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 PDF or light cone w.f.
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but: nonrelativistic approximation invalid 

for light quarks 

vacuum structure 
Correlators in Euclidean time:


“instanton liquid”

pro: chiral sim.breaking derived


numerical simulations in

lattice gauge theories:


pro: from first principles of QCD

 confinement, spectra…


con: hard to get

 PDF or light cone w.f.



Traditional quark models 
 (too many to mention here): 

 (i) m_eff  (chiral symmetry breaking) 
(ii)    confining+Coulomb potentials 
(iii) residual interactions (NJL,instantons) 
but: nonrelativistic approximation invalid 

for light quarks 

vacuum structure 
Correlators in Euclidean time:


“instanton liquid”

pro: chiral sim.breaking derived


numerical simulations in

lattice gauge theories:


pro: from first principles of QCD

 confinement, spectra…


con: hard to get

 PDF or light cone w.f.

Light-front quantization: 
pro: light front DAs,PDFs, FFs,GPDs  

con: mostly pQCD-based  
(guessed)  Hamiltonian and WFs 

cumbersome quantum mechanics so far 
no account for nonperturbative phenomena



Traditional quark models 
 (too many to mention here): 

 (i) m_eff  (chiral symmetry breaking) 
(ii)    confining+Coulomb potentials 
(iii) residual interactions (NJL,instantons) 
but: nonrelativistic approximation invalid 

for light quarks 

vacuum structure 
Correlators in Euclidean time:


“instanton liquid”

pro: chiral sim.breaking derived


numerical simulations in

lattice gauge theories:


pro: from first principles of QCD

 confinement, spectra…


con: hard to get

 PDF or light cone w.f.

Light-front quantization: 
pro: light front DAs,PDFs, FFs,GPDs  

con: mostly pQCD-based  
(guessed)  Hamiltonian and WFs 

cumbersome quantum mechanics so far 
no account for nonperturbative phenomena

3

<latexit sha1_base64="Pdl67D6Q8njXmskc0deIAhtljho=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhN7JbDJmdmaZmRVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqeDG+v63t7K6tr6xWdgqbu/s7u2XDg4bRmWasjpVQulWhIYJLlndcitYK9UMk0iwZjS8nfrNJ6YNV/LBjlIWJtiXPOYUrZManQg1ybqlsl/xZyDLJMhJGXLUuqWvTk/RLGHSUoHGtAM/teEYteVUsEmxkxmWIh1in7UdlZgwE45n107IqVN6JFbalbRkpv6eGGNizCiJXGeCdmAWvan4n9fObHwdjrlMM8sknS+KM0GsItPXSY9rRq0YOYJUc3croQPUSK0LqOhCCBZfXiaN80pwWfHvL8rVmzyOAhzDCZxBAFdQhTuoQR0oPMIzvMKbp7wX7937mLeuePnMEfyB9/kDMYKO4A==</latexit>

ū
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FIG. 1: Upper raw (a,b): gluon-mediated quark
pair production; Middle raw (c,d):

instanton-induced ’t Hooft four-fermion interaction;
Lower raw (e,f): pion-mediated quark pair

production, or iterated ’t Hooft Lagrangian in s
and t channels.

papers.
To complete our introduction to diquarks, we

briefly note the issue of heavy diquarks, e.g. made of
two charmed quarks cc. This issue reappeared after
the recent discovery of the tetraquark T++

ccūd̄
by the

LHCb collaboration. If the only force is Coulomb,
the QQ coupling is half of that in Q̄Q. Now, since for
a 1/r potential the binding scales as the square of
the coupling, we readily get B(QQ) = 1

4B(Q̄Q). Yet
we do know that charm quarks are not heavy enough
to ignore the confining forces in charmonium, and
so this relation is not expected to hold. The static
potentials between heavy quarks were discussed in
detail in our previous paper [4].

Karliner and Rosner [19, 20] conjectured a different
relation

B(QQ) =
1

2
B(Q̄Q) (3)

which turned out to be phenomenologically success-
ful. (While it resembles what we called in our pre-
vious paper “Ansatz A" for the quark-quark static
interaction, it is not the same, a half for potentials
is not half for bindings. For charmonium binding
in their analysis B(Q̄Q) ⇡ �258 MeV , so B(QQ) ⇡

�129 MeV , which led them to a predict a mass of

M(T++
ccūd̄

) = 3882 MeV just 7 MeV above the sub-
sequent experimentally measured value.)

Currently we have not performed any calculations
for tetraquarks. We had done some preliminary
studies of heavy-heavy-light QQq baryons with some
model wave functions, and concluded that for two
charm quarks QQ = cc their separation into quasi-
two-body (heavy diquark plus light “atmosphere") is
not really justified. This is in qualitative agreement
with the relatively small binding of a cc diquark in
the Karliner-Rosner conjecture. So, in this work, we
will focus on the light-light “good diquarks", known
to be more strongly bound.

B. Bridging the gap between hadronic
spectroscopy and partonic physics

In this subsection we outline our plan for bridging
this gap.

Our starting point is the well known traditional
quark model used in hadronic spectroscopy. The
main phenomenon included in this model is the
lhenomenon of chiral symmetry breaking, with an
effective mass for the “constituent quarks". For
light quarks it is mq ⇠ 1/3 GeV . This mass is
much smaller than the induced mass on gluons,
so hadronic spectroscopy is traditionally described
as bound states of these constituent quarks, with
gluonic states or excitations described as “exotica".
The traditional states are two-quark mesons and
three-quark baryons, but of course there are also
tetraquarks q3q̄ and pentaquarks q4q̄ states, re-
cently discovered with heavy quark content.

The first ark of the bridge (described in detail in
these series of works) is to transfer such quark mod-
els from the CM frame to the light front. For some
simplest cases – like heavy quarkonia – it amounts
to a transition from spherical to cylindrical coordi-
nates, with subsequent transformation of longitudi-
nal momenta into Bjorken-Feynman variable x. But
in general, it is easier to start with light-front Hamil-
tonians HLF and perform its quantization. One
of the benefit is that no nonrelativistic approxima-
tion is needed, therefore heavy and light quarks are
treated in the same way.

The second ark of the bridge is built via chiral dy-
namics , which seeds the quark sea by producing
extra quark-antiquark pair. In section VIII we dis-
cuss how it can be done, in the first order in ’t Hooft
effective action as well as via intermediate pions.
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(24) describes a non-relativistic and linearly con-
fined particle of variational mass m, with coordi-
nates Zµ = (�i, ⇢i) in D = 6 dimensions as per
the last relation. We have rescaled the coordinatep
mZ ! Z and string tension �̃T =

p
3�T /

p
m, for

convenience.
An estimate of the mass spectrum can be obtained

using the WKB approximation,
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with the end points rL,S solution to the cubic equa-
tion

2�̃T r
3 � 2Er2 + l(l +D � 2) = 0

For zero orbital motion l = 0, the WKB radial en-
ergy levels can be found to be
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◆ 2
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Once combined with the extra terms in (24), we can
carry the minimization in m, and set its value at the
minimum. The ensuing WKB radial mass spectrum
of the star baryon Mn0 in the rest frame, Reggeizes
for large n linearly

↵0M2
n0 ⇡ 2

p
3n (27)

with ↵0
= 1/2⇡�T . We recall that the meson Regge

trajectory is ↵0M2
= 1. So, in the same units our

“star-shaped" baryons have a slope 2
p
3 ⇡ 3.46,

compared to the mesons. It is close but not equal to
the number 3, naively corresponding to the number
of strings. This WKB radial Regge trajectory calcu-
lated in the rest frame, has similar but not identical
slope to that derived from the light front (see (61)
below).

For large orbital excitations l, the motion is classi-
cal, and an estimate can be obtained by noting that
for the confining potential the virial theorem gives

E0l ⇡ K + V = 3K =
3l2

2R2

with R = (l2/�̃T )
1
3 fixed by the force equation. Af-

ter fixing m by minimization, the mass spectrum of
the star baryon is seen to Reggeize linearly in large
orbital momentum l as well,

↵0M2
0l ⇡

6

⇡
l (28)

with a slope 6/⇡ ⇡ 1.91, so the linear Reggeization
is not the same in n and l! This is in disagreement
with the experimental data for light baryons, as we
have demonstrated above for the isobars.

The results for model A follows from those for
model Y through the rescaling (21). In particular,
the Reggeized trajectories in the semi-classical ap-
proximation are

↵0M2
n0 ⇡ 3n

↵0M2
0l ⇡

3
p
3

⇡
l (29)

in comparison to (27) and (28), respectively.

IV. THE HAMILTONIAN ON THE
LIGHT-FRONT

The kinetic part of the LF Hamiltonian has the
form

X

i

~p2i? +m2
i

2pi long

in which the transverse and longitudinal momenta
appear differently. As in our previous papers, we
rewrite it in the following form

p21? +m2
Q

x1
+

p22? +m2
Q

x2
+

p23? +m2
Q

x3
=

3

X

i

(p2i? +m2
i ) +

X

i

(p2i? +m2
i )

✓
1

xi
� 3

◆

The first quadratic term in the last line lead to a
transverse oscillator, and the second term is called a
nonfactorizable potential Ṽ , it mixes transverse and
longitudinal variables. It will be included by differ-
ent methods to be defined below.

The confining part of the LF Hamiltonian is built
from terms linear in coordinates. For example Y

in the rest frame, nonrelativistic approximation only works

if masses are much larger than momenta,


on the LF p_t^2 appear as a sum with m^2

and it does not matter which one is larger


=> same setting from Upsilons to light quark hadrons
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m2 � ~p2

yet longitudinal momenta appear in a complicated manner,

 how to do that I will tell



Philosophy: start with “bare bone” LF Hamiltonian 

and solve it as accurate as possible, 


with no arbitrary assumptions/approximations
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our continuous instanton formulae do. To resolve
the issue one perhaps need an instanton model with
a realistic size distribution, and also finer lattices.

In conclusion: Good agreement is shown be-
tween the instanton-induced and lattice potentials
for large-enough triangles, but not for “long" ones.
Of all the three models Y,V,A discussed, model-
A t seems to be closer to the evaluated instanton-
induced potentials, even for “long" geometry.

III. PRELIMINARIES

A. Jacobi coordinates

The LFWFs for baryons discussed in literature so
far consider quarks as independent, so those are a
function of 9 coordinates (or 9 momenta). The spu-
rious CM motion is implicitly present: in some cases
the corresponding energy is subtracted, but correc-
tions to the wave functions are simply ignored.

However, there is no need for this. Exact kinemat-
ics with appropriate conditions can be satisfied by a
well known change of variables, widely used in many
few-body applications. Total momentum is subject
to three conditions

~ptot? = ~p1? + ~p2? + ~p3? = 0

x1 + x2 + x3 = 1 (15)

so the system is in fact 6-dimensional.
The main idea of the approach we use is to work in

momentum representation, with kinetic term of the
Hamiltonian treated as a “potential", and the confin-
ing part (in which coordinates are used as derivative
over momenta ~ri = i@/@~pi

For transverse momenta we introduce two
(slightly modified) Jacobi momenta variables

~p⇢? =
1p
2
(~p1?�~p2?), ~p�? =

1p
6
(~p1?+~p2?�2~p3?)

(16)
in term of which

~p1? = (

p
6~p�? + 3

p
2~p⇢?)/6,

~p2? = (

p
6~p�? � 3

p
2~p⇢?)/6,

~p3? = �
p
6~p�?/3 (17)

Now the total transverse momentum ~ptot = ~p1+~p2+
~p3 vanishes automatically.

The longitudinal momentum fractions are defined

FIG. 3. The three-quark potentials V (GeV ) versus

x (fm) defined in (11), for "equilateral", "direct" and

"long" triangles, top to bottom. The open points cor-

respond to lattice simulation , the closed points to our

calculation in the “dense instanton liquid" model. Lin-

ear predictions of the models V and A are shown by the

dashed and solid lines, respectively.

similarly

x1 = (

p
6�+ 3

p
2⇢+ 2X)/6

x2 = (

p
6�� 3

p
2⇢+ 2X)/6

x3 = (�
p
6�+X)/3 (18)

Note that X = x1+x2+x3: unlike in the transverse
direction for which X = 0, here X should be set
to 1. Therefore, the physical domain is the three-
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~p2? = (

p
6~p�? � 3

p
2~p⇢?)/6,

~p3? = �
p
6~p�?/3 (17)

Now the total transverse momentum ~ptot = ~p1+~p2+
~p3 vanishes automatically.

The longitudinal momentum fractions are defined

FIG. 3. The three-quark potentials V (GeV ) versus

x (fm) defined in (11), for "equilateral", "direct" and

"long" triangles, top to bottom. The open points cor-

respond to lattice simulation , the closed points to our

calculation in the “dense instanton liquid" model. Lin-

ear predictions of the models V and A are shown by the

dashed and solid lines, respectively.

similarly

x1 = (

p
6�+ 3

p
2⇢+ 2X)/6

x2 = (

p
6�� 3

p
2⇢+ 2X)/6

x3 = (�
p
6�+X)/3 (18)

Note that X = x1+x2+x3: unlike in the transverse
direction for which X = 0, here X should be set
to 1. Therefore, the physical domain is the three-

=1

such as “CM motion subtraction”
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dimensional space

H ! 1

2m

�
~p2� + ~p2⇢

�

+

p
3�T (~r

2
� + ~r2⇢)

1
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✓
3

2

m2
Q

m
+

3

2
m

◆

!
p2µ
2

+ �̃T |Zµ|+
✓
3

2

m2
Q

m
+

3

2
m

◆
(24)

(24) describes a non-relativistic and linearly con-
fined particle of variational mass m, with coordi-
nates Zµ = (�i, ⇢i) in D = 6 dimensions as per
the last relation. We have rescaled the coordinatep
mZ ! Z and string tension �̃T =

p
3�T /

p
m, for

convenience.
An estimate of the mass spectrum can be obtained

using the WKB approximation,

Z rL

rS

dr

✓
2E � 2�̃T r �

l(l +D � 2)

r2

◆ 1
2

=

✓
n+

1

2

◆
⇡

(25)

with the end points rL,S solution to the cubic equa-
tion

2�̃T r
3 � 2Er2 + l(l +D � 2) = 0

For zero orbital motion l = 0, the WKB radial en-
ergy levels can be found to be

En0(m) =

✓
3⇡

2
p
2

◆ 2
3
✓
n+

1

2

◆ 2
3

�̃
2
3
T ⌘ Ẽ0n

m
1
3

(26)

Once combined with the extra terms in (24), we can
carry the minimization in m, and set its value at the
minimum. The ensuing WKB radial mass spectrum
of the star baryon Mn0 in the rest frame, Reggeizes
for large n linearly

↵0M2
n0 ⇡ 2

p
3n (27)

with ↵0
= 1/2⇡�T . We recall that the meson Regge

trajectory is ↵0M2
= 1. So, in the same units our

“star-shaped" baryons have a slope 2
p
3 ⇡ 3.46,

compared to the mesons. It is close but not equal to
the number 3, naively corresponding to the number
of strings. This WKB radial Regge trajectory calcu-
lated in the rest frame, has similar but not identical
slope to that derived from the light front (see (61)
below).

For large orbital excitations l, the motion is classi-
cal, and an estimate can be obtained by noting that
for the confining potential the virial theorem gives

E0l ⇡ K + V = 3K =
3l2

2R2

with R = (l2/�̃T )
1
3 fixed by the force equation. Af-

ter fixing m by minimization, the mass spectrum of
the star baryon is seen to Reggeize linearly in large
orbital momentum l as well,

↵0M2
0l ⇡

6

⇡
l (28)

with a slope 6/⇡ ⇡ 1.91, so the linear Reggeization
is not the same in n and l! This is in disagreement
with the experimental data for light baryons, as we
have demonstrated above for the isobars.

The results for model A follows from those for
model Y through the rescaling (21). In particular,
the Reggeized trajectories in the semi-classical ap-
proximation are

↵0M2
n0 ⇡ 3n

↵0M2
0l ⇡

3
p
3

⇡
l (29)

in comparison to (27) and (28), respectively.

