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Why study lattice regularizations?

• rigorous definition of a QFT beyond perturbation theory
• novel insights into continuum subtleties
• compute nonperturbative observables in a controlled way

Why study new lattice regularizations?
• solve sign problems
• theoretical insights
• use new techniques and platforms (tensor networks, quantum

computers)



“Lattice regularization”

• I will use the word “lattice regularization” in a strict manner
• In particular, for a lattice model to be a “lattice regularization of a QFT”,

it needs to have a well-defined continuum limit.
• Wilson’s insight: Continuum limit of a QFT emerges near a second-order

critical point.

Lattice regularization
A classical-statistical lattice model or a quantum lattice Hamiltonian
with a parameter which can be tuned to a second-order critical point.



• A lattice regularization must reproduce the physics of all scales
• Otherwise, it is just a “low-energy EFT”



A toy model of QCD

• O(3) nonlinear sigma model in 1+1 dimensions
• Continuum action

S[⃗n(x)] =
1

2g2

∫
d2x ∂µn⃗ · ∂µn⃗ (1)

with n⃗ ∈ R3 and |⃗n| = 1.
• g is classically dimensionless coupling
• toy model for QCD: asymptotic freedom, dynamical mass generation,

dimensional transmutation, θ-vacua



(3+1)d SU(N) Yang-Mills vs. (1+1)d O(3)

SU(N) YM
• 3 + 1-dimensional
• Local gauge symmetry
• Asymptotically free
• Dimensional transmutation
• Nonperturbative mass gap
• Nontrivial topology, θ-term

O(3) NLσM
• 1 + 1-dimensional
• Global O(3) symmetry
• Asymptotically free
• Dimensional transmutation
• Nonperturbative mass gap
• Nontrivial topology, θ-term



The challenge of asymptotic freedom

• To get the continuum limit, we need to recover both the IR physics and
the UV physics



Traditional lattice regularization

• O(3) nonlinear sigma model in 1+1 dimensions
• Lattice regulated action:

S =
1

2g2

∫
d2x ∂µn⃗ · ∂µn⃗ (2)y Naïve discretization

S = − 1
g2

∑
⟨xy⟩

n⃗x .⃗ny (3)

• 2d O(3) NLSM is the continuum QFT which emerges in the g→ 0 limit of
the lattice model



O(3) NLSM at arbitrary θ

• So far, we have talked about the O(3) NLSM at θ = 0.
• Just like QCD, the O(3) NLSM allows for a topological θ term

Sθ[ϕ⃗] =
1
g2

∫
d2x(∂µϕ⃗)2 + iθQ[ϕ⃗] (4)

where

Q[ϕ⃗] =
1

8π

∫
d2x εµν ϕ⃗ · (∂µϕ⃗)× (∂ν ϕ⃗) (5)

is the topological theta term.

In nature, θ < 10−10 =⇒ Strong CP problem



Physics of θ

Sθ[ϕ⃗] = S0 + iθQ[ϕ⃗]

• The physics of θ is totally non-pertubative
• θ does not show up in perturbation theory =⇒ UV physics unchanged.

• Sθ is an asymptotically free theory for all θ with a non-pertubatively
generated energy scale.

• What about the IR physics?
• θ non-perturbatively changes IR physics
• At θ = π, the low-energy physics is completely different from θ = 0!
• It is, in fact, massless in the IR =⇒ flows to the SU(2)1 WZW CFT.

• What happens at arbitrary θ?



RG flow
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The theory at θ ̸= 0, π

• θ = 0, π points are very special due to their integrability [Zamolodchikov et
al, 1978; 1992] and we have a good understanding.

• At θ ̸= 0, π the situation is not so clear.
• Many attempts to understand the behavior of the theory, but questions

still remain...



The problem with θ

• It has been argued that the topological charge has ultraviolet
divergences for the O(3) model and is not a physical quantity [Schwab,
1982; Luscher, 1982; Blatter et al, 1996].

• If so, it might happen that θ is an irrelevant parameter (for θ ̸= π) and
simply renormalizes to zero.

