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Ref. [5], the peak height would be strongly µB-dependent
and the collapse of the �(h ̄ i) curves at di↵erent (imag-
inary) chemical potentials would not happen.

FIG. 2. Compilation of 4 (left) and 2 (right) coe�cients
from recent lattice studies. We only include those papers
where physical quark masses were used, a controlled con-
tinuum extrapolation was performed, and either strangeness
neutrality or µs = 0 was considered a. The colors encode
the numerical approach. Blue points indicate simulations at
µB = 0 only, where the µB dependence of Tc was extracted
using a Taylor expansion. The green points refer to works
where imaginary chemical potentials were used.
a Note that while µs = 0 implies µS = µB/3 for all values of µB ,
strangeness neutrality implies µS ⇡ µB/4 for small values of
µB .

The transition line and its analytical continuation.—

Keeping the previous observations in mind, one can per-
form a precise determination of Tc, as defined by the
peak of � in Eq. (2) for various values of the imaginary
chemical potential. Tc(µ2

B) can then be fitted for the
coe�cients 2 and 4. This requires the following steps:

i) Determine the renormalized condensate h ̄ i and
susceptibility � in a two-dimensional parameter
scan in T and ImµB using lattice simulations. Use
these to obtain the susceptibility as a function of
the condensate.

ii) Search for the peak of �(h ̄ i) through a low-order
polynomial fit for each Nt and ImµB obtaining
h ̄ ic(Nt, ImµB).

iii) Use an interpolation of h ̄ i(T ) to convert the
h ̄ ic to Tc for each ImµB/T .

iv) Perform a global fit of Tc(Nt, ImµB/Tc) to deter-
mine the coe�cients 2 and 4 for 1/N2

t = 0. For
this step we use various functions – all containing
an independent 6 – with coe�cients depending lin-
early on 1/N2

t . The choice of the fit functions is
motivated by the mock data analysis presented in
the supplemental material.

The total systematic error comes from a pool of 256
analyses: in step i) we have two choices for the scale
setting, two choices for the renormalization of h ̄ i and
two for the renormalization of �; in step ii) we use two
choices for the fit function used to obtain the maximum of
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FIG. 3. Top: Transition line extrapolated from lattice sim-
ulations at imaginary chemical potential using an analytical
continuation with the ansätze used in step iv) of our analysis
(green band) compared with an extrapolation using the for-
mula in Eq. (1) up to the order of 4 (red band) or up to
2 (blue band). The proximity of the full and NLO result
suggests that the higher order corrections are small in the
range of µB considered here. Note that considering only the
error bar of 2 underestimates the full error. The numerical
values for the final analytical continuation, together with its
error, are tabulated in the supplemental material. Bottom:
Crossover line from the lattice compared with a prediction
from truncated Dyson-Schwinger equations [40] and some
estimates of the chemical freezeout parameters in heavy ion
collisions [41–45]. Note that the width of the green band is
not a representation of the width of the crossover region, it de-
picts the statistical and systematic errors achievable with the
particular definition of the crossover temperature Tc adopted
in this work. Note also that the definition of the crossover
temperature adopted in Ref. [40] is di↵erent from the one
used in this work.

�(h ̄ i) and two choices for the fit range; in step iii) we
use two di↵erent interpolations of h ̄ i(T ); in step iv)
we use two global fit functions and two choices for the
range in ImµB/T . This leads to a total of 28 = 256 ways
to analyze our lattice data. These results are combined
with a uniform weight. More details on the analyses, the
fit qualities and the error estimates can be found in the
supplemental material. We finally obtain:

2 = 0.0153± 0.0018 ,

4 = 0.00032± 0.00067 .
(3)