IV. THE HAMILTONIAN ON THE
LIGHT-FRONT

The kinetic part of the LF Hamiltonian has the
form

X

i

~p2i? +m2
i

2pi long

in which the transverse and longitudinal momenta
appear differently. As in our previous papers, we
rewrite it in the following form

p21? +m2
Q

x1
+

p22? +m2
Q

x2
+

p23? +m2
Q

x3
=

3

X

i

(p2i? +m2
i ) +

X

i

(p2i? +m2
i )

✓
1

xi
� 3

◆

The first quadratic term in the last line lead to a
transverse oscillator, and the second term is called a
nonfactorizable potential Ṽ , it mixes transverse and
longitudinal variables. It will be included by differ-
ent methods to be defined below.

The confining part of the LF Hamiltonian is built
from terms linear in coordinates. For example Y
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The first quadratic term in the last line lead to a
transverse oscillator, and the second term is called a
nonfactorizable potential Ṽ , it mixes transverse and
longitudinal variables. It will be included by differ-
ent methods to be defined below.

The confining part of the LF Hamiltonian is built
from terms linear in coordinates. For example Y

transverse

two 2d oscillators

non-factoriwable

“cup potential”


which is mostly zero

except near the edges


forcing LFWFs to vanish

10

model with three strings going to the junction at
the center has a sum of linear terms

VY = �T

3X

i=1

|~ri|

Like we did for mesons in our previous papers, we
again introduce en einbine trick with a variational
parameter a which allows to re-write the linear po-
tential as quadratic one.

Furthermore, as in our previous papers, we use
the Hamiltonian in the momentum representation.
Therefore the coordinate vectors are interpreted as
~r = i@/@~p, and therefore the confining part ⇠ vecr2

will play the role normally attributed to the kinetic
energy. Quadratic confinement thus leads to a sec-
ond order Schroedinger-like equation for the eigen-
functions.

The same logics is applied to the transverse and
longitudinal coordinates ~r?, rlong, so the immediate
task is to write the Laplacian operator, both in Ja-
cobi coordinates in transverse and in our curved map
(35). Both tasks are performed, as explained in Ap-
pendix C.

Let us focus for now on longitudinal momenta.
In variable �, ⇢, X (18) the line element defining the
metric tensor in the new coordinates, is diagonal and
simple

dl2 = d�2 + d⇢2 + dX2/3 (30)

The Laplacian (which we encounter in the confining
term of the Hamiltonian) in the original coordinates
also takes a simple form

r2
=

X

i

@2

@x2
i

! @2

@�2
+

@2

@⇢2
+ 3

@2

@X2
(31)

Since we work on constant X = 1 we need only the
first two terms.

Therefore, the first problem we encounter is to de-
fine eigenfunctions of the Laplacian on the triangu-
lar physical domain in the ��⇢ variable. As we will
show below, for the equilateral triangle this problem
can in fact be solved analytically.

The main difficulty is related with the non-
factorizable potential Ṽ . Its structure is schemat-
ically given by the combination

Ṽ ⇠
✓

1

x1
+

1

x2
+

1

x3
� 9

◆
, (32)

assuming ((~p?i )2 +m2
i ) can be approximated by its

average and factor out. The main feature of Ṽ is

that it is small near the center of the triangle, but
becomes large at all boundaries, see e.g. its contour
plot shown in Fig.4. Therefore we call it a “trian-
gular cup". The singular nature of Ṽ at the bound-
aries, leads to divergences in matrix elements, un-
less the wave functions vanish there. Therefore, the
problem we set to solve must have Dirichlet bound-
ary conditions  i(�, ⇢) = 0 at the boundaries for all
functions.

Quantum mechanics on a triangle with the po-
tential Ṽ will be solved below, by two numerical
methods. But before we do so, it is always useful
to start with less accurate but much simpler varia-
tional method.
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FIG. 4. The contour plot of the “triangular cup" poten-

tial V (�, ⇢) on �, ⇢ plot.

To exclude divergences on the boundaries, the
wave function should vanish, so we simply include
linear suppression factors and assume that

 (�, ⇢) =
⇥Y

i

xi(�, ⇢)
⇤
�(�, ⇢) (33)

with some regular � (This procedure is known in
nuclear and condensed many-body physics, through
the use of Jastrow type wave functions). Let us then
take this regular function to be a Gaussian centered
in the triangle

�(�, ⇢) = exp

✓
�A

✓
�2 +

✓
⇢� 1p

6

◆2◆◆
(34)

with a variational parameter A. We use (33), evalu-
ate the average of the Laplacian and of the potential
V , and plot the result as a function of A in Fig 5.
As expected, increasing A – that is making the wave

longitudinal variables 
are defined on equilateral triangle
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whatever coordinates or basis is used, one cannot
simply invent a convenient Hamiltonian in those
coodinates, plus whatever motivations. In particu-
lar, the Laplacian in the original coordinates should
be re-written using the pertinent expressions from
differential geometry. For the s, t map given above,
the Laplacian is involved and listed in Appendix C.

V. NAMBU-GOTO STRING AND
CONFINEMENT

A. Confining light front Hamiltonian

Ignoring Coulomb and spin effects, we start by
focusing on confinement by a relativistic string. The
action in the first quantized form can be written as

S[✓] =

Z T

0
d⌧

3X

i=1

✓
eim

2
i +

1

4ei
ẋ2
i

◆
(37)

+�T

3X

i=1

Z T

0
d⌧

Z 1

0
d�i

q
Ẋ2

i X
02
i � (Ẋi ·X 0

i)
2

In the first term, describing endpoint masses, we
use the “einbein trick" which we will use consis-
tently throughout these papers to get rid of un-
wanted square roots. Note that if one performs min-
imization with respect to the three einbein param-
eters ei, it yields back the standard free relativistic
action for massive particles (in Euclidean signature).

The string world-sheet action in the Nambu-Goto
action includes derivatives over internal coordinates
⌧,� shown by a dot and prime, respectively. The
world-sheets themselves can be described by the so
called “ruled surfaces", parametrized by

Xµ
i (⌧,�i; ✓) = zµ(⌧, ✓) + �ir

µ
i

rµi = (ri?, ri3, 0) (38)
zµ(⌧, ✓) = (0?, sin✓⌧, cos✓⌧)

and zµ(⌧, ✓) being the world-line of the string junc-
tion. (Our notations for the coordinates are 1,2 for
transverse, 3 for longitudinal beam direction , and 4
for time.)

For baryons in the so-called star configuration,
the string junction and the end-points follow par-
allel trajectories, sloped at angle ✓ with respect to
the 4-direction. For ✓ = 0, the analysis corresponds
to a star baryon in the rest frame. For arbitrary
✓ with subsequent analytical continuation ✓ ! �i�,

the analysis corresponds to a star baryon on the light
front.

As already explained above, to factor out spurious
motion of the center of mass, we use Jacobi coordi-
nates. For equal quark masses

m1 = m2 = m3 = mQ ,

the center of mass coincides with the location of the
string junction zµ. Also, although the einbeins are
arbitrary and fixed only by minimization for the free
part, symmetry suggests that the minima are equal
or e1 = e2 = e3 = e, with only e to minimize, by
steepest descent. This will be assumed throughout.

The specific form of the Jacobi coordinates for the
end-points is

rµ1 =
1p
6
rµ� +

1p
2
rµ⇢

rµ2 =
1p
6
rµ� � 1p

2
rµ⇢

rµ3 = �
p
2p
3
rµ� (39)

with a kinetic contribution

Z T

0
d⌧

✓
3em2

Q +
3

4e
+

1

4e
(ṙ�

2
+ ṙ⇢

2
)

◆
(40)

in (37). The Nambu-Goto string contribution is

Z T

0
d⌧ �T

3X

i=1

|⇠i(✓)| (41)

with the invariant distances

|⇠i(✓)| = (r2i? + cos
2✓r2i3)

1
2 ,

or, in the Jacobi coordinates

⇠21(✓) =
1

6
r2�? +

1

2
r2⇢?

+
1

6
r�? · r⇢? + cos

2✓

✓
1p
6
r�3 +

1p
2
r⇢3

◆2

⇠22(✓) =
1

6
r2�? +

1

2
r2⇢?

�1

6
r�? · r⇢? + cos

2✓

✓
1p
6
r�3 �

1p
2
r⇢3

◆2

⇠23(✓) =
2

3
r2�? +

2

3
cos

2✓r2�3 (42)
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The full action (prior to analytical continuation) is
(40) plus (41)

S[✓] !
Z T

0
d⌧

✓
3em2

Q +
3

4e

+
1

4e
(ṙ�

2
+ ṙ⇢

2
) + �T

3X

i=1

|⇠i(✓)|
◆

(43)

B. Going to the light front frame

For ✓ ! �i� and T ! iTM , (43) analytically
continues to the light front Hamiltonian or squared
mass

HLF =

3X

i=1

✓
k2i? +m2

Q

xi

+2�T

�
|i@/@xi|2 +M2r2i?

� 1
2

◆
(44)

with the constraints: transverse
P3

i=1 ki? = P? = 0

and longitudinal
P3

i=1 xi = 1, with the standard
momentum fractions xi = k+i /P

+.

C. A digression to 1+1 space-time

The Hamiltonian derived above contains non-
factorizable interaction between the longitudinal and
transverse coordinates which make the problem dif-
ficult. So, before we will address it in full, let us
discuss its longitudinal part alone. The Hamiltonian
(44) is then reduced to

HLF,L =

3X

i=1

✓
m2

Q

xi
+ 2�T |i@/@xi|

◆
(45)

For a baryon in the star configuration, (66) yields a
longitudinal squared mass spectrum M2

n, and parton
amplitudes 'n[x]

3X

i=1

✓
m2

Q

xi
+ 2�T |i@/@xi|

◆
'n[x] = M2

n'n[x]

(46)

Modulo the effective string tension from the 3-
dimensional reduction, (46) is similar to the baryonic
equation derived in 2-dimensional QCD [12, 13].

(46) can be regarded as the eigenvalue problem,
for 3 identical particles with parton-x coordinates,
moving in a box 0  xi  1. If one naively substi-
tutes the potential by vanishing ( Dirichlet ) bound-
ary condition 'n(xi = 0, 1) = 0, the eigenstates are
standing waves, e.g.

'n[x] ⇡ 2
3
2

✓
sin(n1⇡x1)sin(n2⇡x2)sin(n3⇡x3)

◆

(47)

with eigenvalues

M2
n ⇡ 2⇡�T (|n1|+ |n2|+ |n3|) (48)

that reggeize along the diagonal n1,2,3 = n � 1 as

↵0M2
n ⇡ 3n (49)

The factor of 3 reflects on the star configuration with
three strings.

Unfortunately, this solution is very naive, for sev-
eral reasons. The most obvious is that the indepen-
dent quantization of three quarks in a box, ignores
the important momentum conservation constraint

X = x1 + x2 + x3 = 1

and therefore contains spurious center of mass mo-
tion. As already discussed in the previous section,
one can use other coordinates which are center of
mass free. In particular, the Jacobi coordinates lead
to a problem with two particles inside the equi-
lateral triangle.

To solve this problem, we proceed in two steps.
First, we unwind the square roots by using the ein-
bein trick once again

3X

i=1

����
i@

@xi

���� =
1

2

✓
1

eiL
+ eiL

✓
i@

@xi

◆2◆

! 1

2

✓
3

eL
+ eL

3X

i=1

✓
i@

@xi

◆2◆
(50)

and assume equal eiL = eL at the extrema, in the
steepest descent approximation. Second, we isolate
the center of mass coordinate, using Jacobi coordi-
nates (18). The 3-particle laplacian in those coordi-
nates is the sum of a 2-particle reduced Laplacian,
plus derivative of the center of mass variable

3X

i=1

✓
i@

@xi

◆2

=

✓
i@

@�

◆2

+

✓
i@

@⇢

◆2

+ 3

✓
i@

@X

◆2

(51)
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tutes the potential by vanishing ( Dirichlet ) bound-
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standing waves, e.g.
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The factor of 3 reflects on the star configuration with
three strings.

Unfortunately, this solution is very naive, for sev-
eral reasons. The most obvious is that the indepen-
dent quantization of three quarks in a box, ignores
the important momentum conservation constraint

X = x1 + x2 + x3 = 1

and therefore contains spurious center of mass mo-
tion. As already discussed in the previous section,
one can use other coordinates which are center of
mass free. In particular, the Jacobi coordinates lead
to a problem with two particles inside the equi-
lateral triangle.

To solve this problem, we proceed in two steps.
First, we unwind the square roots by using the ein-
bein trick once again
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and assume equal eiL = eL at the extrema, in the
steepest descent approximation. Second, we isolate
the center of mass coordinate, using Jacobi coordi-
nates (18). The 3-particle laplacian in those coordi-
nates is the sum of a 2-particle reduced Laplacian,
plus derivative of the center of mass variable
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not discussed in this talk

coord’s

are derivative

over momenta

the square root

 on the next line
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whatever coordinates or basis is used, one cannot
simply invent a convenient Hamiltonian in those
coodinates, plus whatever motivations. In particu-
lar, the Laplacian in the original coordinates should
be re-written using the pertinent expressions from
differential geometry. For the s, t map given above,
the Laplacian is involved and listed in Appendix C.

V. NAMBU-GOTO STRING AND
CONFINEMENT

A. Confining light front Hamiltonian

Ignoring Coulomb and spin effects, we start by
focusing on confinement by a relativistic string. The
action in the first quantized form can be written as

S[✓] =

Z T

0
d⌧

3X

i=1

✓
eim

2
i +

1

4ei
ẋ2
i

◆
(37)

+�T

3X
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0
d⌧

Z 1

0
d�i

q
Ẋ2

i X
02
i � (Ẋi ·X 0

i)
2

In the first term, describing endpoint masses, we
use the “einbein trick" which we will use consis-
tently throughout these papers to get rid of un-
wanted square roots. Note that if one performs min-
imization with respect to the three einbein param-
eters ei, it yields back the standard free relativistic
action for massive particles (in Euclidean signature).

The string world-sheet action in the Nambu-Goto
action includes derivatives over internal coordinates
⌧,� shown by a dot and prime, respectively. The
world-sheets themselves can be described by the so
called “ruled surfaces", parametrized by

Xµ
i (⌧,�i; ✓) = zµ(⌧, ✓) + �ir

µ
i

rµi = (ri?, ri3, 0) (38)
zµ(⌧, ✓) = (0?, sin✓⌧, cos✓⌧)

and zµ(⌧, ✓) being the world-line of the string junc-
tion. (Our notations for the coordinates are 1,2 for
transverse, 3 for longitudinal beam direction , and 4
for time.)

For baryons in the so-called star configuration,
the string junction and the end-points follow par-
allel trajectories, sloped at angle ✓ with respect to
the 4-direction. For ✓ = 0, the analysis corresponds
to a star baryon in the rest frame. For arbitrary
✓ with subsequent analytical continuation ✓ ! �i�,

the analysis corresponds to a star baryon on the light
front.

As already explained above, to factor out spurious
motion of the center of mass, we use Jacobi coordi-
nates. For equal quark masses

m1 = m2 = m3 = mQ ,

the center of mass coincides with the location of the
string junction zµ. Also, although the einbeins are
arbitrary and fixed only by minimization for the free
part, symmetry suggests that the minima are equal
or e1 = e2 = e3 = e, with only e to minimize, by
steepest descent. This will be assumed throughout.

The specific form of the Jacobi coordinates for the
end-points is

rµ1 =
1p
6
rµ� +

1p
2
rµ⇢

rµ2 =
1p
6
rµ� � 1p
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with a kinetic contribution
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in (37). The Nambu-Goto string contribution is
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with the invariant distances
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or, in the Jacobi coordinates
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The full action (prior to analytical continuation) is
(40) plus (41)

S[✓] !
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B. Going to the light front frame

For ✓ ! �i� and T ! iTM , (43) analytically
continues to the light front Hamiltonian or squared
mass

HLF =

3X

i=1

✓
k2i? +m2

Q

xi

+2�T

�
|i@/@xi|2 +M2r2i?

� 1
2

◆
(44)

with the constraints: transverse
P3

i=1 ki? = P? = 0

and longitudinal
P3

i=1 xi = 1, with the standard
momentum fractions xi = k+i /P

+.

