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Neutrinos in core-collapse supernova

@ Energy released in a
core-collapse SN:

AE ~ 10%3ergs ~ 10%°
MeV.

@ 99% of this energy is carried
away by neutrinos and
antineutrinos within 10s of
seconds.

@ This necessitates including
the effects of v-v
interactions.
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Neutrino flavor oscillations

Neutrinos have mass and vacuum mass eigenstates are different
from the flavor states
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Neutrino Hamiltonian

\\

Proto neutron ' >
star /

H = Z ala+ Z(l — cosp)a'a’aa

Neutrino-neutrino interactions lead to novel collective and emergent
effects, such as conserved quantities and interesting features in the
neutrino energy spectra (spectral “swaps” or “splits”).
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Vacuum oscillations

Two-flavor settings

Ji = aTeaM
J = aLae
Jo= f(aTeae aLaH)
Vacuum oscillations term
. m2 m2 R
H, = 2EaJ{al + 2Ea£ag +(..)1
Sm? A om? . A o ~
= ECOS20(—2J0)+ESIH 29(J++J7)+()1

We neglect matter effects assuming that v-v interaction dominates
in the region of interest.
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Neutrino-neutrino interactions

= V20

/dp dq(1 — cos0pq)Jp - Jg a

This term makes the physics of a neutrino gas in a core-collapse
supernova a genuine many-body problem.

Total Hamiltonian
; sm? 5 26 5 o
H:/d <2EB J,,) \va/dpdq(l—cosepq)Jp-Jq

B = (sin 26,0, — cos 26)
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Single-angle approximation

This problem is “exactly solvable” in single-angle approximation.

— —

A=Y wpBJp+u(r)J-J

P
Gr R2
= 1— _ v
u(r) v P
B sm?
P 2p
Bethe-ansatz method gives the exact solution in many-body

picture.

Pehlivan et. al, PRD (2011)
Cervia et. al, PRD (2019)
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Entanglement measures
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Results with Bethe-ansatz method
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Deviations from the
mean-field calculations
increase with number
of neutrinos N.

Note: Entropy S =0
in mean-field
approximation.

Cervia et. al, PRD
(2019)
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@ Bethe ansatz method has numerical instabilities for larger
values of N. However, it is very valuable since it leads to the
identification of conserved quantities.

@ For this reason, the Runge-Kutta technique was explored.
This was both to check Bethe ansatz results for N less than
10 and to explore the case with N larger than 10.

PS Collective neutrino oscillations with TNs INT, April 3-7,2023 11 /30



Runge-Kutta

Only a system of 16 neutrinos could be simulated due to memory
and time limitations

Results match with the BA ones

BA Cervia et al., PRD (2019) RK4 Patwardhan et al., PRD (2021)
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Spectral splits

We find that the presence of spectral splits is a good proxy for
deviations from the mean-field results.

Probability of Entanglement
observing the first entropy

mass eigenstate

mean field many body

Split
frequency
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Initial state: [v210)
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Entropy is maximal in spectral split region.
Patwardhan et. al, PRD (2021)
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Tensor network methods
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Singular value decomposition

SVD of an arbitrary rectangular matrix M of dimension (Na x Ng)

M = USV?

e U is of dimension (Ng x min(Na, Ng)) and has left singular
vectors UTU = I. Unitary if Ny < Ng

e S is diagonal of dimension (min(Na, Ng) x min(Na, Ng)) with
non-negative entries called “singular values”

o VT is of dimension (min(Na, Ng) x Ng) and has right singular
vectors VIV = |. Unitary if Na > Np
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Matrix product state

|\|J> = Z Coyoyp |01 o 'UL>
o101

Reshape ¢g,...;, in rectangular matrix 9y, (0,..0,) = o101

M—— (L) M) = |4h)
\[/
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Right normalized
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Matrix product operator
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U. Schollwéck, Ann. Phys. (2011)
S. Paeckel et al. Ann. Phys. (2019)
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Time-evolution methods for MPS

EENER vy

: ) _ o—idH
Approximate U = e and @ suited to construct an
apply on MPS [¢(t)) to estimate efficient representation of

[v(t +9)) U(6) as a matrix-product
o Trotter-Suzuki operator
decomposition o Can deal with long-range
@ Short-ranged Hamiltonian interactions
e Evolution unitary up to @ smaller MPOs as compared
inherent Trotter error but to TEBD
energy is not typically

@ evolution not unitary

conserved

S. Paeckel et al. Ann. Phys. (2019)
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Time dependent variational principle
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S. Paeckel et al. Ann. Phys. (2019)
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Time dependent variational principle (continued)

i 0el) = He()cl)

@ Suitable for long-range interaction
@ Two-site TDVP is necessary for entanglement generation

@ Projection error (zero if the MPS has maximal bond
dimension)

o Finite time step error O(6%). Smaller bond dimension, larger
time step error

@ Truncation error: SVD to split time-evolved two-site tensor in
two separate tensors

Changing the time step size affects these errors differently
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Global subspace expansion (GSE)

Krylov expansion of time-evolved MPS

}

= (—inr) /At)

[6(t + At)) = e A (1)) ~ A 1 (t)
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Expand the basis at each bond with enlarged bond dimension
Projection errors are significantly reduced

°
°
o Larger time step
°

Can even work with one-site TDVP

M. Yang and S.R. White, PRB (2020)
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Consistency checks

e Total J,
© hy=—J5+2u> Jo- Ly

#w) w—w’

Ehrenfest's theorem

df:‘> = —i {[AH]) + <gi\>

Ehrw[¢(t)]:§ g’ dt< /(Z;;) w_w,>

max Ehr[¢)] = maxymax, |[Ehr,[1(t)]|

Cervia et al, PRD (2022)
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Step size and bond dimension
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Results for N = 12 with mixed initial state
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Results for N = 18 with mixed initial state

Initial state:
|ve)®® [1,)®°

Reducing the bond
dimension by

~ 60% vyields
qualitatively similar
results.
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Spectral split wrt bond dimension

@ Reducing the bond dimension does not affect the position and width
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of spectral split

@ Range of P,, decreases with decrease in bond dimension indicating
the overestimation of entanglement
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Scaling of different methods
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Summary

@ Collective neutrino oscillations play a crucial role in
supernovae physics and astrophysical nucleosynthesis.

@ Mean-field approximations revealed many interesting features,
but the results deviate from the many-body treatment.

@ The conventional numerical methods like Range-Kutta has
limits on the number of neutrinos in a systems

@ The tensor network methods are helpful in studying ~ 40
neutrinos. But the computational complexities depend on the
initial state.
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