We stress that the uncertainties on these two quantities
are correlated. We put these results in the context of
previous lattice studies in Fig. 2. The extrapolated value
of Tc(µB) is shown in Fig. 3 (green band). Note that the
errors on 2 and 4 are dominated by the statistical er-
rors, as shown in the detailed discussion of the systematic
error estimate in the supplemental material.
Since Ref. [25] we have more than doubled the statis-

tics and introduced a more precise analysis. The overall
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We provide the most accurate results for the QCD transition line so far. We optimize the definition
of the crossover temperature Tc, allowing for its very precise determination, and extrapolate from
imaginary chemical potential up to real µB ⇡ 300 MeV. The definition of Tc adopted in this work
is based on the observation that the chiral susceptibility as a function of the condensate is an
almost universal curve at zero and imaganiary µB . We obtain the parameters 2 = 0.0153(18) and
4 = 0.00032(67) as a continuum extrapolation based on Nt = 10, 12 and 16 lattices with physical
quark masses. We also extrapolate the peak value of the chiral susceptibility and the width of
the chiral transition along the crossover line. In fact, both of these are consistent with a constant
function of µB . We see no sign of criticality in the explored range.

Introduction— One of the most important open prob-
lems in the study of Quantum Chromodynamics (QCD)
at finite temperature and density is the determination
of the phase diagram of the theory in the temperature
(T )-baryo-chemical potential (µB) plane. It is now es-
tablished by first principle lattice QCD calculations that
the transition at µB = 0 is a smooth crossover [1, 2] for
physical quark masses. Due to the lack of a real phase
transition, the crossover temperature is of course ambigu-
ous, since di↵erent definitions can lead to di↵erent values
for it. Observables related to chiral symmetry (i.e. the
chiral condensate and its susceptibility) yield a transition
temperature around 155� 160 MeV [3–6].

Extending our knowledge to the µB > 0 part of the
phase diagram turns out to be very challenging, due
to the notorious sign problem. Since this makes direct
simulation at finite µB impossible, the state-of-the-art
for finite density QCD on fine lattices is to use one of
two extrapolation methods. The first method is the di-
rect calculation of Taylor coe�cients [7–17] using sim-
ulations at µB = 0, while the second is to use simula-
tions at imaginary chemical potentials (µ2

B < 0) where
the sign problem is absent, and later perform an ex-
trapolation of di↵erent quantities to a real chemical po-
tential (µ2

B > 0) [18–31]. It is often conjectured that
in the (T, µB) plane the crossover line, departing from
(Tc, µB = 0), eventually turns into a first-order transition
line. The point (TCEP, µCEP) separating the crossover
and the first-order transitions is known as the critical

endpoint (CEP), where the transition is expected to be
of second order. Though there have been attempts in ex-
tracting information about the location of the supposed
CEP from lattice simulations [15, 26, 32–37], these at-
tempts face great di�culties, as extrapolation-type meth-
ods have the property that they give reliable results
mostly in the immediate vicinity of µB = 0.
In this letter, we address the problem of calculating the

Taylor coe�cients of the crossover temperature around
µB = 0, parametrized as:

Tc(µB)

Tc(µB = 0)
= 1� 2

✓
µB

Tc(µB)

◆2

� 4

✓
µB

Tc(µB)

◆4

. . .

(1)
along the phenomenologically relevant strangeness neu-
trality line. In this work we improve the uncertainty on
4 available in the literature [16] by a factor of 6, giving a
state-of-the-art determination of the cross-over line in the
(T, µB) plane. In particular, as we will show, at chemical
potentials µB > 200 MeV the error on the Tc extrapola-
tion is dominated by the sub-leading coe�cients e.g. 4.
The coe�cients 2 and 4 can be calculated with either
one of the standard extrapolation methods. A direct eval-
uation of the µB derivatives from µB = 0 ensembles was
used in Refs. [38, 39]. The current state-of-the art using
the µB = 0 simulation method is Ref. [16], which includes
the first continuum extrapolated results for 4. Here we
will employ an analytical continuation from imaginary
µB instead, and use lattices as fine as Nt = 16. This
is motivated by the fact that the signal/noise ratio of
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Keeping the previous observations in mind, one can per-
form a precise determination of Tc, as defined by the
peak of � in Eq. (2) for various values of the imaginary
chemical potential. Tc(µ2

B) can then be fitted for the
coe�cients 2 and 4. This requires the following steps:

i) Determine the renormalized condensate h ̄ i and
susceptibility � in a two-dimensional parameter
scan in T and ImµB using lattice simulations. Use
these to obtain the susceptibility as a function of
the condensate.