C. A digression to 1+1 space-time

The Hamiltonian derived above contains non-
factorizable interaction between the longitudinal and
transverse coordinates which make the problem dif-
ficult. So, before we will address it in full, let us
discuss its longitudinal part alone. The Hamiltonian
(44) is then reduced to

HLF,L =

3X

i=1

✓
m2

Q

xi
+ 2�T |i@/@xi|

◆
(45)

For a baryon in the star configuration, (66) yields a
longitudinal squared mass spectrum M2

n, and parton
amplitudes 'n[x]

3X
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Q

xi
+ 2�T |i@/@xi|

◆
'n[x] = M2

n'n[x]

(46)

Modulo the effective string tension from the 3-
dimensional reduction, (46) is similar to the baryonic
equation derived in 2-dimensional QCD [12, 13].

(46) can be regarded as the eigenvalue problem,
for 3 identical particles with parton-x coordinates,
moving in a box 0  xi  1. If one naively substi-
tutes the potential by vanishing ( Dirichlet ) bound-
ary condition 'n(xi = 0, 1) = 0, the eigenstates are
standing waves, e.g.

'n[x] ⇡ 2
3
2

✓
sin(n1⇡x1)sin(n2⇡x2)sin(n3⇡x3)

◆

(47)

with eigenvalues

M2
n ⇡ 2⇡�T (|n1|+ |n2|+ |n3|) (48)

that reggeize along the diagonal n1,2,3 = n � 1 as

↵0M2
n ⇡ 3n (49)

The factor of 3 reflects on the star configuration with
three strings.

Unfortunately, this solution is very naive, for sev-
eral reasons. The most obvious is that the indepen-
dent quantization of three quarks in a box, ignores
the important momentum conservation constraint

X = x1 + x2 + x3 = 1

and therefore contains spurious center of mass mo-
tion. As already discussed in the previous section,
one can use other coordinates which are center of
mass free. In particular, the Jacobi coordinates lead
to a problem with two particles inside the equi-
lateral triangle.

To solve this problem, we proceed in two steps.
First, we unwind the square roots by using the ein-
bein trick once again
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(50)

and assume equal eiL = eL at the extrema, in the
steepest descent approximation. Second, we isolate
the center of mass coordinate, using Jacobi coordi-
nates (18). The 3-particle laplacian in those coordi-
nates is the sum of a 2-particle reduced Laplacian,
plus derivative of the center of mass variable
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(51)
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The full action (prior to analytical continuation) is
(40) plus (41)
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i=1 xi = 1, with the standard
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Modulo the effective string tension from the 3-
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for 3 identical particles with parton-x coordinates,
moving in a box 0  xi  1. If one naively substi-
tutes the potential by vanishing ( Dirichlet ) bound-
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The factor of 3 reflects on the star configuration with
three strings.

Unfortunately, this solution is very naive, for sev-
eral reasons. The most obvious is that the indepen-
dent quantization of three quarks in a box, ignores
the important momentum conservation constraint

X = x1 + x2 + x3 = 1

and therefore contains spurious center of mass mo-
tion. As already discussed in the previous section,
one can use other coordinates which are center of
mass free. In particular, the Jacobi coordinates lead
to a problem with two particles inside the equi-
lateral triangle.

To solve this problem, we proceed in two steps.
First, we unwind the square roots by using the ein-
bein trick once again
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and assume equal eiL = eL at the extrema, in the
steepest descent approximation. Second, we isolate
the center of mass coordinate, using Jacobi coordi-
nates (18). The 3-particle laplacian in those coordi-
nates is the sum of a 2-particle reduced Laplacian,
plus derivative of the center of mass variable
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use the einbein trick to get rid of the square roots in
the confining term

HLF ⇡
3X

i=1

✓
k2i? +m2

Q

xi

+�T

✓
3a+

1

a

3X

i=1

(|i@/@xi|2 + (3mQ)
2b2i?

�◆◆

(64)

with M ⇡ 3mQ used on the right-hand-side to close
the mass squared operator. Again, we assumed
equal einbeins ai ! a in (64) by steepest descent.
To the first kinetic term we add and subtract its
value at xi =

1
3 , producing an oscillator with fixed

frequency, and a residual potential Ṽ which is close
to zero at the center of the triangular cup.

In terms of the Jacobi coordinates, the diagonal-
izable part reads

H0LF = 3(~p2⇢ + ~p2� + 3m2
Q) (65)

+
�T

a

✓
|i@/@�|2 + |i@/@⇢|2 + (3mQ)

2
(~b2� +~b2⇢)

◆

where the all the vectors are in the transverse plane,
and ~b�,~b⇢ are coordinates conjugate to the corre-
sponding momenta. To elucidate the dependence on
a we rewrite it as

M2
0 (n�, n⇢, nL,mL) = (3mQ)

2

+
�Tp
a
M2

?(n�, n⇢) +
�T

a
M2

L(mL, nL) + 3�Ta

(66)

with

M2
L(nL,mL) = eDnL,mL

M2
?(n�, n⇢) =

6
p
3mQp
�T

(n� + n⇢ + 2) (67)

The einbein in (66) minimizes the squared mass, and
is solution to the quartic Ferrari equation

6
p
a
4 �M2

?
p
a� 2M2

L = 0

For large longitudinal quantum numbers nL,mL �
1 the squared mass reggeizes

M2
0 ⇡ 2

p
3�TML

as we noted earlier. However, for large transverse
quantum numbers n�, n⇢ � 1 the squared mass does
not

M2
0 ⇡ 18�T

✓
M2

?
6�T

◆ 2
3

(68)

Recall that the results following from H0LF are
still to be modified by the additional residual contri-
butions, stemming from ṼLF to be added below, but
which are independent of our variational parameter
a. Therefore the minimization over a can already be
performed numerically. With our standard values
for the string tension �T = (0.4GeV )

2, and quark
masses b, c, s, q, we show in Fig. 8 the dependence
on a of the lowest eigenvalue for each species.

FIG. 8. The lowest eigenvalue of H0LF in GeV
2

versus

the (dimensionless) “einbine parameter" a, for b, c, s, q

quarks. Using this plot we perform the minimization in

a.

VI. THE NON-FACTORIZABLE
POTENTIAL Ṽ

The non-factorizable part of the potential is

Ṽ =
~p21 +m2

Q

x1
+

~p22 +m2
Q

x2

+
~p23 +m2

Q

x3
� 3(~p21 + ~p22 + ~p23)� 9m2

Q (69)
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whatever coordinates or basis is used, one cannot
simply invent a convenient Hamiltonian in those
coodinates, plus whatever motivations. In particu-
lar, the Laplacian in the original coordinates should
be re-written using the pertinent expressions from
differential geometry. For the s, t map given above,
the Laplacian is involved and listed in Appendix C.

V. NAMBU-GOTO STRING AND
CONFINEMENT

A. Confining light front Hamiltonian

Ignoring Coulomb and spin effects, we start by
focusing on confinement by a relativistic string. The
action in the first quantized form can be written as

S[✓] =

Z T

0
d⌧

3X

i=1

✓
eim

2
i +

1

4ei
ẋ2
i

◆
(37)
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i=1
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0
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Z 1

0
d�i

q
Ẋ2

i X
02
i � (Ẋi ·X 0

i)
2

In the first term, describing endpoint masses, we
use the “einbein trick" which we will use consis-
tently throughout these papers to get rid of un-
wanted square roots. Note that if one performs min-
imization with respect to the three einbein param-
eters ei, it yields back the standard free relativistic
action for massive particles (in Euclidean signature).

The string world-sheet action in the Nambu-Goto
action includes derivatives over internal coordinates
⌧,� shown by a dot and prime, respectively. The
world-sheets themselves can be described by the so
called “ruled surfaces", parametrized by

Xµ
i (⌧,�i; ✓) = zµ(⌧, ✓) + �ir

µ
i

rµi = (ri?, ri3, 0) (38)
zµ(⌧, ✓) = (0?, sin✓⌧, cos✓⌧)

and zµ(⌧, ✓) being the world-line of the string junc-
tion. (Our notations for the coordinates are 1,2 for
transverse, 3 for longitudinal beam direction , and 4
for time.)

For baryons in the so-called star configuration,
the string junction and the end-points follow par-
allel trajectories, sloped at angle ✓ with respect to
the 4-direction. For ✓ = 0, the analysis corresponds
to a star baryon in the rest frame. For arbitrary
✓ with subsequent analytical continuation ✓ ! �i�,

the analysis corresponds to a star baryon on the light
front.

As already explained above, to factor out spurious
motion of the center of mass, we use Jacobi coordi-
nates. For equal quark masses

m1 = m2 = m3 = mQ ,

the center of mass coincides with the location of the
string junction zµ. Also, although the einbeins are
arbitrary and fixed only by minimization for the free
part, symmetry suggests that the minima are equal
or e1 = e2 = e3 = e, with only e to minimize, by
steepest descent. This will be assumed throughout.

The specific form of the Jacobi coordinates for the
end-points is

rµ1 =
1p
6
rµ� +

1p
2
rµ⇢

rµ2 =
1p
6
rµ� � 1p

2
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p
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3
rµ� (39)

with a kinetic contribution
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in (37). The Nambu-Goto string contribution is
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with the invariant distances
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The full action (prior to analytical continuation) is
(40) plus (41)
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B. Going to the light front frame

For ✓ ! �i� and T ! iTM , (43) analytically
continues to the light front Hamiltonian or squared
mass

HLF =

3X

i=1
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k2i? +m2

Q

xi

+2�T
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|i@/@xi|2 +M2r2i?

� 1
2

◆
(44)

with the constraints: transverse
P3

i=1 ki? = P? = 0

and longitudinal
P3

i=1 xi = 1, with the standard
momentum fractions xi = k+i /P

+.

C. A digression to 1+1 space-time

The Hamiltonian derived above contains non-
factorizable interaction between the longitudinal and
transverse coordinates which make the problem dif-
ficult. So, before we will address it in full, let us
discuss its longitudinal part alone. The Hamiltonian
(44) is then reduced to

HLF,L =

3X

i=1

✓
m2

Q

xi
+ 2�T |i@/@xi|

◆
(45)

For a baryon in the star configuration, (66) yields a
longitudinal squared mass spectrum M2

n, and parton
amplitudes 'n[x]
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Modulo the effective string tension from the 3-
dimensional reduction, (46) is similar to the baryonic
equation derived in 2-dimensional QCD [12, 13].

(46) can be regarded as the eigenvalue problem,
for 3 identical particles with parton-x coordinates,
moving in a box 0  xi  1. If one naively substi-
tutes the potential by vanishing ( Dirichlet ) bound-
ary condition 'n(xi = 0, 1) = 0, the eigenstates are
standing waves, e.g.

'n[x] ⇡ 2
3
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(47)

with eigenvalues

M2
n ⇡ 2⇡�T (|n1|+ |n2|+ |n3|) (48)

that reggeize along the diagonal n1,2,3 = n � 1 as

↵0M2
n ⇡ 3n (49)

The factor of 3 reflects on the star configuration with
three strings.

Unfortunately, this solution is very naive, for sev-
eral reasons. The most obvious is that the indepen-
dent quantization of three quarks in a box, ignores
the important momentum conservation constraint

X = x1 + x2 + x3 = 1

and therefore contains spurious center of mass mo-
tion. As already discussed in the previous section,
one can use other coordinates which are center of
mass free. In particular, the Jacobi coordinates lead
to a problem with two particles inside the equi-
lateral triangle.

To solve this problem, we proceed in two steps.
First, we unwind the square roots by using the ein-
bein trick once again
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and assume equal eiL = eL at the extrema, in the
steepest descent approximation. Second, we isolate
the center of mass coordinate, using Jacobi coordi-
nates (18). The 3-particle laplacian in those coordi-
nates is the sum of a 2-particle reduced Laplacian,
plus derivative of the center of mass variable
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with the constraints: transverse
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and longitudinal
P3

i=1 xi = 1, with the standard
momentum fractions xi = k+i /P
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C. A digression to 1+1 space-time

The Hamiltonian derived above contains non-
factorizable interaction between the longitudinal and
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ary condition 'n(xi = 0, 1) = 0, the eigenstates are
standing waves, e.g.

'n[x] ⇡ 2
3
2

✓
sin(n1⇡x1)sin(n2⇡x2)sin(n3⇡x3)

◆

(47)

with eigenvalues

M2
n ⇡ 2⇡�T (|n1|+ |n2|+ |n3|) (48)

that reggeize along the diagonal n1,2,3 = n � 1 as

↵0M2
n ⇡ 3n (49)

The factor of 3 reflects on the star configuration with
three strings.

Unfortunately, this solution is very naive, for sev-
eral reasons. The most obvious is that the indepen-
dent quantization of three quarks in a box, ignores
the important momentum conservation constraint

X = x1 + x2 + x3 = 1

and therefore contains spurious center of mass mo-
tion. As already discussed in the previous section,
one can use other coordinates which are center of
mass free. In particular, the Jacobi coordinates lead
to a problem with two particles inside the equi-
lateral triangle.

To solve this problem, we proceed in two steps.
First, we unwind the square roots by using the ein-
bein trick once again

3X
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����
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@xi

���� =
1

2
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1

eiL
+ eiL
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i@

@xi

◆2◆

! 1

2

✓
3

eL
+ eL

3X

i=1

✓
i@

@xi

◆2◆
(50)

and assume equal eiL = eL at the extrema, in the
steepest descent approximation. Second, we isolate
the center of mass coordinate, using Jacobi coordi-
nates (18). The 3-particle laplacian in those coordi-
nates is the sum of a 2-particle reduced Laplacian,
plus derivative of the center of mass variable

3X

i=1

✓
i@

@xi

◆2

=

✓
i@

@�

◆2

+

✓
i@

@⇢

◆2

+ 3

✓
i@

@X

◆2

(51)

not discussed in this talk
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use the einbein trick to get rid of the square roots in
the confining term

HLF ⇡
3X

i=1

✓
k2i? +m2

Q

xi

+�T

✓
3a+

1

a

3X

i=1

(|i@/@xi|2 + (3mQ)
2b2i?

�◆◆

(64)

with M ⇡ 3mQ used on the right-hand-side to close
the mass squared operator. Again, we assumed
equal einbeins ai ! a in (64) by steepest descent.
To the first kinetic term we add and subtract its
value at xi =

1
3 , producing an oscillator with fixed

frequency, and a residual potential Ṽ which is close
to zero at the center of the triangular cup.

In terms of the Jacobi coordinates, the diagonal-
izable part reads

H0LF = 3(~p2⇢ + ~p2� + 3m2
Q) (65)

+
�T

a

✓
|i@/@�|2 + |i@/@⇢|2 + (3mQ)

2
(~b2� +~b2⇢)

◆

where the all the vectors are in the transverse plane,
and ~b�,~b⇢ are coordinates conjugate to the corre-
sponding momenta. To elucidate the dependence on
a we rewrite it as

M2
0 (n�, n⇢, nL,mL) = (3mQ)

2

+
�Tp
a
M2

?(n�, n⇢) +
�T

a
M2

L(mL, nL) + 3�Ta

(66)

with

M2
L(nL,mL) = eDnL,mL

M2
?(n�, n⇢) =

6
p
3mQp
�T

(n� + n⇢ + 2) (67)

The einbein in (66) minimizes the squared mass, and
is solution to the quartic Ferrari equation

6
p
a
4 �M2

?
p
a� 2M2

L = 0

For large longitudinal quantum numbers nL,mL �
1 the squared mass reggeizes

M2
0 ⇡ 2

p
3�TML

as we noted earlier. However, for large transverse
quantum numbers n�, n⇢ � 1 the squared mass does
not

M2
0 ⇡ 18�T

✓
M2

?
6�T

◆ 2
3

(68)

Recall that the results following from H0LF are
still to be modified by the additional residual contri-
butions, stemming from ṼLF to be added below, but
which are independent of our variational parameter
a. Therefore the minimization over a can already be
performed numerically. With our standard values
for the string tension �T = (0.4GeV )

2, and quark
masses b, c, s, q, we show in Fig. 8 the dependence
on a of the lowest eigenvalue for each species.

FIG. 8. The lowest eigenvalue of H0LF in GeV
2

versus

the (dimensionless) “einbine parameter" a, for b, c, s, q

quarks. Using this plot we perform the minimization in

a.

