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How did we get to the EIC?

2010 INT program “Gluons and the Quark Sea at High
Energies: distributions, polarization, tomography”

High Endlgy | 2010 played a very important role.
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National Academy of Science Consensus Study:

An Assessment of U.S.-based Electron-lon Collider Science

“An EIC can uniquely address three profound questions about nucleons—neutrons and
protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?

- How does the spin of the nucleon arise?

- What are the emergent properties of dense systems of gluons?”

CONSENSUS STUDY REPORT

AN ASSESSMENT OF
U'S.-BASED ELECTRON-ION
COLLIDER SCIENCE
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National Academy of Science Consensus Study:
An Assessment of U.S.-based Electron-lon Collider Science

“An EIC would maintain U.S. leadership in the accelerator science and technology of colliders
and help to maintain scientific leadership more broadly.”



How did we get to the EIC?

2023 | VERSION 1.3

2023 Long Range Plan for Nuclear Science:

... “Next, we reaffirm the exceptionally high priority of the following
two investments in new capabilities for nuclear physics. The
Electron—lon Collider (EIC), to be built in the United States, will
elucidate the origin of visible matter in the universe and
significantly advance accelerator technology as the first major
new advanced collider to be constructed since the LHC.
Neutrinoless double beta decay experiments have the potential to
dramatically change our under- standing of the physical laws

governing the universe.”
RECOMMENDATION 2

As the highest priority for new experiment con-
struction, we recommend that the United States
lead an international consortium that will under-

take a neutrinoless double beta decay campaign,
featuring the expeditious construction of ton-scale
experiments, using different isotopes and comple-
mentary techniques.

RECOMMENDATION 3

We recommend the expeditious completion of the
EIC as the highest priority for facility construction.




Courtesy E.C. Aschenauer, https://indico.desy.de/event/41404/

Facility context:
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Project Design Goals

 High Luminosity: L= 1033 — 10%4cm-?sec-,
10 — 100 fb-'/year

« Highly Polarized Beams: 70%

Electron
Gun

—> requires high precision polarimetry

Hadron

« Large Center of Mass Energy Range: IR-8 Wi

Ecn =29 — 140 GeV
—> Large Detector Acceptance

/ Electrons

Electron
Injector (RCS)

« Large lon Species Range: protons —
Uranium

- Requires forward detectors integrated g
in beam lattice

Booster

« Good Background Conditions

« Accommodate a Second Interaction
Region (IR) 2 IR-8

p/A beam

p: 41 GeV, 100 to 275 GeV

e: 5 GeV to 18 GeV




Project context:
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Energy — Luminosity context:
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Towards Detector Regquirements:

Internal Landscape

of Nuclei
Tomography Tomography
Transverse Transverse
Momentum Momentum
Distribution Distribution
Spatial Imaging Spatial Imaging
Inclusive DIS Semi-inclusive DIS Exclusive DIS

O High performance O Tracking and hadronic O Efficient proton tagging
electron identification calorimetry O Cover full acceptance

and reconstruction O Heavy flavors identification range
from vertexing

O Light flavors from dedicated
PID detectors



Community Detector Requirements:

arXiv:2103.05419, NPA 1026 (2022) 12447

2021 Yellow Report — works out initial requirements,
two detector reference designs
identifies further physics opportunities

led (in-)to call for detector proposals. SCIENCE REQUIREMENTS

AND DETECTOR

o P CONCEPTS FOR THE
__P/Abeam _ - 2lC1rON boam g ELECTRON-ION COLLIDER
high-q2 i«( ) EIC Yellow Report

i

arXiv:2 103.05‘:‘

Detector

High luminosity drives the need for a compact device, ~ 9m along the beam axes,
Large acceptance required by the science drives the need for (very) careful integration,
Combination with calorimetry and PID drives the need for a compact tracking subsystem,
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From Detector Requirements to Technologies:

SIDIS, as an example:
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Wide range of hadron momenta necessitates multiple identification technologies/techniques