ii) Search for the peak of �(h ̄ i) through a low-order
polynomial fit for each Nt and ImµB obtaining
h ̄ ic(Nt, ImµB).

iii) Use an interpolation of h ̄ i(T ) to convert the
h ̄ ic to Tc for each ImµB/T .

iv) Perform a global fit of Tc(Nt, ImµB/Tc) to deter-
mine the coe�cients 2 and 4 for 1/N2

t = 0. For
this step we use various functions – all containing
an independent 6 – with coe�cients depending lin-
early on 1/N2

t . The choice of the fit functions is
motivated by the mock data analysis presented in
the supplemental material.

The total systematic error comes from a pool of 256
analyses: in step i) we have two choices for the scale
setting, two choices for the renormalization of h ̄ i and
two for the renormalization of �; in step ii) we use two
choices for the fit function used to obtain the maximum of
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FIG. 3. Top: Transition line extrapolated from lattice sim-
ulations at imaginary chemical potential using an analytical
continuation with the ansätze used in step iv) of our analysis
(green band) compared with an extrapolation using the for-
mula in Eq. (1) up to the order of 4 (red band) or up to
2 (blue band). The proximity of the full and NLO result
suggests that the higher order corrections are small in the
range of µB considered here. Note that considering only the
error bar of 2 underestimates the full error. The numerical
values for the final analytical continuation, together with its
error, are tabulated in the supplemental material. Bottom:
Crossover line from the lattice compared with a prediction
from truncated Dyson-Schwinger equations [40] and some
estimates of the chemical freezeout parameters in heavy ion
collisions [41–45]. Note that the width of the green band is
not a representation of the width of the crossover region, it de-
picts the statistical and systematic errors achievable with the
particular definition of the crossover temperature Tc adopted
in this work. Note also that the definition of the crossover
temperature adopted in Ref. [40] is di↵erent from the one
used in this work.

�(h ̄ i) and two choices for the fit range; in step iii) we
use two di↵erent interpolations of h ̄ i(T ); in step iv)
we use two global fit functions and two choices for the
range in ImµB/T . This leads to a total of 28 = 256 ways
to analyze our lattice data. These results are combined
with a uniform weight. More details on the analyses, the
fit qualities and the error estimates can be found in the
supplemental material. We finally obtain:

2 = 0.0153± 0.0018 ,

4 = 0.00032± 0.00067 .
(3)

We stress that the uncertainties on these two quantities
are correlated. We put these results in the context of
previous lattice studies in Fig. 2. The extrapolated value
of Tc(µB) is shown in Fig. 3 (green band). Note that the
errors on 2 and 4 are dominated by the statistical er-
rors, as shown in the detailed discussion of the systematic
error estimate in the supplemental material.
Since Ref. [25] we have more than doubled the statis-

tics and introduced a more precise analysis. The overall
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Jülich Supercomputing Centre,
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phase diagram turns out to be very challenging, due
to the notorious sign problem. Since this makes direct
simulation at finite µB impossible, the state-of-the-art
for finite density QCD on fine lattices is to use one of
two extrapolation methods. The first method is the di-
rect calculation of Taylor coe�cients [7–17] using sim-
ulations at µB = 0, while the second is to use simula-
tions at imaginary chemical potentials (µ2

B < 0) where
the sign problem is absent, and later perform an ex-
trapolation of di↵erent quantities to a real chemical po-
tential (µ2

B > 0) [18–31]. It is often conjectured that
in the (T, µB) plane the crossover line, departing from
(Tc, µB = 0), eventually turns into a first-order transition
line. The point (TCEP, µCEP) separating the crossover
and the first-order transitions is known as the critical

endpoint (CEP), where the transition is expected to be
of second order. Though there have been attempts in ex-
tracting information about the location of the supposed
CEP from lattice simulations [15, 26, 32–37], these at-
tempts face great di�culties, as extrapolation-type meth-
ods have the property that they give reliable results
mostly in the immediate vicinity of µB = 0.
In this letter, we address the problem of calculating the

Taylor coe�cients of the crossover temperature around
µB = 0, parametrized as:

Tc(µB)

Tc(µB = 0)
= 1� 2

✓
µB

Tc(µB)

◆2

� 4

✓
µB

Tc(µB)

◆4

. . .