VI. THE NON-FACTORIZABLE
POTENTIAL Ṽ

The non-factorizable part of the potential is

Ṽ =
~p21 +m2

Q

x1
+

~p22 +m2
Q

x2

+
~p23 +m2

Q

x3
� 3(~p21 + ~p22 + ~p23)� 9m2

Q (69)

minimization over auxiliary parameter a 

can be done AFTER the Hamiltonian is diagonalized

coord’s

are derivative

over momenta

the square root

 on the next line



Philosophy:  in momentum representation

confinement produces derivative terms

leading to Schreodinger-like equation

10

model with three strings going to the junction at
the center has a sum of linear terms

VY = �T

3X

i=1

|~ri|

Like we did for mesons in our previous papers, we
again introduce en einbine trick with a variational
parameter a which allows to re-write the linear po-
tential as quadratic one.

Furthermore, as in our previous papers, we use
the Hamiltonian in the momentum representation.
Therefore the coordinate vectors are interpreted as
~r = i@/@~p, and therefore the confining part ⇠ vecr2

will play the role normally attributed to the kinetic
energy. Quadratic confinement thus leads to a sec-
ond order Schroedinger-like equation for the eigen-
functions.

The same logics is applied to the transverse and
longitudinal coordinates ~r?, rlong, so the immediate
task is to write the Laplacian operator, both in Ja-
cobi coordinates in transverse and in our curved map
(35). Both tasks are performed, as explained in Ap-
pendix C.

Let us focus for now on longitudinal momenta.
In variable �, ⇢, X (18) the line element defining the
metric tensor in the new coordinates, is diagonal and
simple

dl2 = d�2 + d⇢2 + dX2/3 (30)

The Laplacian (which we encounter in the confining
term of the Hamiltonian) in the original coordinates
also takes a simple form

r2
=

X

i

@2

@x2
i

! @2

@�2
+

@2

@⇢2
+ 3

@2

@X2
(31)

Since we work on constant X = 1 we need only the
first two terms.

Therefore, the first problem we encounter is to de-
fine eigenfunctions of the Laplacian on the triangu-
lar physical domain in the ��⇢ variable. As we will
show below, for the equilateral triangle this problem
can in fact be solved analytically.

The main difficulty is related with the non-
factorizable potential Ṽ . Its structure is schemat-
ically given by the combination

Ṽ ⇠
✓

1

x1
+

1

x2
+

1

x3
� 9

◆
, (32)

assuming ((~p?i )2 +m2
i ) can be approximated by its

average and factor out. The main feature of Ṽ is

that it is small near the center of the triangle, but
becomes large at all boundaries, see e.g. its contour
plot shown in Fig.4. Therefore we call it a “trian-
gular cup". The singular nature of Ṽ at the bound-
aries, leads to divergences in matrix elements, un-
less the wave functions vanish there. Therefore, the
problem we set to solve must have Dirichlet bound-
ary conditions  i(�, ⇢) = 0 at the boundaries for all
functions.

Quantum mechanics on a triangle with the po-
tential Ṽ will be solved below, by two numerical
methods. But before we do so, it is always useful
to start with less accurate but much simpler varia-
tional method.

FIG. 4. The contour plot of the “triangular cup" poten-

tial V (�, ⇢) on �, ⇢ plot.

To exclude divergences on the boundaries, the
wave function should vanish, so we simply include
linear suppression factors and assume that

 (�, ⇢) =
⇥Y

i

xi(�, ⇢)
⇤
�(�, ⇢) (33)

with some regular � (This procedure is known in
nuclear and condensed many-body physics, through
the use of Jastrow type wave functions). Let us then
take this regular function to be a Gaussian centered
in the triangle

�(�, ⇢) = exp

✓
�A

✓
�2 +

✓
⇢� 1p

6

◆2◆◆
(34)

with a variational parameter A. We use (33), evalu-
ate the average of the Laplacian and of the potential
V , and plot the result as a function of A in Fig 5.
As expected, increasing A – that is making the wave

Eigenfunctions of the Laplacian on the equilateral triangle 

can be found both analytically (6 standing waves)


and numerically with Mathematica

14

For fixed center of mass X = 1, (18) maps the con-
fining box-region B = [0, 1]3 for the coordinates xi,
to an equi-lateral triangle ⌃(x) of side L =

p
2, with

corners located at

(�, ⇢) =

✓
�

r
2

3
, 0

◆
,

✓
1p
6
,
1p
2

◆
,

✓
1p
6
,� 1p

2

◆

The corners correspond to one particle carrying all
the momentum, with the two others at rest.

The eigensystem of the first two terms in the
Laplacian (now free from the center of mass mo-
tion!), amounts to solving

�
✓

@2

@�2
+

@

@⇢2

◆
'mL,nL(�, ⇢) = emLnL'mL,nL(�, ⇢)

(52)

inside the triangle ⌃, with Dirichlet boundary con-
dition 'mL,nL(@⌃) = 0. Remarkably, although the
solutions are not available for generic triangles, they
are in fact known for equi-lateral triangles in closed
form, found in [14]. Their existence is due to the
finite number of ray reflections, which make a closed
set, as explained in Appendix E. The spectrum of
the Laplacian is given by

eDmLnL
=

✓
4⇡

3L

◆2✓✓
mL � nL

2

◆2

+
3

4
n2
L

◆
⌘ ẽDmLnL

⇡2

(53)

with integer valued longitudinal quantum numbers
mL, nL, restricted by mL � 2nL. The states with
mL > 2nL are doubly degenerate, with normalized
eigenstates [14]
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(54)

with �̃ = � + L/
p
3. Their symmetry properties

include e.g. ⇢ mirror symmetry

'Dc,s
mL,nL

(�,�⇢) = ±'Dc,s
mL,nL

(�, ⇢) (55)

The Dirichlet states with mL = 2nL are non-
degenerate, with normalized eigenstates [14]
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L 3
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(56)

Since (54-56) are separable in (�, ⇢) and harmonic,
they are readily seen to solve (51). The proof that
these solutions form an orthonormal set on the tri-
angle is nontrivial, but we checked a number of cases
explicitly. Implicitly, it follows from the observation
that the mode number following from (53), saturates
the so called Weyl area rule [14].

We identify the ground state from the tower of
states (56) with nL = 1, and its radial excitations
with nL > 1. In Fig. 7 we show the probability
distributions for nL = 1, 2.

FIG. 7. Probability distribution |�D
2nL,nL

|2 for nL =
1 (upper) and nL = 2 (lower) in the �, ⇢ plane, with

manifest mirror symmetry in ⇢.

These states are shown to Reggeize below. We fur-
ther note that (56), can be recast as three standing
waves with three “momenta" k̃
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(57)

in the triangular domain limited by the sides

k̃0 =

p
3L/2 k̃± = �̃±

p
3⇢ = 0
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For fixed center of mass X = 1, (18) maps the con-
fining box-region B = [0, 1]3 for the coordinates xi,
to an equi-lateral triangle ⌃(x) of side L =
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2, with

corners located at
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The corners correspond to one particle carrying all
the momentum, with the two others at rest.

The eigensystem of the first two terms in the
Laplacian (now free from the center of mass mo-
tion!), amounts to solving
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'mL,nL(�, ⇢) = emLnL'mL,nL(�, ⇢)

(52)

inside the triangle ⌃, with Dirichlet boundary con-
dition 'mL,nL(@⌃) = 0. Remarkably, although the
solutions are not available for generic triangles, they
are in fact known for equi-lateral triangles in closed
form, found in [14]. Their existence is due to the
finite number of ray reflections, which make a closed
set, as explained in Appendix E. The spectrum of
the Laplacian is given by
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with integer valued longitudinal quantum numbers
mL, nL, restricted by mL � 2nL. The states with
mL > 2nL are doubly degenerate, with normalized
eigenstates [14]
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with �̃ = � + L/
p
3. Their symmetry properties

include e.g. ⇢ mirror symmetry

'Dc,s
mL,nL

(�,�⇢) = ±'Dc,s
mL,nL
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The Dirichlet states with mL = 2nL are non-
degenerate, with normalized eigenstates [14]
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Since (54-56) are separable in (�, ⇢) and harmonic,
they are readily seen to solve (51). The proof that
these solutions form an orthonormal set on the tri-
angle is nontrivial, but we checked a number of cases
explicitly. Implicitly, it follows from the observation
that the mode number following from (53), saturates
the so called Weyl area rule [14].

We identify the ground state from the tower of
states (56) with nL = 1, and its radial excitations
with nL > 1. In Fig. 7 we show the probability
distributions for nL = 1, 2.

FIG. 7. Probability distribution |�D
2nL,nL

|2 for nL =
1 (upper) and nL = 2 (lower) in the �, ⇢ plane, with

manifest mirror symmetry in ⇢.

These states are shown to Reggeize below. We fur-
ther note that (56), can be recast as three standing
waves with three “momenta" k̃
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in the triangular domain limited by the sides

k̃0 =
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3⇢ = 0
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For fixed center of mass X = 1, (18) maps the con-
fining box-region B = [0, 1]3 for the coordinates xi,
to an equi-lateral triangle ⌃(x) of side L =
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The eigensystem of the first two terms in the
Laplacian (now free from the center of mass mo-
tion!), amounts to solving
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inside the triangle ⌃, with Dirichlet boundary con-
dition 'mL,nL(@⌃) = 0. Remarkably, although the
solutions are not available for generic triangles, they
are in fact known for equi-lateral triangles in closed
form, found in [14]. Their existence is due to the
finite number of ray reflections, which make a closed
set, as explained in Appendix E. The spectrum of
the Laplacian is given by
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with integer valued longitudinal quantum numbers
mL, nL, restricted by mL � 2nL. The states with
mL > 2nL are doubly degenerate, with normalized
eigenstates [14]
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with �̃ = � + L/
p
3. Their symmetry properties

include e.g. ⇢ mirror symmetry
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The Dirichlet states with mL = 2nL are non-
degenerate, with normalized eigenstates [14]
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Since (54-56) are separable in (�, ⇢) and harmonic,
they are readily seen to solve (51). The proof that
these solutions form an orthonormal set on the tri-
angle is nontrivial, but we checked a number of cases
explicitly. Implicitly, it follows from the observation
that the mode number following from (53), saturates
the so called Weyl area rule [14].

We identify the ground state from the tower of
states (56) with nL = 1, and its radial excitations
with nL > 1. In Fig. 7 we show the probability
distributions for nL = 1, 2.

FIG. 7. Probability distribution |�D
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1 (upper) and nL = 2 (lower) in the �, ⇢ plane, with

manifest mirror symmetry in ⇢.

These states are shown to Reggeize below. We fur-
ther note that (56), can be recast as three standing
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use the einbein trick to get rid of the square roots in
the confining term
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with M ⇡ 3mQ used on the right-hand-side to close
the mass squared operator. Again, we assumed
equal einbeins ai ! a in (64) by steepest descent.
To the first kinetic term we add and subtract its
value at xi =

1
3 , producing an oscillator with fixed

frequency, and a residual potential Ṽ which is close
to zero at the center of the triangular cup.

In terms of the Jacobi coordinates, the diagonal-
izable part reads

H0LF = 3(~p2⇢ + ~p2� + 3m2
Q) (65)
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where the all the vectors are in the transverse plane,
and ~b�,~b⇢ are coordinates conjugate to the corre-
sponding momenta. To elucidate the dependence on
a we rewrite it as
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with
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The einbein in (66) minimizes the squared mass, and
is solution to the quartic Ferrari equation
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For large longitudinal quantum numbers nL,mL �
1 the squared mass reggeizes
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Recall that the results following from H0LF are
still to be modified by the additional residual contri-
butions, stemming from ṼLF to be added below, but
which are independent of our variational parameter
a. Therefore the minimization over a can already be
performed numerically. With our standard values
for the string tension �T = (0.4GeV )

2, and quark
masses b, c, s, q, we show in Fig. 8 the dependence
on a of the lowest eigenvalue for each species.
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Ṽ =
~p21 +m2

Q

x1
+

~p22 +m2
Q

x2

+
~p23 +m2

Q

x3
� 3(~p21 + ~p22 + ~p23)� 9m2

Q (69)

represented  by a matrix 

calculated in the eigenstates


of H0

2

mentum m. Dynamical issues also get less severe. In
particular, on the light front, even light quarks can
be “eikonalized" as they move along approximately
straight lines.

A. Single-flavor baryons

Baryons are just another application of the tools
developed along the lines mentioned above, but this
time for three-quark systems. There are important
technical issues here as well, as the barrier between
“relative motion" in mesons and baryons, is due to
the differences between the obvious variables de-
scribing the relative motion of two particles, and the
nontrivial choices of variable for few-body quantum
mechanics. We will address those below, but before
that let us add some general remarks.

In principle, another (non-technical) issue is re-
lated with the so called “color junction" of three
strings. The quadratic confining potential of a “star"
(or Y ) model fixes the junction at the origin, with
no dynamics. For static potentials we can probe
the effects of the junction by changing its location.
However, the junction is in general dynamical, and
should be treated as a fourth body. In general,
the effective string Lagrangians carry also bound-
ary terms, and a junction-line connecting the three
world-volumes should also be added as a boundary
contribution. The dynamics of the junction can only
be ignored if it is heavy, but in so far there is no em-
pirical indication of that. This problem remains to
our knowledge open.

This notwithstanding, one should note that in the
last decade, we have seen discoveries of multiple new
hadrons in the so-called heavy-light sector, includ-
ing QQq baryons and tetraquarks of the type Q̄Qq̄q
and QQq̄q̄. Calculations for similar states with five
and six quarks are ongoing by many groups. They
will shed more light on the issue of quark-quark in-
teractions. Also, baryons too have a 5-quark sector,
responsible for the antiquark sea, well studied ex-
perimentally in the case of the proton and neutron.
Their flavor structure has been recently discussed by
one of us [4].

Non-relativistic and semi-relativisitc constituent
quark models, have been developed since the 1960’s,
and they exist in numerous versions. One well doc-
umented (and still widely used as a reference point)
approach is that by Isgur and Karl [5], which was
updated for heavy quark states, see e.g. [6]. These

authors treated confinement by an oscillatory poten-
tial, which methodically will turn out to be similar
to our HLF (but for squared mass, not energy). A
well known problem with the model, is its predic-
tions of many more baryonic states than what was
experimentally observed.

The focus of this paper is on on basic baryons
which are completely symmetric in flavor, such as
�

++
uuu,⌦

�
sss,⌦

++
ccc ,⌦

�
bbb. Yes, although only the first

two of them have been observed. (According to esti-
mates, ⌦++

ccc will be discovered in the next LHC run.)
The reason is that flavor asymmetric pairs such as
ud, us, ds... have deeply bound diquark correlations
which will be the subject of our next paper.

General considerations for tthese hadrons are well
known, e.g. summarized in the early note by
Bjorken [7]. If the color part of the wave function
is antisymmetric and the flavor part is symmetric,
then Fermi statistics requires the spin-orbital part
to be symmetric as well. The simplest one, with no
orbital motion, then fixes spins to be e.g. """ and
the global quantum number to be 3

2

+. We will focus
on the sector with zero orbital momentum, thereby
avoiding the inclusion of spin-orbit mixing (on which
we focused in the previous paper [3] for mesons).

In Table I we show the quark and baryon masses,
as well as the binding of the lowest 3

2

+ states accord-
ing to Ref. [6]. We note that as we move from heavy
to light baryons, the binding changes from nega-
tive to positive values (for the sum of the masses).
This is due to the attractive Coulomb interaction at
small distances, whose role dramatically decreases
for lighter quarks, as their states become larger in
size.

TABLE I. Baryon masses and binding energies ( all in

GeV ) for different quark flavors. Two baryon masses in

the last two rows are experimental, all other numbers are

as used in Ref. [6].

mQ M
3/2+

QQQ M
3/2+

QQQ � 3mQ

b 5.2019 14.834 -0.7717

c 1.8182 4.965 -0.4896

s .5553 1.672 0.006

q .2848 1.232 0.3776

The dependence of the masses and wave functions
of these ground state baryons, on the quark mass is
of course only one issue to be considered. Another
is their spectrum, in particular the dependence on

have no ’t Hooft pairing  
interaction between quarks
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This work is a continuation in our series of papers, that addresses quark models of hadronic

structure on the light front. The chief focus of this paper is the quantum-mechanical solution of

the three-quark model Hamiltonian, describing baryons. In Jacobi coordinates, we use a harmonic

oscillator basis for the transverse directions. For the longitudinal momentum fractions xi, the

pertinent basis follows from quantum mechanics in a “triangular cup" potential, which we solve

exactly. We calculate the masses and light front wave functions for the flavor symmetric
3
2

+
baryons

bbb, ccc, sss, uuu.