• Other studies, by studying the theory about θ = π WZW point, have
argued that that in fact there is a critical θc below which the theory
renormalizes to zero, but is nontrivial for θ ≥ θc [Controzzi, Mussardo, 2003;
Venuti et al 2005].

• Question: Is there a continuum QFT Sθ for each value of θ?
• We should sort this out clearly. Yang-Mills is even harder...



Lattice formulation

• In the conventional approach, θ introduces a severe sign problem in the
naive formulation (imaginary coefficient in Euclidean spacetime)

Sθ[ϕ⃗] =
1
g2

∫
d2x(∂µϕ⃗)2 + iθQ[ϕ⃗] (6)

• Actually, the θ = π sign problem can in fact be solved using a meron
cluster algorithm [Bietenholz, A. Pochinsky, U.-J. Wiese 1996]

• Bögli, Niedermayer, Pepe, Wiese (2011) studied the θ-vacua using
non-standard (“topological”) actions:

• In their approach the sign problem is “mild” for smaller lattices.
• Concluded that Sθ is unique for each θ.

• It would be good to have a completely sign-problem free way of
studying θ vacua.



Qubit regularization

Is there another lattice regularization of this model which solves some of
these problems?
• As a model of qubits? “qubit regularization”
• We need to obtain

• UV physics (asymptotic freedom)
• IR physics (θ-vacua)



Haldane Conjecture

• In 1981, Haldane surprised both condensed matter and high-energy
communities

• Consider the antiferromagnetic spin-S Heisenberg chain

H = J
∑

i

S⃗i · S⃗i+1 (7)

• Haldane Conjecture: at low energies

Spin-S chain↔ O(3) sigma model at θ = 2πS (8)

S=1/2 chain θ = π NLSM massless
S=1 chain θ = 0 NLSM massive

• How do we take the continuum limit (asymptotic freedom)?



UV: asymptotic freedom from dimensional reduction

• Start with a 2+1d lattice. Make L, Ly large =⇒ Symmetry breaking SO(3) → SO(2),
massless goldstone modes

• What happens as make Ly small? SO(3) symmetry cannot be broken. System orders at
length scales ξSR (symmetry restoration scale). Goldstone modes pick up a mass ∼ ξ−1

SR
• Asymptotic freedom in 1+1d theory ensures that ξSR ∼ e#Ly ≫ Ly. Therefore, the system is

effectively (1+1)d.



UV: asymptotic freedom from dimensional reduction

H = J
∑

ij S⃗i · S⃗j

• The continuous fields n⃗ arise from collective Goldstone mode
excitations of the spin-1/2 variables S⃗i

• Dimensional reduction back to (1+1)-d theory! [Chandrasekharan, Wiese, 1997]

• Also has been generalized to QCD using quantum link models [Brower et
al, 1999]



UV and IR

• This provides a recipe to get the UV physics of asymptotically free
theories

• But what about IR? Can we generate a θ term in the IR?



IR: θ term in spin chains

• θ ̸= 0, π breaks charge conjugation symmetry C : n⃗→ −n⃗ since
C : iθQ→ −iθQ.

• In terms of the spin variables, it can be shown using bosonization [Affleck,
1988]

a−1S⃗n = J⃗L + J⃗R + i(−1)nc(Tr g)σ⃗. (9)

• Note that “charge conjugation” g 7→ −g maps to translation by one unit
Sn 7→ Sn+1.

• Manifestation of the antiferromagnetic nature of the spin chain

• Therefore, to generate a θ term in the spin system, we must break this
translation-by-one symmetry.



IR: θ term in spin chains

• Therefore, to generate a θ term in the spin system, we must break this
translation-by-one symmetry.

• For example, we can stagger the couplings on even and odd bonds

J± = J(1± γ). (10)

J+ J+ J+J− J−

• For this case, [Haldane, Affleck]

θ = 2πS(1 + γ). (11)

• Can be generalized to spin ladders [Sierra, 1996; Sierra et al, 1997]



Taking the continuum limit with θ term

• We can finally put the two pieces of the puzzle together
• UV = Asymptotic freedom =⇒ Dimensional reduction
• IR = topological θ term =⇒ C breaking using staggered couplings

• Therefore, we can now take the continuum limit of these models at
non-trivial θ!