(1)
along the phenomenologically relevant strangeness neu-
trality line. In this work we improve the uncertainty on
4 available in the literature [16] by a factor of 6, giving a
state-of-the-art determination of the cross-over line in the
(T, µB) plane. In particular, as we will show, at chemical
potentials µB > 200 MeV the error on the Tc extrapola-
tion is dominated by the sub-leading coe�cients e.g. 4.
The coe�cients 2 and 4 can be calculated with either
one of the standard extrapolation methods. A direct eval-
uation of the µB derivatives from µB = 0 ensembles was
used in Refs. [38, 39]. The current state-of-the art using
the µB = 0 simulation method is Ref. [16], which includes
the first continuum extrapolated results for 4. Here we
will employ an analytical continuation from imaginary
µB instead, and use lattices as fine as Nt = 16. This
is motivated by the fact that the signal/noise ratio of
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➤ Plot out even further and make a choice of a parabola that lies within the error band

Equation of state for QCD with a critical point

4

Up to !("B4):
P. Parotto, DM, et al PRC (2020)

• Map a parameterization of the 3D Ising model critical point to QCD variables 
(BEST EoS): 

P(T, μB) = T4 ∑
n

cNon−Ising
n (T )( μB

T )
n

+ PQCD
crit (T, μB)

• Reconstruct QCD pressure via Taylor 
expansion using coefficients extracted on the 
lattice: T4cLAT

n (T ) = T4cNon−Ising
n (T ) + cIsing

n (T )

Up to !("B4) + strangeness neutrality:
J.M. Karthein, DM, et al EPJ+ (2021)

• Reduce number of free parameters by 
imposing:
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FIG. 6. Results for the chiral phase transition line to O(µ4
B)

from Ref. [52], given by the blue band, along with the specific
curve utilized in this analysis shown in black. This curve was
determined by fitting the lattice data from Ref. [52] that obey
the implicit equation shown in Eq. (14).

FIG. 7. Ising pressure isotherm as mapped onto the QCD
phase diagram for a critical point chosen to be the same as
that of Ref. [4, 5] where µB,c = 350 MeV.

creases, the lattice results become less constraining. As
such, we choose a parametrization of the chiral phase
transition line within the range of values estimated by
the lattice calculations, shown as the black, solid line in
Fig. 6. This choice is motivated by obtaining a curve that
bends steeply enough to yield larger angles ω1 as µB in-
creases. Any such parametrization would be acceptable,
as long as the curve terminates at baryon chemical po-
tentials larger than that of the proton mass where we
know confined hadronic matter exists. Additionally, the
transition line should bend down to touch the µB-axis
and become orthogonal at T = 0 due to the third law of
thermodynamics [53]. As in Eq. (14), we use a fourth
order polynomial in order to parametrize our fit curve.
As such, we do not expect to capture the singularity at
T = 0, where εT/εµB becomes infinite.

Given our parametrized fit curve, we find a di!erent
angle ω1 for µB,c = 350 MeV than Ref. [4]. In addition,

the value of Tc for a given choice of the critical chemical
potential, µB,c, will also be adjusted. In this case, our
updated parameters which are fixed by the placement of
the critical point along the chiral phase transition line are
ω1 = 4.6o and Tc = 146 MeV for the choice µB,c = 350
MeV.

Fig. 7 shows a QCD isotherm for the pressure in the
case of such a shallow mapping of ω1 = 4.6o along the
chiral phase transition line. First, the mapping of the
features of the first order phase transition from the Ising
model to QCD should be understood. In this figure, the
three solutions for the pressure, coming from the three
solutions for M(h) as shown in Eq. (5), are shown in
di!erent colors along with the value of temperature to
which this isotherm corresponds. The coexistence region
begins where the first two solutions, shown here in yel-
low and blue, meet at µB > µB,c, while the spinodal
points are located where the first two solutions meet the
third one shown in orange (see Fig. 3). In this case of
a small angle, we do not capture the point where the
second and third solutions meet, since this is at a dif-
ferent temperature (see discussion in Sec. III A). Here,
we chose an isotherm that is close to the critical point,
T = 0.95Tc = 140 MeV, in order to depict the behavior
of the spinodals, particularly to point out that the shape
of the isotherms becomes distorted (compare to Fig. 3).
In fact, the rightmost spinodal becomes stretched out,
moving through the phase diagram to another value of T
and µB .