I. INTRODUCTION

Since this is the fourth paper of the series [1–
3], it does not need an extensive introduction. Its
main goal is to bridge the gaps between subfields of
hadronic physics, with our general direction being
from (I) the vacuum structure in its Euclidean formu-
lation (instantons and lattice), to (ii) the hadronic
structure and quark-quark interactions and result-
ing spectroscopy, to (iii) the hadronic structure on
the light front with its novel Hamiltonians and wave
functions.

The connection between (i) and (ii) is provided by
nonlocal gauge field correlators, such as e.g. correla-
tions of Wilson lines defining static quark potentials.
Using lattice or semiclassical models of the vacuum
fields, one can evaluate them. The connection be-
tween (ii) and (iii) is less developed, as neither spec-
troscopists nor people studying partonic observables
were inclined to study them. (The former commu-
nity is now living through a deluge of new hadrons
discovered lately, and is rather busy.) So, let us em-
phasize some of the reasons for its development.

Standard spectroscopy (in the center of mass or
CM frame) uses rather different tools for states made
of heavy and light quarks. The differences stem from
both kinematical and dynamical reasons.

Kinematically, the heavy quarkonia can be treated
nonrelativistically, using the Schroedinger equation
and perturbative effective theories like pHQCD,
while the light quarks are studied with relativistic
tools such as the Bethe-Salpeter equation and the
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like. (In fact, even the standard approaches to heavy
quarkonia are not so accurate, as one might get from
textbooks. Say, for charm quark, the typical velocity
is not really small, v ⇠ 1

2 or so.)
Dynamically, there are important differences be-

tween heavy and light quark interactions. Indeed,
light quark physics is tightly bound to the issue
of chiral symmetry breaking, and its root causes –
strong short-range effects described by NJL opera-
tors or instanton-based t’Hooft Lagrangian. Most of
that was well understood in the 1990’s and need not
be repeated here.

However, as we have shown in [1], a dilute instan-
ton ensemble is only one part of the vacuum fluctua-
tions related with gauge topology at low resolution,
and when one studies gauge field observables one
finds larger effects at moderatly higher resolution.
Even for heavy quarkonia, we argued that a “dense
vacuum" with instanton-antiinstanton pairs (incom-
plete tunneling through a topologicl barrier) con-
tributes to Wilson line correlators, with and with-
out magnetic fields, and generates a good fraction of
the central and spin-dependent forces. This raises
a question of how one can include those effects for
light quarks.

Fortunately, both these kinematical and dynam-
ical issues are much less severe on the light front.
The kinematics in this case is simply relativistic for
all masses. There are no sudden changes, as one go
from heavy to light quarks. Quark masses enter the
HLF in a very uniform way and (as we have shown
in the previous papers of the series [1–3]), one can
consistently derive the mesonic properties from b̄b to
light q̄q by the same tools. Indeed, in the first ap-
proximation, the transverse oscillator Hamiltonian
generates near-linear Regge dependences of M2, on
the principal quantum number n and angular mo-
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This work is a continuation in our series of papers, that addresses quark models of hadronic

structure on the light front, motivated by the QCD vacuum structure and lattice results. In this

paper we focus on the importance of diquark correlations, which we describe by a quasi-local four-

fermion effective ’t Hooft interaction induced by instantons. The same interaction is also shown to

generate extra quark-antiquark pair of the “sea". Its higher order iteration can be included via “pion-

mediation": both taken together yield a quantitative description of the observed flavor asymmetry

of antiquarks sea. Finally we discuss the final step needed to bridge the gap between hadronic

spectroscopy and parton observables, by forward DGLAP evolution towards the chiral upper scale

of ⇠ 1 GeV2
.

I. INTRODUCTION

Since this paper is the fifth in our series [1–4], it
does not need an extended Introduction, other than
for issues not considered in the previous papers. So,
we start directly by outlining its content.

The two introductory subsections I A and IB,
are devoted to diquark correlations in baryons and
multiquark hadrons, respectively. Diquark “spec-
trosopy" has a rather long history which includes
empirical facts, and dynamical calculations (NJL
model, instantons, lattice). Furthermore, by iden-
tifying certain four-quark effective interactions, one
naturally can proceed to the evaluation of their role
not only in the 2 $ 2 channels, but also in the 1 ! 3
channel, and in the coupling of the 3q and 5q sectors
in baryons.

The introductory subsection I B outlines our gen-
eral strategy to “bridge" hadronic spectroscopy and
partonic observables. The 1 ! 3 processes are the
first step towards the creation of the “hadronic sea"
of quarks and antiquarks, which complements per-
turbative DGLAP evolution, as it is clear from the
flavor asymmetry of antiquarks.

We start our studies of diquark correlations from
the nonrelativistic setting in section II A, where we
compare the effects of the perturbative Coulomb and
instanton-induced ’t Hooft interactions using some
simple variational approaches. Its main conclusion
is that diquark correlations are strong, and that the
’t Hooft interaction is dominant. In section III, the

⇤ edward.shuryak@stonybrook.edu
† ismail.zahed@stonybrook.edu

diquark problem is treated on the light front, by
a Hamiltonian similar to the meson one, using a
quasilocal qq interaction. In section IV we present
a simplified analysis of baryons in the CM frame,
using Coulomb and 0t Hooft interactions only.

The next section deals with baryons on the light
front, it starts with VA where we derive the LFWFs
deformation by a heavy quark mass. Note that in
our previous analysis in [4], we only considered flavor
symmetric baryons qqq, sss, ccc, bbb. Here instead,
we consider heavy-light baryons such as ⇤Q = Qud
with a single diquark in V B, before addressing the
diquark pairing in the nucleon in section VI. We fur-
ther elucidate the observable consequences of this
pairing by calculating the formfactors for the isobar
Delta and the Nucleon in section VII.

In section VIII A we show how to 0 bridge the gap0

between the spectroscopic analysis and the partonic
observables, using the chiral processes discussed in
section VIII. More specifically, in VIIIA we moti-
vate the selection of the scale where the chiral the-
ory and perturbative DGLAP evolution match. In
VIII B we detail the empirical information on the fla-
vor asymmetry of the antiquark sea of the nucleon.
We present two mechanisms for this effect, one using
the first order in ’t Hooft Lagrangian VIIIC, and
the other a pion-mediated processe VIII D, each of
which is illustrated in Fig.1. The matching of the
chiral and perturbative evolutions are discussed in
section VIII E.

The last section IX summarizes the main results
of our series of papers. A number of more technical
issues are discussed in the Appendices.
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with M ⇡ 3mQ used on the right-hand-side to close
the mass squared operator. Again, we assumed
equal einbeins ai ! a in (64) by steepest descent.
To the first kinetic term we add and subtract its
value at xi =

1
3 , producing an oscillator with fixed

frequency, and a residual potential Ṽ which is close
to zero at the center of the triangular cup.
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and ~b�,~b⇢ are coordinates conjugate to the corre-
sponding momenta. To elucidate the dependence on
a we rewrite it as

M2
0 (n�, n⇢, nL,mL) = (3mQ)

2

+
�Tp
a
M2

?(n�, n⇢) +
�T

a
M2

L(mL, nL) + 3�Ta

(66)

with

M2
L(nL,mL) = eDnL,mL

M2
?(n�, n⇢) =

6
p
3mQp
�T

(n� + n⇢ + 2) (67)

The einbein in (66) minimizes the squared mass, and
is solution to the quartic Ferrari equation

6
p
a
4 �M2

?
p
a� 2M2

L = 0

For large longitudinal quantum numbers nL,mL �
1 the squared mass reggeizes

M2
0 ⇡ 2

p
3�TML

as we noted earlier. However, for large transverse
quantum numbers n�, n⇢ � 1 the squared mass does
not

M2
0 ⇡ 18�T

✓
M2

?
6�T

◆ 2
3

(68)

Recall that the results following from H0LF are
still to be modified by the additional residual contri-
butions, stemming from ṼLF to be added below, but
which are independent of our variational parameter
a. Therefore the minimization over a can already be
performed numerically. With our standard values
for the string tension �T = (0.4GeV )

2, and quark
masses b, c, s, q, we show in Fig. 8 the dependence
on a of the lowest eigenvalue for each species.
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quarks. Using this plot we perform the minimization in
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Using the Jacobi coordinates for the transverse and
longitudinal momenta, we get
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For zero orbital motion, the two oscillators are in-
dependent, and the term hp�p⇢i vanishes on aver-
age. hp2�i and hp2⇢i are directly related to the num-
ber of quanta n�, n⇢, and so one has to calculate
only the matrix entries in terms of all possible lon-
gitudinal quantum numbers hnL,mL|Ṽ |n0

Lm
0
Li, see

Appendix F.

A. Masses of the states

With the evaluation of the matrix Ṽ and its eigen-
values, our technical task is completed. We now can
finally carry the calculation of the full eigenvalues
– squared masses of the flavor symmetric baryons,
for the four quark flavors b, c, s, q. We keep here
longitudinal quantum numbers to their lowest val-
ues nL = 1,mL = 2, and assume that the trans-
verse oscillators are excited as a function of a single
n = (n⇢ + n�)/2.

Our results for squared masses are shown in black-
symbols in Fig. 9. For comparison, we show the
experimental masses in red hexagons. The blue
hexagons are available model predictions for ccc and
bbb baryons. Since a constant in LF Hamiltonian
remains undefined, we fixed one constant for all
masses, so that the mass of the uuu baryon �

++ is
set to experimental one. For definiteness, the plots
corresponds to effective masses of u, s, c, b quarks to
be 0.28, 0.45, 1.5, 4.8GeV , respectively, not specially
fitted to this plot but inherited from meson studies.

Finally, let us remind that all the calculations were
done for traditional “star" or Y model of confine-
ment. Transition to (perhaps more accurate) ansatz
A leads to the same Hamiltonian with a string ten-
sion rescaling (21), downwards by about 13% like
one has observed it in static potentials.

b
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q
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FIG. 9. Squared masses of baryons M
2
n+1(Q,

3
2 ) in GeV

2
,

versus the principal quantum number n+ 1 = 1..7. The

black circles, triangles, squared and pentagons are re-

sults of our calculations for the flavors b, c, s, q. The red

hexagons are the experimental values of three �++
and

one ⌦�
masses, from PDG. The two blue hexagons are

model predictions for masses of ccc and bbb baryons, from

Table I.

VII. WAVE FUNCTIONS OF THE STATES

Our main results are not the masses of the 3
2

+

states and their radial excitations, but their cor-
responding wave functions. The ground states
in all channels, have a transverse momentum de-
pendence that is about Gaussian, e.g.  (p?) ⇠
exp(��2p2?/2). The scale parameter � is related
to the mass and frequency of the effective oscillator
µ,!,

� =
p
µ! =

✓
a

3m2
Q�T

◆ 1
4

(71)

The mean square of the transverse momentum is ap-
proximately

hp2?i ⇡ ��2 ⇡ 0.942, 0.466, 0.183, 0.104 (GeV 2
)

(72)
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mechanics. We will address those below, but before
that let us add some general remarks.

In principle, another (non-technical) issue is re-
lated with the so called “color junction" of three
strings. The quadratic confining potential of a “star"
(or Y ) model fixes the junction at the origin, with
no dynamics. For static potentials we can probe
the effects of the junction by changing its location.
However, the junction is in general dynamical, and
should be treated as a fourth body. In general,
the effective string Lagrangians carry also bound-
ary terms, and a junction-line connecting the three
world-volumes should also be added as a boundary
contribution. The dynamics of the junction can only
be ignored if it is heavy, but in so far there is no em-
pirical indication of that. This problem remains to
our knowledge open.

This notwithstanding, one should note that in the
last decade, we have seen discoveries of multiple new
hadrons in the so-called heavy-light sector, includ-
ing QQq baryons and tetraquarks of the type Q̄Qq̄q
and QQq̄q̄. Calculations for similar states with five
and six quarks are ongoing by many groups. They
will shed more light on the issue of quark-quark in-
teractions. Also, baryons too have a 5-quark sector,
responsible for the antiquark sea, well studied ex-
perimentally in the case of the proton and neutron.
Their flavor structure has been recently discussed by
one of us [4].

Non-relativistic and semi-relativisitc constituent
quark models, have been developed since the 1960’s,
and they exist in numerous versions. One well doc-
umented (and still widely used as a reference point)
approach is that by Isgur and Karl [5], which was
updated for heavy quark states, see e.g. [6]. These

authors treated confinement by an oscillatory poten-
tial, which methodically will turn out to be similar
to our HLF (but for squared mass, not energy). A
well known problem with the model, is its predic-
tions of many more baryonic states than what was
experimentally observed.

The focus of this paper is on on basic baryons
which are completely symmetric in flavor, such as
�

++
uuu,⌦

�
sss,⌦

++
ccc ,⌦

�
bbb. Yes, although only the first

two of them have been observed. (According to esti-
mates, ⌦++

ccc will be discovered in the next LHC run.)
The reason is that flavor asymmetric pairs such as
ud, us, ds... have deeply bound diquark correlations
which will be the subject of our next paper.

General considerations for tthese hadrons are well
known, e.g. summarized in the early note by
Bjorken [7]. If the color part of the wave function
is antisymmetric and the flavor part is symmetric,
then Fermi statistics requires the spin-orbital part
to be symmetric as well. The simplest one, with no
orbital motion, then fixes spins to be e.g. """ and
the global quantum number to be 3

2

+. We will focus
on the sector with zero orbital momentum, thereby
avoiding the inclusion of spin-orbit mixing (on which
we focused in the previous paper [3] for mesons).

In Table I we show the quark and baryon masses,
as well as the binding of the lowest 3

2

+ states accord-
ing to Ref. [6]. We note that as we move from heavy
to light baryons, the binding changes from nega-
tive to positive values (for the sum of the masses).
This is due to the attractive Coulomb interaction at
small distances, whose role dramatically decreases
for lighter quarks, as their states become larger in
size.

TABLE I. Baryon masses and binding energies ( all in

GeV ) for different quark flavors. Two baryon masses in

the last two rows are experimental, all other numbers are

as used in Ref. [6].

mQ M
3/2+

QQQ M
3/2+

QQQ � 3mQ

b 5.2019 14.834 -0.7717

c 1.8182 4.965 -0.4896

s .5553 1.672 0.006

q .2848 1.232 0.3776

The dependence of the masses and wave functions
of these ground state baryons, on the quark mass is
of course only one issue to be considered. Another
is their spectrum, in particular the dependence on

have no ’t Hooft pairing  
interaction between quarks
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I. INTRODUCTION

Since this is the fourth paper of the series [1–
3], it does not need an extensive introduction. Its
main goal is to bridge the gaps between subfields of
hadronic physics, with our general direction being
from (I) the vacuum structure in its Euclidean formu-
lation (instantons and lattice), to (ii) the hadronic
structure and quark-quark interactions and result-
ing spectroscopy, to (iii) the hadronic structure on
the light front with its novel Hamiltonians and wave
functions.

The connection between (i) and (ii) is provided by
nonlocal gauge field correlators, such as e.g. correla-
tions of Wilson lines defining static quark potentials.
Using lattice or semiclassical models of the vacuum
fields, one can evaluate them. The connection be-
tween (ii) and (iii) is less developed, as neither spec-
troscopists nor people studying partonic observables
were inclined to study them. (The former commu-
nity is now living through a deluge of new hadrons
discovered lately, and is rather busy.) So, let us em-
phasize some of the reasons for its development.

Standard spectroscopy (in the center of mass or
CM frame) uses rather different tools for states made
of heavy and light quarks. The differences stem from
both kinematical and dynamical reasons.

Kinematically, the heavy quarkonia can be treated
nonrelativistically, using the Schroedinger equation
and perturbative effective theories like pHQCD,
while the light quarks are studied with relativistic
tools such as the Bethe-Salpeter equation and the
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like. (In fact, even the standard approaches to heavy
quarkonia are not so accurate, as one might get from
textbooks. Say, for charm quark, the typical velocity
is not really small, v ⇠ 1

2 or so.)
Dynamically, there are important differences be-

tween heavy and light quark interactions. Indeed,
light quark physics is tightly bound to the issue
of chiral symmetry breaking, and its root causes –
strong short-range effects described by NJL opera-
tors or instanton-based t’Hooft Lagrangian. Most of
that was well understood in the 1990’s and need not
be repeated here.