θ-term with D-theory

J ′ > 0

J− J+

LX

LY

• Proposal: Continuum limit of the O(3) NLSM with θ term obtained in the
LX ≫ LY ≫ 1 limit

• Analysis of spin ladders 1 suggests, for J± = J(1± γ),

θ ≈ 2πSLY(1 + cγ) =⇒ |θ − π| = cπγLY (odd Ly) (12)

• A gift: no sign problem! So we can actually numerically check this.
1Sierra 1995; Martin-Delgado, Shankar, Sierra 1996



Probing the continuum limit for asymptotically free
theories

• To probe the universal behavior of the continuum limit, we can use the
step scaling function as a convenient tool [Luscher, Weisz, Wolff, 1991]

• Put the asymptotically free theory in a box of size L (natural length
scale)

• Define a dimensionless renormalized coupling ḡ2(L)
• For example, we can choose ḡ2(L) = M(L)L, where M(L) is the

finite-volume mass gap
• All dimensionless observables depend only on the renormalized

coupling ḡ2(L).



Step scaling function

• We will look at the universal function F(z) defined by

ξ(β, 2L)
ξ(β,L)

≡ F (ξ(β,L)/L) (13)

where β is a bare coupling and z = ξ(β,L)/L is the renormalized
coupling

• ξ(β,L) is a definition of finite-volume correlation length: the
“second-moment” correlation length

ξ(L) =

√
G̃(0)/G̃(2π/L)− 1

2 sin(π/L)
(14)

• Easy to measure



Step scaling function: qualitative behavior

z = ξ(L)/L, F(z) = ξ(2L)/ξ(L) (15)



Step-scaling function and the RG flow



Step-scaling function and the RG flow

θ = π θ = 0θ = 0

SU(2)1 WZW
IR fixed point

Asymptotically-free
UV fixed point

Trivial
IR fixed point

The step-scaling curves mimic the expected RG flow diagram beautifully!



On quantum simulators

• On Rydberg systems with native Ising-type interactions, we can use
Floquet engineering techniques to implement Heisenberg interactions 2

2arXiv: 2207.09438 [Ciavarella, Caspar, HS, Savage, Lougovski, 2022]



Summary (so far)

• The 2d O(3) NLSM allows for a θ term, just like QCD.
• However, physics of θ is non-perturbative and therefore hard to study –

both analytically and on the lattice (sign problem)
• We constructed a lattice regularization using “qubits” for the O(3) NLSM

with a θ term
• Completely solves the sign problem present in conventional approaches

for the θ term, for the first time.
• Allowed us to take the continuum limit and demonstrate asymptotic

freedom for various θ
• Step-scaling curves give a quantitative instantiation of the RG flow
• Very natural for quantum simulators with qubit degrees of freedom

• Opens up many paths forward...
• systematic understanding of the RG flow as a function of θ, comparison

with analytical results from instanton calculations, ...



• We saw that there is a lattice regularization of the θ term where θ
appears as the staggering of couplings

Staggering γ ←−−−−→ θ term (16)

• But: why does such a regularization exist? Did we simply get lucky?
• Is there a way to systematically explore this space of lattice

regularizations?



• An interesting perspective comes from symmetries and anomalies

[Phys.Rev.D 107 (2023) 1, 014507]



Symmetries and Anomalies

• It is clear that symmetries play a huge role in constructing lattice
regulators.

• It is ideal if the lattice regulator explicitly preserves a symmetry of the
continuum theory

• However, some symmetries have a subtle structure, which we call an
anomaly



’t Hooft Anomalies

• The word anomaly has many meanings..
• For us, anomaly = ’t Hooft anomaly

“’t Hooft anomaly”
G is a genuine global symmetry of the theory, but it cannot be gauged.

“Mixed ’t Hooft anomaly”
G1, G2 are genuine global symmetries. They can be gauged individually, but
gauging one breaks the other.