After showing the isothermal behavior for small angles
ω1, we explore other choices for the location of the crit-
ical point, which consequently change ω1. The angle of
the mapping tangent to the chiral phase transition line
increases with increasing µB as the parabola approaches
its terminus at T = 0. Results for the isotherms for sev-
eral di!erent options for the location of the critical point
at µB,c = 550, 750, 900 MeV are shown in Fig. 8. As dis-
cussed in Sec. III, when choosing the critical point along
the chiral phase transition line we obtain a constraint
on the angle ω1. These options for placing the critical
point lead to mapping angles of ω1 = 9.2o, 16.6o, 28.3o,
respectively. We show that the spinodal features seen in
the isothermal trajectories are still distorted for an an-
gle of 9.2o, at least at this temperature relatively close
to the critical point. On the other hand, for the sub-
sequent choices corresponding to ω1 = 16.6o, 28.3o, we
capture the typical isothermal behavior. In particular,
we can now identify the metastable phases beyond the
coexistence point. We see that both these choices for
the placement of the critical point give rise to super-
heated and super-cooled phases, where the blue and yel-
low solutions track past the coexistence point and begin
to describe a metastable state. In between the spinodal
points lies the instability and the unique unstable solu-
tion shown in orange. From this, we demonstrate the
strong influence that the angle ω1 has on the mapping of
the spinodal points onto the QCD phase diagram. This
is, however, not the only parameter a!ecting the spin-

J.M. Karthein, V. Koch, C. Ratti, PRD (2025)

Choose location to map Ising critical point 
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(BEST EoS): 

P(T, μB) = T4 ∑
n

cNon−Ising
n (T )( μB

T )
n

+ PQCD
crit (T, μB)

• Reconstruct QCD pressure via Taylor 
expansion using coefficients extracted on the 
lattice: T4cLAT

n (T ) = T4cNon−Ising
n (T ) + cIsing

n (T )

Up to !("B4) + strangeness neutrality:
J.M. Karthein, DM, et al EPJ+ (2021)
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➤ Make a choice of the location informed by recent model predictions and study the 
uncertainty in the position of freeze-out in the fluctuation observables

26

FIG. 2: Three freezeout curves displaced downward relative to the crossover curve !T
→ = 0 (orange) by !Tf = 4, 6

and 9 MeV (solid blue, red and black curves, respectively). By construction, the Ising-r axis maps onto the crossover
curve. Because we have chosen ω2 = 0, the Ising-h axis maps onto the horizontal orange dotted line. The dashed
blue, red and black curves are curves of constant Ising-h that are coincident with the three freezeout curves where the
freezeout curves each cross the Ising-h axis. We see that the freezeout curves are close to being curves of constant h.

that relied upon making a parametrized ansatz for how the correlation length ε varies with T and µB [39]. We

shall see, though, that our results for the fluctuations of thermodynamic quantities (in particular, the baryon number

density) and, consequently via the maximum entropy freeze-out prescription, for the factorial cumulants of the proton

multiplicity are fully consistent with our results from Section II for how the correlation length depends on T and

µB . In that Section, we presented an update on εQCD(µB , T ) utilizing what is known from universality [73] and the

mapping (4) between the universal Ising variables and the ones for QCD. In Fig. 1 we illustrated the e”ects of the

nonuniversal mapping parameters w and ϑ on the contours of ε2QCD/w
2 obtained via mapping the universal features

of an Ising critical point onto the QCD phase diagram. In the first part of this Section, Sect. IVA, we use the full

3D Ising EoS to study the behavior of contour plots of the critical contribution to ordinary cumulants of the baryon

number density, i.e !Hkn →
〈
ϖn

k
〉
, (where k indicates the order of the correlation function and n stands for baryon

number density) while varying the mapping parameters w and ϑ in the same way that we did in Sect. II B, choosing

w = {1, 5, 20} and ϑ = {0.5, 1, 2}. These choices were motivated by previous studies on the causality and stability of

the critical EoS [62, 64, 66]. We shall compare our results for !H2n = ↑ϖn
2
↓ directly to ε

2
QCD/w

2 plotted in Fig. 1.