However, as we have shown in [1], a dilute instan-
ton ensemble is only one part of the vacuum fluctua-
tions related with gauge topology at low resolution,
and when one studies gauge field observables one
finds larger effects at moderatly higher resolution.
Even for heavy quarkonia, we argued that a “dense
vacuum" with instanton-antiinstanton pairs (incom-
plete tunneling through a topologicl barrier) con-
tributes to Wilson line correlators, with and with-
out magnetic fields, and generates a good fraction of
the central and spin-dependent forces. This raises
a question of how one can include those effects for
light quarks.

Fortunately, both these kinematical and dynam-
ical issues are much less severe on the light front.
The kinematics in this case is simply relativistic for
all masses. There are no sudden changes, as one go
from heavy to light quarks. Quark masses enter the
HLF in a very uniform way and (as we have shown
in the previous papers of the series [1–3]), one can
consistently derive the mesonic properties from b̄b to
light q̄q by the same tools. Indeed, in the first ap-
proximation, the transverse oscillator Hamiltonian
generates near-linear Regge dependences of M2, on
the principal quantum number n and angular mo-
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of antiquarks sea. Finally we discuss the final step needed to bridge the gap between hadronic

spectroscopy and parton observables, by forward DGLAP evolution towards the chiral upper scale

of ⇠ 1 GeV2
.

I. INTRODUCTION

Since this paper is the fifth in our series [1–4], it
does not need an extended Introduction, other than
for issues not considered in the previous papers. So,
we start directly by outlining its content.

The two introductory subsections I A and IB,
are devoted to diquark correlations in baryons and
multiquark hadrons, respectively. Diquark “spec-
trosopy" has a rather long history which includes
empirical facts, and dynamical calculations (NJL
model, instantons, lattice). Furthermore, by iden-
tifying certain four-quark effective interactions, one
naturally can proceed to the evaluation of their role
not only in the 2 $ 2 channels, but also in the 1 ! 3
channel, and in the coupling of the 3q and 5q sectors
in baryons.

The introductory subsection I B outlines our gen-
eral strategy to “bridge" hadronic spectroscopy and
partonic observables. The 1 ! 3 processes are the
first step towards the creation of the “hadronic sea"
of quarks and antiquarks, which complements per-
turbative DGLAP evolution, as it is clear from the
flavor asymmetry of antiquarks.

We start our studies of diquark correlations from
the nonrelativistic setting in section II A, where we
compare the effects of the perturbative Coulomb and
instanton-induced ’t Hooft interactions using some
simple variational approaches. Its main conclusion
is that diquark correlations are strong, and that the
’t Hooft interaction is dominant. In section III, the
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diquark problem is treated on the light front, by
a Hamiltonian similar to the meson one, using a
quasilocal qq interaction. In section IV we present
a simplified analysis of baryons in the CM frame,
using Coulomb and 0t Hooft interactions only.

The next section deals with baryons on the light
front, it starts with VA where we derive the LFWFs
deformation by a heavy quark mass. Note that in
our previous analysis in [4], we only considered flavor
symmetric baryons qqq, sss, ccc, bbb. Here instead,
we consider heavy-light baryons such as ⇤Q = Qud
with a single diquark in V B, before addressing the
diquark pairing in the nucleon in section VI. We fur-
ther elucidate the observable consequences of this
pairing by calculating the formfactors for the isobar
Delta and the Nucleon in section VII.

In section VIII A we show how to 0 bridge the gap0

between the spectroscopic analysis and the partonic
observables, using the chiral processes discussed in
section VIII. More specifically, in VIIIA we moti-
vate the selection of the scale where the chiral the-
ory and perturbative DGLAP evolution match. In
VIII B we detail the empirical information on the fla-
vor asymmetry of the antiquark sea of the nucleon.
We present two mechanisms for this effect, one using
the first order in ’t Hooft Lagrangian VIIIC, and
the other a pion-mediated processe VIII D, each of
which is illustrated in Fig.1. The matching of the
chiral and perturbative evolutions are discussed in
section VIII E.

The last section IX summarizes the main results
of our series of papers. A number of more technical
issues are discussed in the Appendices.
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with M ⇡ 3mQ used on the right-hand-side to close
the mass squared operator. Again, we assumed
equal einbeins ai ! a in (64) by steepest descent.
To the first kinetic term we add and subtract its
value at xi =

1
3 , producing an oscillator with fixed

frequency, and a residual potential Ṽ which is close
to zero at the center of the triangular cup.
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where the all the vectors are in the transverse plane,
and ~b�,~b⇢ are coordinates conjugate to the corre-
sponding momenta. To elucidate the dependence on
a we rewrite it as
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Recall that the results following from H0LF are
still to be modified by the additional residual contri-
butions, stemming from ṼLF to be added below, but
which are independent of our variational parameter
a. Therefore the minimization over a can already be
performed numerically. With our standard values
for the string tension �T = (0.4GeV )

2, and quark
masses b, c, s, q, we show in Fig. 8 the dependence
on a of the lowest eigenvalue for each species.

FIG. 8. The lowest eigenvalue of H0LF in GeV
2

versus

the (dimensionless) “einbine parameter" a, for b, c, s, q

quarks. Using this plot we perform the minimization in

a.
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The non-factorizable part of the potential is
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Using the Jacobi coordinates for the transverse and
longitudinal momenta, we get

Ṽ =�
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For zero orbital motion, the two oscillators are in-
dependent, and the term hp�p⇢i vanishes on aver-
age. hp2�i and hp2⇢i are directly related to the num-
ber of quanta n�, n⇢, and so one has to calculate
only the matrix entries in terms of all possible lon-
gitudinal quantum numbers hnL,mL|Ṽ |n0

Lm
0
Li, see

Appendix F.

A. Masses of the states

With the evaluation of the matrix Ṽ and its eigen-
values, our technical task is completed. We now can
finally carry the calculation of the full eigenvalues
– squared masses of the flavor symmetric baryons,
for the four quark flavors b, c, s, q. We keep here
longitudinal quantum numbers to their lowest val-
ues nL = 1,mL = 2, and assume that the trans-
verse oscillators are excited as a function of a single
n = (n⇢ + n�)/2.

Our results for squared masses are shown in black-
symbols in Fig. 9. For comparison, we show the
experimental masses in red hexagons. The blue
hexagons are available model predictions for ccc and
bbb baryons. Since a constant in LF Hamiltonian
remains undefined, we fixed one constant for all
masses, so that the mass of the uuu baryon �

++ is
set to experimental one. For definiteness, the plots
corresponds to effective masses of u, s, c, b quarks to
be 0.28, 0.45, 1.5, 4.8GeV , respectively, not specially
fitted to this plot but inherited from meson studies.

Finally, let us remind that all the calculations were
done for traditional “star" or Y model of confine-
ment. Transition to (perhaps more accurate) ansatz
A leads to the same Hamiltonian with a string ten-
sion rescaling (21), downwards by about 13% like
one has observed it in static potentials.

b

s

c

q
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FIG. 9. Squared masses of baryons M
2
n+1(Q,

3
2 ) in GeV

2
,

versus the principal quantum number n+ 1 = 1..7. The

black circles, triangles, squared and pentagons are re-

sults of our calculations for the flavors b, c, s, q. The red

hexagons are the experimental values of three �++
and

one ⌦�
masses, from PDG. The two blue hexagons are

model predictions for masses of ccc and bbb baryons, from

Table I.

VII. WAVE FUNCTIONS OF THE STATES

Our main results are not the masses of the 3
2

+

states and their radial excitations, but their cor-
responding wave functions. The ground states
in all channels, have a transverse momentum de-
pendence that is about Gaussian, e.g.  (p?) ⇠
exp(��2p2?/2). The scale parameter � is related
to the mass and frequency of the effective oscillator
µ,!,

� =
p
µ! =

✓
a

3m2
Q�T

◆ 1
4

(71)

The mean square of the transverse momentum is ap-
proximately

hp2?i ⇡ ��2 ⇡ 0.942, 0.466, 0.183, 0.104 (GeV 2
)

(72)
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mentum m. Dynamical issues also get less severe. In
particular, on the light front, even light quarks can
be “eikonalized" as they move along approximately
straight lines.

A. Single-flavor baryons

Baryons are just another application of the tools
developed along the lines mentioned above, but this
time for three-quark systems. There are important
technical issues here as well, as the barrier between
“relative motion" in mesons and baryons, is due to
the differences between the obvious variables de-
scribing the relative motion of two particles, and the
nontrivial choices of variable for few-body quantum
mechanics. We will address those below, but before
that let us add some general remarks.

In principle, another (non-technical) issue is re-
lated with the so called “color junction" of three
strings. The quadratic confining potential of a “star"
(or Y ) model fixes the junction at the origin, with
no dynamics. For static potentials we can probe
the effects of the junction by changing its location.
However, the junction is in general dynamical, and
should be treated as a fourth body. In general,
the effective string Lagrangians carry also bound-
ary terms, and a junction-line connecting the three
world-volumes should also be added as a boundary
contribution. The dynamics of the junction can only
be ignored if it is heavy, but in so far there is no em-
pirical indication of that. This problem remains to
our knowledge open.

This notwithstanding, one should note that in the
last decade, we have seen discoveries of multiple new
hadrons in the so-called heavy-light sector, includ-
ing QQq baryons and tetraquarks of the type Q̄Qq̄q
and QQq̄q̄. Calculations for similar states with five
and six quarks are ongoing by many groups. They
will shed more light on the issue of quark-quark in-
teractions. Also, baryons too have a 5-quark sector,
responsible for the antiquark sea, well studied ex-
perimentally in the case of the proton and neutron.
Their flavor structure has been recently discussed by
one of us [4].

Non-relativistic and semi-relativisitc constituent
quark models, have been developed since the 1960’s,
and they exist in numerous versions. One well doc-
umented (and still widely used as a reference point)
approach is that by Isgur and Karl [5], which was
updated for heavy quark states, see e.g. [6]. These

authors treated confinement by an oscillatory poten-
tial, which methodically will turn out to be similar
to our HLF (but for squared mass, not energy). A
well known problem with the model, is its predic-
tions of many more baryonic states than what was
experimentally observed.

The focus of this paper is on on basic baryons
which are completely symmetric in flavor, such as
�

++
uuu,⌦

�
sss,⌦

++
ccc ,⌦

�
bbb. Yes, although only the first

two of them have been observed. (According to esti-
mates, ⌦++

ccc will be discovered in the next LHC run.)
The reason is that flavor asymmetric pairs such as
ud, us, ds... have deeply bound diquark correlations
which will be the subject of our next paper.

General considerations for tthese hadrons are well
known, e.g. summarized in the early note by
Bjorken [7]. If the color part of the wave function
is antisymmetric and the flavor part is symmetric,
then Fermi statistics requires the spin-orbital part
to be symmetric as well. The simplest one, with no
orbital motion, then fixes spins to be e.g. """ and
the global quantum number to be 3

2

+. We will focus
on the sector with zero orbital momentum, thereby
avoiding the inclusion of spin-orbit mixing (on which
we focused in the previous paper [3] for mesons).

In Table I we show the quark and baryon masses,
as well as the binding of the lowest 3

2

+ states accord-
ing to Ref. [6]. We note that as we move from heavy
to light baryons, the binding changes from nega-
tive to positive values (for the sum of the masses).
This is due to the attractive Coulomb interaction at
small distances, whose role dramatically decreases
for lighter quarks, as their states become larger in
size.

TABLE I. Baryon masses and binding energies ( all in

GeV ) for different quark flavors. Two baryon masses in

the last two rows are experimental, all other numbers are

as used in Ref. [6].

mQ M
3/2+

QQQ M
3/2+

QQQ � 3mQ

b 5.2019 14.834 -0.7717

c 1.8182 4.965 -0.4896

s .5553 1.672 0.006

q .2848 1.232 0.3776

The dependence of the masses and wave functions
of these ground state baryons, on the quark mass is
of course only one issue to be considered. Another
is their spectrum, in particular the dependence on

have no ’t Hooft pairing  
interaction between quarks

of course, we not just have all masses ,

but all light-front wave functions as well! 
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hadronic physics, with our general direction being
from (I) the vacuum structure in its Euclidean formu-
lation (instantons and lattice), to (ii) the hadronic
structure and quark-quark interactions and result-
ing spectroscopy, to (iii) the hadronic structure on
the light front with its novel Hamiltonians and wave
functions.

The connection between (i) and (ii) is provided by
nonlocal gauge field correlators, such as e.g. correla-
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like. (In fact, even the standard approaches to heavy
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textbooks. Say, for charm quark, the typical velocity
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2 or so.)
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consistently derive the mesonic properties from b̄b to
light q̄q by the same tools. Indeed, in the first ap-
proximation, the transverse oscillator Hamiltonian
generates near-linear Regge dependences of M2, on
the principal quantum number n and angular mo-
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I. INTRODUCTION

Since this paper is the fifth in our series [1–4], it
does not need an extended Introduction, other than
for issues not considered in the previous papers. So,
we start directly by outlining its content.

The two introductory subsections I A and IB,
are devoted to diquark correlations in baryons and
multiquark hadrons, respectively. Diquark “spec-
trosopy" has a rather long history which includes
empirical facts, and dynamical calculations (NJL
model, instantons, lattice). Furthermore, by iden-
tifying certain four-quark effective interactions, one
naturally can proceed to the evaluation of their role
not only in the 2 $ 2 channels, but also in the 1 ! 3
channel, and in the coupling of the 3q and 5q sectors
in baryons.

The introductory subsection I B outlines our gen-
eral strategy to “bridge" hadronic spectroscopy and
partonic observables. The 1 ! 3 processes are the
first step towards the creation of the “hadronic sea"
of quarks and antiquarks, which complements per-
turbative DGLAP evolution, as it is clear from the
flavor asymmetry of antiquarks.

We start our studies of diquark correlations from
the nonrelativistic setting in section II A, where we
compare the effects of the perturbative Coulomb and
instanton-induced ’t Hooft interactions using some
simple variational approaches. Its main conclusion
is that diquark correlations are strong, and that the
’t Hooft interaction is dominant. In section III, the
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diquark problem is treated on the light front, by
a Hamiltonian similar to the meson one, using a
quasilocal qq interaction. In section IV we present
a simplified analysis of baryons in the CM frame,
using Coulomb and 0t Hooft interactions only.

The next section deals with baryons on the light
front, it starts with VA where we derive the LFWFs
deformation by a heavy quark mass. Note that in
our previous analysis in [4], we only considered flavor
symmetric baryons qqq, sss, ccc, bbb. Here instead,
we consider heavy-light baryons such as ⇤Q = Qud
with a single diquark in V B, before addressing the
diquark pairing in the nucleon in section VI. We fur-
ther elucidate the observable consequences of this
pairing by calculating the formfactors for the isobar
Delta and the Nucleon in section VII.

In section VIII A we show how to 0 bridge the gap0

between the spectroscopic analysis and the partonic
observables, using the chiral processes discussed in
section VIII. More specifically, in VIIIA we moti-
vate the selection of the scale where the chiral the-
ory and perturbative DGLAP evolution match. In
VIII B we detail the empirical information on the fla-
vor asymmetry of the antiquark sea of the nucleon.
We present two mechanisms for this effect, one using
the first order in ’t Hooft Lagrangian VIIIC, and
the other a pion-mediated processe VIII D, each of
which is illustrated in Fig.1. The matching of the
chiral and perturbative evolutions are discussed in
section VIII E.

The last section IX summarizes the main results
of our series of papers. A number of more technical
issues are discussed in the Appendices.
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a Hamiltonian similar to the meson one, using a
quasilocal qq interaction. In section IV we present
a simplified analysis of baryons in the CM frame,
using Coulomb and 0t Hooft interactions only.
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with a single diquark in V B, before addressing the
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ther elucidate the observable consequences of this
pairing by calculating the formfactors for the isobar
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observables, using the chiral processes discussed in
section VIII. More specifically, in VIIIA we moti-
vate the selection of the scale where the chiral the-
ory and perturbative DGLAP evolution match. In
VIII B we detail the empirical information on the fla-
vor asymmetry of the antiquark sea of the nucleon.
We present two mechanisms for this effect, one using
the first order in ’t Hooft Lagrangian VIIIC, and
the other a pion-mediated processe VIII D, each of
which is illustrated in Fig.1. The matching of the
chiral and perturbative evolutions are discussed in
section VIII E.