Detector Proposals and DPAP:

CCE

4 ATotally Hermetic EIC Comprehensive Chromodynamics Experiment
Electron Nucleus Apparatus 1 Collaboration Detector Proposal eusic version

N i
\¥, The ATHENA Collaboration
lecember 1, 021 A state of the art detector capable of fully exploiting the science potential of the EIC, realized
b i e through the reuse of select instrumentation and infrastructure, to be ready by project CD-4A

December 1, 2021

Detector Proposal Advisory Panel (DPAP) reviewed three proposals; ATHENA, CORE, and ECCE,

Finds that ATHENA and ECCE fulfill all requirements for a Detector 1, i.e. NAS science case,
none of the collaborations is strong or large enough to develop Detector 1 for Day 1

Recommended ECCE as Detector 1 in Spring 2022 — adopted by the EIC Project as Reference,

“Right language” for a Detector 2, but no language on an actual concept, technology, etc.



A lot has happened since DPAP

ESR Forward side

Forward Side
SC Magnet Cryostat

Central Injection
Detector Line
/r;”’."
,4,‘ - —
Rear Side j ]”f -
SC Magnet Cryostat HSR Forward Side

HSR: Hadron Storage Ring

ESR: Electron Storage Ring
RCS: Rapid Cycling Synchrotron
S SC: Superconducting

With Detector
Bypass

HSR
Rear Side

g

And /ots of work remains.

ESR Rear
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A new magnet for the central instrument: C
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One of the most important decisions
for any collider experiment...

1.7 T solenoidal field strength

BaBar geometry

Coupled system; returns, service
gaps, etc.



Interaction region:
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Instrumenting the Interaction Region:

Zero-Degree Calorimeter

PbWo04

EMCAL ) \ .

Si Tracking

Hadrons

Off-Momentum Detectors

\ Detector
o

o
S Focusing Quadrupoles

BOpf combined function magnet

Far-Backward
Detectors: e
' | » Far-Forward Detectors:
 Luminosit 0.0 '
. y ~ Off-momentum detectors 1 * BO traCkIng and phOton

monitor. detection
 Low-Q?tagging _gs- « Roman pots and off-

detectors . . . : . Momentum detectors

—-40 -20 0 20 40

z(m) « Zero-Degree
Calorimeter



Central Detector:

3.5m » n=0 5.0m

3.2m > < >
Tracking:

* New 1.7 T solenoid

« MAPS Si Vertex Tracker

« MPGDs (WRWELL/uMegas)

PID:
- hpDIRC

| « pfRICH

— 5.34m « dRICH

7N | « AC-LGAD (~30ps ToF)

Calorimetry:
* Imaging Barrel EMCal
« PbWO4 EMCal in backward
direction
* Finely segmented EMCal and
= = Y HCal in forward direction

hadrons > < electrons * Quter HCal (sPHENIX re-use)

» Backwards HCal (tail-catcher)



Central Detector — tracking:

Inner barrel (IB): 3 layers Outer barrel (OB): 2 layers [BackwardMPGD] [ Outer Barrel | [ Inner Barrel ][ FonNar.dMPGD]
Disks MPGD MPGD Disks
Barrel AC-LGAD Forward AC-
ToF LGAD ToF Disk

/

Electron/Hadron Endcaps (EE,HE) ERChE | S Barrel p— Ferwaris

5 disks on either side of IP
* one technology: MAPS @ 65 nm (ALICE ITS3)  additional hit points for track reconstruction (~150 um)
* IB: First layer @ R ~ 3.6 cm - Material: 0.05% X/X, / layer * fast timing hits for background rejection (~10-20 ns)
* OB: Material: 0.55% X/X, / layer * provide hit point over large angular range for PID

* EE/EH Material: 0.24% X/X, / layer
* pixel size O(10x10 um?)
e Total area 8.5 m?