We also fix the remaining parameters in the mapping between QCD and the Ising model as in Sect. II B, choosing:

µc = 600 MeV (leading to Tc = 90 MeV and ω1 = 16.6o) and ω2 = 0. The choice ω2 = 0 is somewhat special for

baryon density cumulants, since this reduces derivatives with respect to µ to derivatives with respect to h at constant

r. We do know from the work of Ref. [65], though, that ω2↔ω1 vanishes in the chiral limit and so is reasonably small

in the real world. Since ω1 = 16.6↑ at µc = 600 MeV, this means that ω2 cannot be far from zero.

Quantifying Fluctuation Signatures

25

Recall that the repeated index b corresponds to integrating over fluid cells on the freezeout hypersurface and summing

over b → {ω, n} and the repeated index B corresponds to integrating over phase space variables according to Eq. (23)

and summing over all hadronic species in the particle description of the system just after freezeout. The
∫
Ã is only

an integration over phase space variables and summation over spin as defined in Eq.(37).) The singular contribution

to the IRCs of the particle multiplicities near the critical point can now be evaluated directly from the EoS using the

expression (43) because !̂H is specified directly by the EoS according to Eqs. (19), (20), (28), (29), and (32). In

order to evaluate the critical contribution, it su”ces to consider the µ- and T -dependence of !H only. Note that the

normalization by mean multiplicity ensures that the !̂εk’s are volume-independent, intensive, quantities.

Without loss of generality, we restrict the analysis in this work to the study of factorial cumulants of proton

multiplicity. The extension to cumulants of other particles such as pions, or even mixed particle cumulants is straight-

forward. We start from Eq. (43) and specialize to the factorial cumulant of proton multiplicity, !̂ε
k
p1...pk

, which we

denote by !̂εkp:

!̂εkp =
!̂Ha1...akP

a1
p . . . P

ak
p

↑Np↓
(45)

where the P
a
p ’s are defined in Eq. (44) with Â = p here, denoting protons.

Note that in any experimental measurement of the factorial cumulants of the proton multiplicity distribution, only

some of the detected protons are produced directly at freezeout, as described via the particlization procedure that

we are treating. Other protons in the final state measured by the detector are the daughters coming from strange

baryons and excited baryons that were produced at freezeout via the particlization procedure that we describe, and

that subsequently decayed. The total contribution from both direct as well as daughter protons to !̂εkp can be

determined using the following freeze-out formula:

!̂εkp =
!̂Ha1...ak

(∑
B1

#B1→pP
a1
B1

)
. . .

(∑
Bk

#B2→pP
ak
Bk

)
∑

B #B→p ↑NB↓
(46)

where the summations go over all hadrons that decay into a proton, including the proton itself, and where #B→p

represents the probability that a baryon B decays into a proton. In the main part of this paper, we restrict ourselves to

computing the contribution of direct protons only, which is to say we compute, !̂εkp using Eq. (45). The calculation of

factorial cumulants of total proton multiplicity including both direct and feed-down protons, using Eq. (46), is reported

in Appendix B. The plots in Appendix B show that including the daughter protons makes only a quantitative change

to our results; the qualitative form of all of our results are unchanged.

IV. RESULTS IN THE QCD PHASE DIAGRAM

With the maximum entropy freeze-out prescription, we are able to determine the critical contribution to the

fluctuations using only the equation of state as an input. This is a significant improvement over earlier approaches

Normalized proton 
factorial cumulants:

=
κ4p

κ1p

μc = 600 MeV

α1 = 16.6o, Tc = 89 MeV
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➤ Utilize the maximum entropy freeze-out procedure to calculate proton fluctuations 
due to critical point & study the influence of the unknown EoS parameters37
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FIG. 8: Fourth factorial cumulant of the proton multiplicity distribution, !̂ω4p, along the three freezeout curves from

Fig. 2. The di”erent panels show !̂ω4p for various values of the nonuniversal mapping parameters w and ε, with
µc = 600MeV, Tc = 90 MeV and ϑ2 = 0→ in all panels.

contributions that involve fluctuations in the energy density which are discussed in Appendix C.) From Eq. (53), we

expect that as you vary w, going across a row of panels in any of the three Figures, the peak heights should vary like

(1/w)6/5, where we have taken ϖ = 5. This scaling is reasonably well satisfied in all three figures.