The last section IX summarizes the main results
of our series of papers. A number of more technical
issues are discussed in the Appendices.

phenomenology

scalar diquarks are deeply bound 

2

A. Diquark correlations

Diquark correlations of light quarks in nucleons
and hadronic reactions, have been extensively dis-
cussed in the literature in the past decades, see e.g.
[5, 6], and more recently in the review [7]. Here, we
will not cover their phenomenological contributions
to various hadronic reactions, but rather address
some theoretical considerations about their dynami-
cal origins based on semiclassical instantons. We will
also cover recent lattice advances in diquark studies.

In two-color QCD with Nc = 2, diquarks are
baryons. In the chiral limit, QCD with two colors
and flavors, admit Pauli-Gursey symmetry, an ex-
tended SU(4) symmetry that mixes massless baryons
and mesons. In three-color QCD with Nc = 3, di-
quarks play an important role in the light and heavy
light baryons.

The simplest way to understand diquark correla-
tions in hadrons, is in single-heavy baryons where
the heavy spectator quark compensates for color,
without altering the light diquark spin-flavor corre-
lations. A good example are Qud baryons, with ⌃Q

composed of a light quark with a flavor symmetric
assignment I = 1, JP = 1+, and ⇤Q composed of a
light quark pair with a flavor asymmetric assignment
I = 0, JP = 0+ state, the so called bad and good di-
quark states. Note that the latter has no spin, and
thus no spin-dependent interaction with the heavy
quark Q, while the former does. However, assuming
that the standard spin-spin interactions are of the
form (~�1~�2), this spin interaction can be eliminated
as follows

M(1+ud) � M(0+ud) (1)
⇡

�
(2M(⌃⇤

Q
) + M(⌃Q)/3

�
� M(⇤Q) ⇡ 0.21 GeV

with the numerical value thus obtained from experi-
mental masses of cud, bud baryons yields the binding
of two types of light quark diquarks. We note tha
the mass difference between heavy-light baryon and
meson iof m(Qud) � m(Qu) ⇡ 329 MeV , is close to
a constituent quark mass, but does not seem to in-
clude any extra contribution to the kinetic energy of
the extra quark. Apparently, it is cancelled by some
attraction.

With antisymmetric color and spin wave function,
scalar diquarks must also be antisymmetric in fla-
vor: so those can only be ud, us, sd pairs. Those are
called “good" diquarks in the literature, in contrast
to the “bad" ones made of same flavor dd, uu, ...bb
and, by Fermi statistics, with a symmetric spin

S = 1 wave functions.
The role of the light fermionic zero modes induced

by instantons, at the origin of the ’t Hooft effective
Lagrangian for chiral symmetry breaking, and their
importance for pions and other aspects of chiral sym-
metry breaking are well known, for a review see e.g.
[8]. Diquark correlations induced by the ’t Hooft
interaction were found in studies of the nucleons in
instanton ensembles in [9]. In particular, the "good"
diquark mass was found to be m(0+) ⇡ 420 MeV ,
while the “bad" vector diquark mass was found to
be m(1+) ⇡ 940 MeV , with a difference as large as
500 MeV .

Although only a Fiertz transformation is needed
from a meson to a diquark channel, this phenomenon
has been originally considered only by few [10–12],
before the realization that diquarks would turn to
Cooper pairs in dense quark matter, as pointed out
in [13, 14]. (For subsequent review on “color super-
conductivity" see [15].)

Theoretically, it was important to note that in
SU(2) color theory, the scalar diquarks are mass-
less partners of the Goldstone mesons [13]. By con-
tinuation to SU(3) color, one then expects “good"
scalar diquarks to be deeply bound as well. The
ratio of the color factors, between the pseudoscalar
meson (pions or ⌘0) channels, and the scalar diquark
channel, is the same for the perturbative one-gluon
exchange and the instanton-induced ’t Hooft vertex.

Gqq

Gq̄q

=
1

Nc � 1
(2)

Note that it is 1 for SU(2) color, supporting Pauli-
Gursey symmetry between diquarks (baryons in this
theory) and mesons. It is 1/2 for the SU(3) color
case of interest, and zero in the Nc ! 1 limit.

Calculation of (pseudoscalar and vector) meson
and (scalar and vector) diquark DAs using Bethe-
Salpeter equation with NJL kernels were originally
carried in [12], and more recently in [16].

Lattice studies of light diquarks have also a long
history, with the ealy analyses in [17] to recent stud-
ies in [18]. Diquarks are either studied inside dy-
namical baryons, or by tagging a Wilson line to a qq
pair as a heavy-light Qqq-type baryon. We already
noted the mass difference between the vector and
scalar ud diquarks, with the lattice estimate putting
it at m(1+)�m(0+) ⇡ 200 MeV . The lattice studies
show that in Qud baryon, the light quarks are corre-
lated together, but in a region of about r0 ⇡ 0.6 fm
size, which is twice larger than suggested in earlier
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diquark problem is treated on the light front, by
a Hamiltonian similar to the meson one, using a
quasilocal qq interaction. In section IV we present
a simplified analysis of baryons in the CM frame,
using Coulomb and 0t Hooft interactions only.

The next section deals with baryons on the light
front, it starts with VA where we derive the LFWFs
deformation by a heavy quark mass. Note that in
our previous analysis in [4], we only considered flavor
symmetric baryons qqq, sss, ccc, bbb. Here instead,
we consider heavy-light baryons such as ⇤Q = Qud
with a single diquark in V B, before addressing the
diquark pairing in the nucleon in section VI. We fur-
ther elucidate the observable consequences of this
pairing by calculating the formfactors for the isobar
Delta and the Nucleon in section VII.

In section VIII A we show how to 0 bridge the gap0

between the spectroscopic analysis and the partonic
observables, using the chiral processes discussed in
section VIII. More specifically, in VIIIA we moti-
vate the selection of the scale where the chiral the-
ory and perturbative DGLAP evolution match. In
VIII B we detail the empirical information on the fla-
vor asymmetry of the antiquark sea of the nucleon.
We present two mechanisms for this effect, one using
the first order in ’t Hooft Lagrangian VIIIC, and
the other a pion-mediated processe VIII D, each of
which is illustrated in Fig.1. The matching of the
chiral and perturbative evolutions are discussed in
section VIII E.

The last section IX summarizes the main results
of our series of papers. A number of more technical
issues are discussed in the Appendices.
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.

I. INTRODUCTION

Since this paper is the fifth in our series [1–4], it
does not need an extended Introduction, other than
for issues not considered in the previous papers. So,
we start directly by outlining its content.

The two introductory subsections I A and IB,
are devoted to diquark correlations in baryons and
multiquark hadrons, respectively. Diquark “spec-
trosopy" has a rather long history which includes
empirical facts, and dynamical calculations (NJL
model, instantons, lattice). Furthermore, by iden-
tifying certain four-quark effective interactions, one
naturally can proceed to the evaluation of their role
not only in the 2 $ 2 channels, but also in the 1 ! 3
channel, and in the coupling of the 3q and 5q sectors
in baryons.

The introductory subsection I B outlines our gen-
eral strategy to “bridge" hadronic spectroscopy and
partonic observables. The 1 ! 3 processes are the
first step towards the creation of the “hadronic sea"
of quarks and antiquarks, which complements per-
turbative DGLAP evolution, as it is clear from the
flavor asymmetry of antiquarks.

We start our studies of diquark correlations from
the nonrelativistic setting in section II A, where we
compare the effects of the perturbative Coulomb and
instanton-induced ’t Hooft interactions using some
simple variational approaches. Its main conclusion
is that diquark correlations are strong, and that the
’t Hooft interaction is dominant. In section III, the
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diquark problem is treated on the light front, by
a Hamiltonian similar to the meson one, using a
quasilocal qq interaction. In section IV we present
a simplified analysis of baryons in the CM frame,
using Coulomb and 0t Hooft interactions only.

The next section deals with baryons on the light
front, it starts with VA where we derive the LFWFs
deformation by a heavy quark mass. Note that in
our previous analysis in [4], we only considered flavor
symmetric baryons qqq, sss, ccc, bbb. Here instead,
we consider heavy-light baryons such as ⇤Q = Qud
with a single diquark in V B, before addressing the
diquark pairing in the nucleon in section VI. We fur-
ther elucidate the observable consequences of this
pairing by calculating the formfactors for the isobar
Delta and the Nucleon in section VII.

In section VIII A we show how to 0 bridge the gap0

between the spectroscopic analysis and the partonic
observables, using the chiral processes discussed in
section VIII. More specifically, in VIIIA we moti-
vate the selection of the scale where the chiral the-
ory and perturbative DGLAP evolution match. In
VIII B we detail the empirical information on the fla-
vor asymmetry of the antiquark sea of the nucleon.
We present two mechanisms for this effect, one using
the first order in ’t Hooft Lagrangian VIIIC, and
the other a pion-mediated processe VIII D, each of
which is illustrated in Fig.1. The matching of the
chiral and perturbative evolutions are discussed in
section VIII E.

The last section IX summarizes the main results
of our series of papers. A number of more technical
issues are discussed in the Appendices.

phenomenology

scalar diquarks are deeply bound 
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A. Diquark correlations

Diquark correlations of light quarks in nucleons
and hadronic reactions, have been extensively dis-
cussed in the literature in the past decades, see e.g.
[5, 6], and more recently in the review [7]. Here, we
will not cover their phenomenological contributions
to various hadronic reactions, but rather address
some theoretical considerations about their dynami-
cal origins based on semiclassical instantons. We will
also cover recent lattice advances in diquark studies.

In two-color QCD with Nc = 2, diquarks are
baryons. In the chiral limit, QCD with two colors
and flavors, admit Pauli-Gursey symmetry, an ex-
tended SU(4) symmetry that mixes massless baryons
and mesons. In three-color QCD with Nc = 3, di-
quarks play an important role in the light and heavy
light baryons.

The simplest way to understand diquark correla-
tions in hadrons, is in single-heavy baryons where
the heavy spectator quark compensates for color,
without altering the light diquark spin-flavor corre-
lations. A good example are Qud baryons, with ⌃Q

composed of a light quark with a flavor symmetric
assignment I = 1, JP = 1+, and ⇤Q composed of a
light quark pair with a flavor asymmetric assignment
I = 0, JP = 0+ state, the so called bad and good di-
quark states. Note that the latter has no spin, and
thus no spin-dependent interaction with the heavy
quark Q, while the former does. However, assuming
that the standard spin-spin interactions are of the
form (~�1~�2), this spin interaction can be eliminated
as follows

M(1+ud) � M(0+ud) (1)
⇡

�
(2M(⌃⇤

Q
) + M(⌃Q)/3

�
� M(⇤Q) ⇡ 0.21 GeV

with the numerical value thus obtained from experi-
mental masses of cud, bud baryons yields the binding
of two types of light quark diquarks. We note tha
the mass difference between heavy-light baryon and
meson iof m(Qud) � m(Qu) ⇡ 329 MeV , is close to
a constituent quark mass, but does not seem to in-
clude any extra contribution to the kinetic energy of
the extra quark. Apparently, it is cancelled by some
attraction.

With antisymmetric color and spin wave function,
scalar diquarks must also be antisymmetric in fla-
vor: so those can only be ud, us, sd pairs. Those are
called “good" diquarks in the literature, in contrast
to the “bad" ones made of same flavor dd, uu, ...bb
and, by Fermi statistics, with a symmetric spin

S = 1 wave functions.
The role of the light fermionic zero modes induced

by instantons, at the origin of the ’t Hooft effective
Lagrangian for chiral symmetry breaking, and their
importance for pions and other aspects of chiral sym-
metry breaking are well known, for a review see e.g.
[8]. Diquark correlations induced by the ’t Hooft
interaction were found in studies of the nucleons in
instanton ensembles in [9]. In particular, the "good"
diquark mass was found to be m(0+) ⇡ 420 MeV ,
while the “bad" vector diquark mass was found to
be m(1+) ⇡ 940 MeV , with a difference as large as
500 MeV .

Although only a Fiertz transformation is needed
from a meson to a diquark channel, this phenomenon
has been originally considered only by few [10–12],
before the realization that diquarks would turn to
Cooper pairs in dense quark matter, as pointed out
in [13, 14]. (For subsequent review on “color super-
conductivity" see [15].)

Theoretically, it was important to note that in
SU(2) color theory, the scalar diquarks are mass-
less partners of the Goldstone mesons [13]. By con-
tinuation to SU(3) color, one then expects “good"
scalar diquarks to be deeply bound as well. The
ratio of the color factors, between the pseudoscalar
meson (pions or ⌘0) channels, and the scalar diquark
channel, is the same for the perturbative one-gluon
exchange and the instanton-induced ’t Hooft vertex.

Gqq
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=
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Nc � 1
(2)

Note that it is 1 for SU(2) color, supporting Pauli-
Gursey symmetry between diquarks (baryons in this
theory) and mesons. It is 1/2 for the SU(3) color
case of interest, and zero in the Nc ! 1 limit.

Calculation of (pseudoscalar and vector) meson
and (scalar and vector) diquark DAs using Bethe-
Salpeter equation with NJL kernels were originally
carried in [12], and more recently in [16].

Lattice studies of light diquarks have also a long
history, with the ealy analyses in [17] to recent stud-
ies in [18]. Diquarks are either studied inside dy-
namical baryons, or by tagging a Wilson line to a qq
pair as a heavy-light Qqq-type baryon. We already
noted the mass difference between the vector and
scalar ud diquarks, with the lattice estimate putting
it at m(1+)�m(0+) ⇡ 200 MeV . The lattice studies
show that in Qud baryon, the light quarks are corre-
lated together, but in a region of about r0 ⇡ 0.6 fm
size, which is twice larger than suggested in earlier
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not only in the 2 $ 2 channels, but also in the 1 ! 3
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partonic observables. The 1 ! 3 processes are the
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of quarks and antiquarks, which complements per-
turbative DGLAP evolution, as it is clear from the
flavor asymmetry of antiquarks.

We start our studies of diquark correlations from
the nonrelativistic setting in section II A, where we
compare the effects of the perturbative Coulomb and
instanton-induced ’t Hooft interactions using some
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is that diquark correlations are strong, and that the
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diquark problem is treated on the light front, by
a Hamiltonian similar to the meson one, using a
quasilocal qq interaction. In section IV we present
a simplified analysis of baryons in the CM frame,
using Coulomb and 0t Hooft interactions only.

The next section deals with baryons on the light
front, it starts with VA where we derive the LFWFs
deformation by a heavy quark mass. Note that in
our previous analysis in [4], we only considered flavor
symmetric baryons qqq, sss, ccc, bbb. Here instead,
we consider heavy-light baryons such as ⇤Q = Qud
with a single diquark in V B, before addressing the
diquark pairing in the nucleon in section VI. We fur-
ther elucidate the observable consequences of this
pairing by calculating the formfactors for the isobar
Delta and the Nucleon in section VII.

In section VIII A we show how to 0 bridge the gap0

between the spectroscopic analysis and the partonic
observables, using the chiral processes discussed in
section VIII. More specifically, in VIIIA we moti-
vate the selection of the scale where the chiral the-
ory and perturbative DGLAP evolution match. In
VIII B we detail the empirical information on the fla-
vor asymmetry of the antiquark sea of the nucleon.
We present two mechanisms for this effect, one using
the first order in ’t Hooft Lagrangian VIIIC, and
the other a pion-mediated processe VIII D, each of
which is illustrated in Fig.1. The matching of the
chiral and perturbative evolutions are discussed in
section VIII E.

The last section IX summarizes the main results
of our series of papers. A number of more technical
issues are discussed in the Appendices.
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light baryons.