Classic example of a mixed ’t Hooft anomaly
U(1)× U(1)A for a free Dirac fermion

• A free Dirac fermion has exact global (vector) U(1) and (chiral) U(1)A

symmetries

ψ
U(1)7−−−→ eiθψ (17)

ψ
U(1)A7−−−→ eiθγ5ψ (18)

• However, if you gauge U(1), then you lose U(1)A!

• In other words, U(1) and U(1)A cannot be gauged simultaneously.



A mixed anomaly in the sigma models

• At θ = 0, π, the O(3) model has exact global SO(3) and charge
conjugation C symmetries

ϕ⃗
SO(3)7−−−−−→ eiθn̂·⃗Jϕ⃗ (19)

ϕ⃗
C7−−−−−→ −ϕ⃗ (20)

(21)

• This is a mixed ’t Hooft anomaly at θ = π between SO(3) and C3

• If you gauge SO(3), then you lose C!

⟨O⟩ C7−−−−−→ ei Anomaly⟨O⟩ (22)

3[Gaiotto, Kapustin, Komargodski, Seiberg, 2017]



Anomalies and lattice regularizations?

• We are interested in constructing new lattice regularizations
• The presence of an ’t Hooft anomaly for G must be reflected in a lattice

regularization.



Gauging a symmetry on the lattice

• Assume a lattice regulator for a QFT with some global symmetry G, with
(1) same spacetime dimensionality
(2) exact symmetry on the lattice
(3) locality
(4) symmetry implemented “onsite”

• Alternate possibilities (which we do not consider)
• (1) can be violated: boundary of SPT bulk

• example: domain wall fermions for chiral symmetry
• (2) can be violated: emergent symmetry at low-energies



Onsite symmetries

A symmetry is onsite if its action factorizes over the local Hilbert spaces

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕN⟩yg ∈ G

U|ψ⟩ = Ug|ϕ1⟩ ⊗ Ug|ϕ2⟩ ⊗ · · · ⊗ Ug|ϕN⟩



• Onsite symmetry =⇒ we can gauge it on the lattice by introducing link
variables

• But if there is an anomaly, there must be some obstruction to this
procedure!

QFT Lore
“There are no anomalies on the lattice”

• Example: attempts to put chiral fermions on the lattice result in
doublers [Nielsen, Ninomiya]



Obstructions to gauging on the lattice

• A way in which it is impossible to gauge a symmetry is that the
symmetry is not onsite

• Well appreciated in cond-mat 4

• If the symmetry is offsite, there is no obvious way to gauge it on the
lattice

• Indeed, in the spin-chain regularization, the charge conjugation
symmetry was offsite

C : S⃗i 7→ S⃗i+1 (23)

• The spin-1/2 chain naturally realizes the θ = π model, which has a
SO(3)× C anomaly

• Now, we see that the offsite-ness of the symmetry was no accident – it
is almost forced by the anomaly!

4For example: Jian, Bi, Xu (2018); Cho, Hsieh, Ruy (2017)



Obstructions to gauging on the lattice

• But what if we insist that an anomalous symmetry is onsite on the
lattice?

• Consider the standard lattice action at θ = 0

S0 = − 1
g2

∑
⟨xy⟩

n⃗x · n⃗y (24)

• Both SO(3) and C are onsite
• Indeed, a topological θ term on the lattice was defined by [Berg, Lüscher,

1981] which maintains this property



A topological definition of the θ term on the lattice

• Topological θ term on the lattice [Berg, Lüscher, 1981]

S[⃗n] = S0 [⃗n] + iθQ[⃗n] (25)
Q[⃗n] =

∑
⟨xyz⟩ q⟨xyz⟩ (26)

• The local topological charge density 4πq⟨xyz⟩ is just the area of the
spherical triangle formed by n⃗x, n⃗y, n⃗z.



Obstruction?

• So if the symmetry is both exact and onsite on the lattice, where is the
obstruction? What prevents us from gauging it on the lattice?

• We find that this rather well-known lattice model explicitly reproduces
the exact anomaly on the lattice5!