Next, let us consider the dependence of the peak heights on !Tf . Varying !Tf from 4 to 6 or from 4 to 9 MeV

corresponds to increasing the h where the freezeout curve crosses the h-axis (and consequently to a good approximation

the h along the freezeout curve) by the same factor of 6/4 or 9/4. (As long as !Tf → Tc as we are assuming, a

freezeout curve displaced downward from the crossover curve by !Tf crosses the Ising-h axis at µ ↑ µc↓!Tf/ tanϑ1,

as can be seen from Fig. 2. Here and throughout we are assuming for simplicity that ϑ2 = 0, when all that we know

is that it must be small. If ϑ2 were nonzero, the freezeout curve displaced downward from the crossover curve by

!Tf would cross the Ising-h axis at µ ↑ µc ↓ !Tf cosϑ1 cosϑ2/ sin(ϑ1 ↓ ϑ2), see Eq. (4).) From Eq. (53) we see

that increasing !Tf by a factor of (say) 6/4 should reduce the heights of the peaks in !̂ωkp by (4/6)k↑6/5, where

we have taken ϖ = 5. This argument would suggest that in Figs. 6, 7, and 8, with k = 2, 3 and 4, respectively,

the peaks in the red curves should be lower than the peaks in the blue curves by factors that are close to (4/6)4/5,

Increasing  
increases peak width

ρ

Quantifying Fluctuation Signatures
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➤ Utilize the maximum entropy freeze-out procedure to calculate proton fluctuations 
due to critical point & study the influence of the unknown EoS parameters37
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FIG. 8: Fourth factorial cumulant of the proton multiplicity distribution, !̂ω4p, along the three freezeout curves from

Fig. 2. The di”erent panels show !̂ω4p for various values of the nonuniversal mapping parameters w and ε, with
µc = 600MeV, Tc = 90 MeV and ϑ2 = 0→ in all panels.

contributions that involve fluctuations in the energy density which are discussed in Appendix C.) From Eq. (53), we

expect that as you vary w, going across a row of panels in any of the three Figures, the peak heights should vary like

(1/w)6/5, where we have taken ϖ = 5. This scaling is reasonably well satisfied in all three figures.

Next, let us consider the dependence of the peak heights on !Tf . Varying !Tf from 4 to 6 or from 4 to 9 MeV

corresponds to increasing the h where the freezeout curve crosses the h-axis (and consequently to a good approximation

the h along the freezeout curve) by the same factor of 6/4 or 9/4. (As long as !Tf → Tc as we are assuming, a

freezeout curve displaced downward from the crossover curve by !Tf crosses the Ising-h axis at µ ↑ µc↓!Tf/ tanϑ1,

as can be seen from Fig. 2. Here and throughout we are assuming for simplicity that ϑ2 = 0, when all that we know

is that it must be small. If ϑ2 were nonzero, the freezeout curve displaced downward from the crossover curve by

!Tf would cross the Ising-h axis at µ ↑ µc ↓ !Tf cosϑ1 cosϑ2/ sin(ϑ1 ↓ ϑ2), see Eq. (4).) From Eq. (53) we see

that increasing !Tf by a factor of (say) 6/4 should reduce the heights of the peaks in !̂ωkp by (4/6)k↑6/5, where

we have taken ϖ = 5. This argument would suggest that in Figs. 6, 7, and 8, with k = 2, 3 and 4, respectively,

the peaks in the red curves should be lower than the peaks in the blue curves by factors that are close to (4/6)4/5,

Increasing  
reduces peak height

w

Quantifying Fluctuation Signatures


