, (Δ) degrees of freedom
- ✓ counting scheme in $\left(\frac{Q}{\Lambda}\right)^n$
- ✓ low energy constants (LEC) fit to data
- ✓ uncertainty assessment

Electroweak currents

Current decomposition into multipoles needed for various *ab initio* methods: CC, No Core Shell Model, In-Medium Similarity Renormalization Group

Multipole decomposition for 1and 2-body EW currents

> B. Acharya, S. Bacca *Phys.Rev.C* 101 (2020) 1, 015505