* new ASIC SALSA for readout (derived from ALICE SAMPA for TPC

=%




Central Detector — particle identification:

hpDIRC (High Performance DIRC) dual radiator Forward RICH: dRICH
= Quartz bar radiator = Reuse of BaBAR DIRC bars

= photosensor: MCP-PMTs Aerogel z: 4cm Spherical Mirrors

= p/K 3s sep. at 6 GeV/c radius: 110 cm 6 Azimuthal Sectors

0.3 mm acrylic filter

C,Fs Gas Volume
120 cm length
Backward RICH: pfRICH radius: 185 cm
= Aerogel Cherenkov Det.

= e, K, p separation > n/K 3o sep. at 10 GeV/c
Photosensor:: HRPPDs to include TOF

RICH with long proximity gap (~30 cm)

Sensor plane tiling scheme

Photosensor: SiPMs

dRICH sim.

/K 3 sep. at 50 GeV/c—
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B h
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AC pad #1 AC pad #2 AC pad #3 p (GeVic) p (GeV/c)
TOF > coupling .
AC-LGAD (Low Gain Avalanche Detector,; Tt o oxide 1.
= 20-35 psec /=30 um ' : Bir s %
= Accurate space point for tracking =8 - ke
* forward disk and central barrel A ) R e Mo




Central Detector — calorimetry:

Flange of the

External structure & beam pipe

cooling

cooling plates

Cables

beam pipe

Internal structure &
cooling

read-out boards

PbWO, crystal &
internal support structure
universal support frame  p|rC bars

Backwards EMCal
PbWO04 crystals, SiPM
photosensor

(sPHENIX re-use)

Backwards HCal
Steel/Sc Sandwich
tail catcher

Barrel HCAL

Layers of AstroPix
sensors with

0.5 x 0.5 mm?
pixel size

Layers of ScFi in Pb "\&&
with two-sided SiPM readout

8M Tower

4M Tower
Composite
(Inner)

8M Tower

High granularity
WI/SciFi EMCal
Longitudinally separated
HCAL with high-n insert

AstroPix v3: Design and Fabrication

Pixel Matrix:

o 500um? Pixel Pitch, 300um? Pixel Size

o 35x 35 pixels

o first 3 cols PMOS amplifier others
NMOS

o Pixel Comparator Outputs Row/
Column OR wired

o Goal
o Pixel Dynamic Range 20keV -
700keV
o Noise Floor 5 keV (2%@662keV)
AsTROPIX




Central Detector — integration:

dRICH vessel, end rings, and service paths, as just
one example of integration puzzles:




Streaming Readout and DAQ:

~100 m fiber

Detector

Switch/Server /
o Link-
Exchange: | Switch/Server / | Switch/Server /
Readout

Andog 20m

| Factor of 100 in 3

data reduction

Front End Board (FEB) | Readout Board (RDO) T Data Acquisition (DAQ)
- 100 Tbps - 10 Tbps L 100 Gbps |

And the software and computing model and approach to enable rapid analyses.

Bunch Crossings every ~10 ns or ~100 MHz
Collision Rate ~ 2 us or 500 kHz

* No external trigger,

* Avoids complex custom
hardware and firmware
associated with traditional
triggered systems,

« All collision data digitized,

 Data volume is reduced as much
as possible early on,

 Low-to-no dead-time
 Event selection can be based on

data from all subsystems in real-
time or after-the-fact.



Closing comments

EIC project is well on track,

Project includes both collider and (one)
detector,

Recent focus on long-lead-time items,
Technical Design Report is next,

~2030 is closer than it may appear...

Circling back to the workshop,

1034
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EW physics is not put usually front and center but has been part from the very beginning
and continues to be so — a recent example is e.g. M. Arratia et al, PRD 103 (2021) 074023

Obvious missing detector capability: muons — hitps://www.jlab.org/research/eic_rd prgm

Annual Integrated Luminosity (fb™')


https://www.jlab.org/research/eic_rd_prgm

Thank you for your attention!

And thanks to our many colleagues who are making it happen.
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