5[Nguyen, HS, Phys.Rev.D 107 (2023) 1, 014507]



How to detect the anomaly?
SO(3)× C anomaly

• We turn on a background gauge field (A,B) for the SO(3) symmetry and
then perform a C transformation

Z
Gauging PSU(N)7−−−−−−−−−→ Z̃[A,B] (27)

• We then check whether Z is invariant under C.

C :

{
Z̃[A,B, θ = 0] 7→ Z̃[A,B, θ = 0],

Z̃[A,B, θ = π] 7→ Z̃[A,B, θ = π] e−ik
∫

b︸ ︷︷ ︸
anomaly

(28)

• Analogy: Chiral anomaly =⇒ we turn on background field for U(1) and find that the
partition function is not invariant under U(1)χ



“No anomalies on the lattice”

• The lore “no anomalies on the lattice” is incomplete
• Indeed there can be anomalies on the lattice, much like the continuum

formulations
• Other examples:

• Kahler-Dirac fermions [Catterall, 2022]
• Ginsparg-Wilson fermions for chiral anomaly6 [Lüscher, Neuberger, Narayanan,

Kaplan, ...]
• Modified Villain formulations [Fazza, Sulejmanpasic 2022; Gorantola, Lam, Seiberg,

Shao 2021; Sulejmanpasic, Gattringer...] [see also Theo’s talk at this workshop]

6for a modified chiral symmetry



Anomalies and Lattice Regularizations of θ theta vacua

Anomaly

Offsite symmetry
• “qubit regularization”
• Staggered couplings
• No sign problem!
• Natural for quantum

computers
(finite-dimensional local
Hilbert spaces)

Exact anomaly
• Berg–Lüscher θ term
• Manifestly topological
• Sign problems
• ∞-dimensional local

Hilbert space

Lattice
symmetric, local, same d



Guidance from anomalies

• These arguments seem general. Do all models with mixed ’t Hooft
anomalies have such a dichotomy of lattice regularizations?

• Can generalize the O(3) constructions to a wider class of 2d
asymptotically free theories, called the Grassmannian nonlinear sigma
model.

• Here, instead of S2, the fields P live on

Px ∈ Grk(N) =
U(N)

U(N − k)× U(k)
(29)

with the action

S =
1
g2

∫
d2xTr(∂µP)2 +

θ

4π

∫
d2x ϵµν TrP ∂µP ∂νP (30)

• These Grk(N) models also have an anomaly at θ = π between PSU(N)

and C for (N, k)=(even, odd)7.
7for other cases, we have a more subtle scenario called “global inconsistency”



Lattice regularization for Grassmannian models

• Qubit regularization
• Now, we have SU(N) spins at each site in certain conjugate

representations8

• Again, we can argue that a continuum limit at a fixed θ arises in the Ly → ∞
limit if you keep γLy fixed.

• Conventional regularization
• The geometric Berg–Lüscher construction can also be generalized

8[Read, Sachdev, 1989]



Summary

• In the quest to find new lattice regulators with unique advantages for
quantum/classical simulation and theoretical insights, anomalies can
be a guide.

• The importance of anomalies been long appreciated for chiral fermions
on the lattice.

• For the O(3) model (and Grassmannian Grk(N) models), we saw a
dichotomy of regularizations: qubit and conventional, which reflect how
the SO(3)× C anomaly manifests.

• They have quite different advantages! Which one is useful depends on
the question.

• There are very suggestive parallels with 4d nonabelian gauge theories
• Indeed, pure SU(N) Yang-Mills has a very similar anomaly at θ = π,

between time reversal and ZN center symmetry 9

• What does this say for lattice/qubit regularizations of QCD?

9[Gaiotto et al, 2017]



Outlook

• We have demonstrated that a lattice regularization of the O(3) NLSM
with arbitrary θ can be constructed using qubits

• solved a sign problem along the way
• Lattice regularizations where anomalies are manifested differently seem

to have quite different properties! What does this imply for lattice QCD?
• Anomalies can indeed be present on the lattice, going against an old lore.

Implications?
• What about chiral fermions?

• The space of such non-traditional formulations of lattice QFTs is quite
rich and important for near-term quantum computers
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