The simplest way to understand diquark correla-
tions in hadrons, is in single-heavy baryons where
the heavy spectator quark compensates for color,
without altering the light diquark spin-flavor corre-
lations. A good example are Qud baryons, with ⌃Q

composed of a light quark with a flavor symmetric
assignment I = 1, JP = 1+, and ⇤Q composed of a
light quark pair with a flavor asymmetric assignment
I = 0, JP = 0+ state, the so called bad and good di-
quark states. Note that the latter has no spin, and
thus no spin-dependent interaction with the heavy
quark Q, while the former does. However, assuming
that the standard spin-spin interactions are of the
form (~�1~�2), this spin interaction can be eliminated
as follows

M(1+ud) � M(0+ud) (1)
⇡

�
(2M(⌃⇤

Q
) + M(⌃Q)/3

�
� M(⇤Q) ⇡ 0.21 GeV

with the numerical value thus obtained from experi-
mental masses of cud, bud baryons yields the binding
of two types of light quark diquarks. We note tha
the mass difference between heavy-light baryon and
meson iof m(Qud) � m(Qu) ⇡ 329 MeV , is close to
a constituent quark mass, but does not seem to in-
clude any extra contribution to the kinetic energy of
the extra quark. Apparently, it is cancelled by some
attraction.

With antisymmetric color and spin wave function,
scalar diquarks must also be antisymmetric in fla-
vor: so those can only be ud, us, sd pairs. Those are
called “good" diquarks in the literature, in contrast
to the “bad" ones made of same flavor dd, uu, ...bb
and, by Fermi statistics, with a symmetric spin

S = 1 wave functions.
The role of the light fermionic zero modes induced

by instantons, at the origin of the ’t Hooft effective
Lagrangian for chiral symmetry breaking, and their
importance for pions and other aspects of chiral sym-
metry breaking are well known, for a review see e.g.
[8]. Diquark correlations induced by the ’t Hooft
interaction were found in studies of the nucleons in
instanton ensembles in [9]. In particular, the "good"
diquark mass was found to be m(0+) ⇡ 420 MeV ,
while the “bad" vector diquark mass was found to
be m(1+) ⇡ 940 MeV , with a difference as large as
500 MeV .

Although only a Fiertz transformation is needed
from a meson to a diquark channel, this phenomenon
has been originally considered only by few [10–12],
before the realization that diquarks would turn to
Cooper pairs in dense quark matter, as pointed out
in [13, 14]. (For subsequent review on “color super-
conductivity" see [15].)

Theoretically, it was important to note that in
SU(2) color theory, the scalar diquarks are mass-
less partners of the Goldstone mesons [13]. By con-
tinuation to SU(3) color, one then expects “good"
scalar diquarks to be deeply bound as well. The
ratio of the color factors, between the pseudoscalar
meson (pions or ⌘0) channels, and the scalar diquark
channel, is the same for the perturbative one-gluon
exchange and the instanton-induced ’t Hooft vertex.

Gqq

Gq̄q

=
1

Nc � 1
(2)

Note that it is 1 for SU(2) color, supporting Pauli-
Gursey symmetry between diquarks (baryons in this
theory) and mesons. It is 1/2 for the SU(3) color
case of interest, and zero in the Nc ! 1 limit.

Calculation of (pseudoscalar and vector) meson
and (scalar and vector) diquark DAs using Bethe-
Salpeter equation with NJL kernels were originally
carried in [12], and more recently in [16].

Lattice studies of light diquarks have also a long
history, with the ealy analyses in [17] to recent stud-
ies in [18]. Diquarks are either studied inside dy-
namical baryons, or by tagging a Wilson line to a qq
pair as a heavy-light Qqq-type baryon. We already
noted the mass difference between the vector and
scalar ud diquarks, with the lattice estimate putting
it at m(1+)�m(0+) ⇡ 200 MeV . The lattice studies
show that in Qud baryon, the light quarks are corre-
lated together, but in a region of about r0 ⇡ 0.6 fm
size, which is twice larger than suggested in earlier
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A. Diquark correlations

Diquark correlations of light quarks in nucleons
and hadronic reactions, have been extensively dis-
cussed in the literature in the past decades, see e.g.
[5, 6], and more recently in the review [7]. Here, we
will not cover their phenomenological contributions
to various hadronic reactions, but rather address
some theoretical considerations about their dynami-
cal origins based on semiclassical instantons. We will
also cover recent lattice advances in diquark studies.

In two-color QCD with Nc = 2, diquarks are
baryons. In the chiral limit, QCD with two colors
and flavors, admit Pauli-Gursey symmetry, an ex-
tended SU(4) symmetry that mixes massless baryons
and mesons. In three-color QCD with Nc = 3, di-
quarks play an important role in the light and heavy
light baryons.

The simplest way to understand diquark correla-
tions in hadrons, is in single-heavy baryons where
the heavy spectator quark compensates for color,
without altering the light diquark spin-flavor corre-
lations. A good example are Qud baryons, with ⌃Q

composed of a light quark with a flavor symmetric
assignment I = 1, JP = 1+, and ⇤Q composed of a
light quark pair with a flavor asymmetric assignment
I = 0, JP = 0+ state, the so called bad and good di-
quark states. Note that the latter has no spin, and
thus no spin-dependent interaction with the heavy
quark Q, while the former does. However, assuming
that the standard spin-spin interactions are of the
form (~�1~�2), this spin interaction can be eliminated
as follows

M(1+ud) � M(0+ud) (1)
⇡

�
(2M(⌃⇤

Q
) + M(⌃Q)/3

�
� M(⇤Q) ⇡ 0.21 GeV

with the numerical value thus obtained from experi-
mental masses of cud, bud baryons yields the binding
of two types of light quark diquarks. We note tha
the mass difference between heavy-light baryon and
meson iof m(Qud) � m(Qu) ⇡ 329 MeV , is close to
a constituent quark mass, but does not seem to in-
clude any extra contribution to the kinetic energy of
the extra quark. Apparently, it is cancelled by some
attraction.

With antisymmetric color and spin wave function,
scalar diquarks must also be antisymmetric in fla-
vor: so those can only be ud, us, sd pairs. Those are
called “good" diquarks in the literature, in contrast
to the “bad" ones made of same flavor dd, uu, ...bb
and, by Fermi statistics, with a symmetric spin

S = 1 wave functions.
The role of the light fermionic zero modes induced

by instantons, at the origin of the ’t Hooft effective
Lagrangian for chiral symmetry breaking, and their
importance for pions and other aspects of chiral sym-
metry breaking are well known, for a review see e.g.
[8]. Diquark correlations induced by the ’t Hooft
interaction were found in studies of the nucleons in
instanton ensembles in [9]. In particular, the "good"
diquark mass was found to be m(0+) ⇡ 420 MeV ,
while the “bad" vector diquark mass was found to
be m(1+) ⇡ 940 MeV , with a difference as large as
500 MeV .

Although only a Fiertz transformation is needed
from a meson to a diquark channel, this phenomenon
has been originally considered only by few [10–12],
before the realization that diquarks would turn to
Cooper pairs in dense quark matter, as pointed out
in [13, 14]. (For subsequent review on “color super-
conductivity" see [15].)

Theoretically, it was important to note that in
SU(2) color theory, the scalar diquarks are mass-
less partners of the Goldstone mesons [13]. By con-
tinuation to SU(3) color, one then expects “good"
scalar diquarks to be deeply bound as well. The
ratio of the color factors, between the pseudoscalar
meson (pions or ⌘0) channels, and the scalar diquark
channel, is the same for the perturbative one-gluon
exchange and the instanton-induced ’t Hooft vertex.

Gqq

Gq̄q

=
1

Nc � 1
(2)

Note that it is 1 for SU(2) color, supporting Pauli-
Gursey symmetry between diquarks (baryons in this
theory) and mesons. It is 1/2 for the SU(3) color
case of interest, and zero in the Nc ! 1 limit.

Calculation of (pseudoscalar and vector) meson
and (scalar and vector) diquark DAs using Bethe-
Salpeter equation with NJL kernels were originally
carried in [12], and more recently in [16].

Lattice studies of light diquarks have also a long
history, with the ealy analyses in [17] to recent stud-
ies in [18]. Diquarks are either studied inside dy-
namical baryons, or by tagging a Wilson line to a qq
pair as a heavy-light Qqq-type baryon. We already
noted the mass difference between the vector and
scalar ud diquarks, with the lattice estimate putting
it at m(1+)�m(0+) ⇡ 200 MeV . The lattice studies
show that in Qud baryon, the light quarks are corre-
lated together, but in a region of about r0 ⇡ 0.6 fm
size, which is twice larger than suggested in earlier
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but not least (iii) the 4-quark local interaction of Nambu-
Jona-Lasino (NJL) type. One simplification we use is
to consider only the longitudinal degrees of freedom, ig-
noring the transverse motion. Another is to reduce the
complicated NJL operator to a single topology-induced
’t Hooft vertex [8] . This latter step is explained in the
next subsection.

B. Topology-induced multiquark interactions

Nambu and Jona-Lasinio 1961 paper [9] was an amaz-
ing breakthrough. Before the word “quark” was invented,
and one learned anything about quark masses, it postu-
lated the notion of chiral symmetry and its spontaneously
breaking. They postulated existence of 4-fermion inter-
action, with some coupling G, strong enough to make a
superconductor-like gap even in fermionic vacuum. The
second important parameter of the model was the cut-
o↵ ⇤ ⇠ 1 GeV , below which their hypothetical attractive
4-fermion interaction operates.

After discovery of QCD, gauge field monopoles and in-
stantons, a very curious relations was found [8], between
the Dirac operator and background gauge topology: they
have certain zero modes related to the topological charge.
This mathematical phenomenon has direct physical con-
sequences, multi-quark interaction vertex described by
the so called ’t Hooft e↵ective Lagrangian. Since in QCD
it includes all three flavors of light quarks, u, d, s, it is a 6-
quark e↵ective vertex, schematically shown in Fig. 1(a).
Note its key feature, opposite chiralities L, R of the in-
coming and outgoing quarks: it is so because in order to
have zero modes of the Dirac equation, quarks and anti-
quarks should have the same magnetic moments. Unlike
vectorial interaction with non-topological glue, this La-
grangian directly connect left and right components of
quark fields, explicitly breaking U(1)a chiral symmetry.

With the advent of the instanton liquid model (ILM)
[10] it became clear that it provides an explanation to the
origins of hypothetical NJL interaction. The NJL cou-
pling GNJL and cuto↵ ⇤NJL were substituted by other
two parameters, the instanton 4d density n and the typ-
ical size ⇢. Like the NJL action, t’ Hooft e↵ective ac-
tion also preserves the SU(Nf ) chiral symmetry, but is
also strong enough to break it spontaneously, creating
nonzero quark condensates hs̄si, hūui 6= 0 appearing in
diagrams (c,d) of Fig.1. The residual 4-quark (ūu)(d̄d)
interaction, induced by the diagrams (b,c), is the one
to be used below. Note, that unlike the NJL action, it
explicitly breaks the chiral Uc(1) symmetry.

In 1990’s the so called “interacting instanton liquid
model”, which numerically solved the vacuum properties
using ’t Hooft Lagrangian to all orders, providing hadron
spectroscopy and Euclidean correlation functions, for re-
view see [11]. Recent advances to finite temperatures and
QCD phase transitions at finite temperature is based on
instanton constituents, the “instanton dyons: we do not
go into that here and only comment that the structiure
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FIG. 1: Schematic form of the 6-quark ’t Hooft e↵ective La-
grangian is shown in fig (a). If quarks are massive, one can
make a loop shown in (b), reducing it to 4-fermion opera-
tor. Note a black rhomb indicating the mass insertion into
a propagator. We only show it for s quark, hinting that for
u, d their masses are too small to make such diagram really
relevant. In (c,d) we show other types of e↵ective 4-fermion
vertices, appearing because some quark pairs can be absorbed
by a nonzero quark condensates (red lines).

of the ’t Hooft Lagrangian remains the same.
In this pilot study we would simplify this residual 4-

fermion interaction, as much as possible, assuming that
’t Hooft e↵ective action is local. This implies that the
instanton radius (or 1/⇤NJL) is much smaller than typ-
ical hadronic sizes, ⇢ ⌧ Rhadrons and therefore can be
neglected. With this assumption, the residual 4-fermion
interaction has only one parameter, the coupling.

It needs to be stated that such simplification goes with
a certain price: the wave functions get singular at x ! 1
causing bad convergence of their expansion in basis func-
tions: we will terminate series by hand. Let us add, that
small size of QCD topological objects also produce tech-
nical di�culties for lattice simulations: many quantities
(and PDF moments are among them, see e.g. [12]) show
significant dependence on the value of lattice spacing a

down to very fine lattices, with a ⇠ 1/(2 � 3 GeV ), so
coninuum extrapolation a ! 0 is a nontrivial step.

Small sizes of instanton and instanton-dyons explain
few other puzzles, known in hadronic physics and by lat-
tice practitioners. We will not discuss phenomena related
to strange quark mass in this work, but notice in pass-
ing, the “puzzle of strong breaking of the SU(3) flavor
symmetry”. Naively, in NJL-like models

ms ⇠ 0.1 GeV ⌧ ⇤NJL ⇠ 1 GeV

is a small parameter, and expansion in it should be well
behaved. However, it is far from being seen in the real
and numerical data. One particular manifestation of it,
observed e.g. in recent lattice work already mentioned
[12], is that PDF moments for various octet baryons

G[~⇡2 + �2 � ~�2 � ⌘02]

repulsion

explicit U(1)a


breaking
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FIG. 5: Upper plot: the longitudinal wave
functions  ⌃(⇢,�) of ⌃c (blue dashed) and

 ⇤(⇢,�) of ⇤c (black solid), as a function of �. The
four pairs of curves are for ⇢ = 0.0, 0.1, 0.2, 0.3, top

to bottom. The lower 3D plot shows their
difference,  ⇤(⇢,�) � ⌃(⇢,�) .

C. Instanton-induced effects in heavy-light
hadrons

In the firts paper of this series [1], we have ad-
dressed the instanton effects on Wilson lines (heavy
quark potentials). The novel point was the pro-
posal of a “dense instanton liquid" that also includes
instanton-antiinstanton molecules. In the second pa-
per of the series [2] the instanton-induced t’ Hooft in-
teraction was used for light quarks, in the context of
the pion LFWF. Since this interaction follows solely
from the near-zero fermionic modes, it is natural to
limit its discussion to the 0dilute instanton liquid0 as
we did, with the hope of avoiding any confusion.

In this section we review some applications to
heavy-light hadrons. The pioneering study in the
original instanton vacuum was carried by Cherny-

shev, Nowak and Zahed [24], on which this section
is based. We will provide some further discussion,
insuring connections to later papers and the remain-
der of our series.
qQ interaction: The main point is that the instan-
ton field strength (acting on a static quark Q), and
its zero mode (acting on a light quark q) are corre-
lated. The appropriate setting is again the “dilute
instanton liquid".

If the instanton size is small, it can be written as a
quasilocal operator, to be included in a Lagrangian.
The interaction between a single light quark q and
a single static heavy quark Q is

LqQ =�GQq

✓
Q

1 + �0

2
Q qq +

1

4
Q

1 + �0

2
�aQ q�aq

◆

(22)

The light quark effective vertex is based on the rep-
resentation of the propagator as

SZM (x, y) =
 0(x) 0(y)

m⇤
(23)

with some effective “determinantal mass" character-
izing the instanton ensemble. In the original ILM
paper [25] this mass was directly related with the
quark condensate

m⇤ =
2

3
⇡2⇢2

|hq̄qi| ⇡ 170 MeV

(the number is for the empirical condensate value).
Further development followed two directions: the
gap equations in the mean field approximation (see
references in [26]) and numerical simulations of the
instanton ensemble. The former expressions were
used in [24] with

m⇤ =

r
n

2Nc

⌃0

and the RILM instanton density n = 1 fm�4. (Note
that in [24] the factor of 1/2Nc, following from the
averaging over the color moduli, was included in the
definition of n). The explicit form of ⌃0 is quoted
in Appendix E, with ⌃0 ⇡ 240 MeV . The typical
coupling in (22) in the RILM is
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n
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with the heavy quark mass shift
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(25)
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one diquark  channel only

already makes noticeable


differences



14

VI. DIQUARK PAIRING IN THE
NUCLEONS

The role of the instanton-induced quasi-local in-
teraction (diquark pairing) in the wave functions of
� and N was already discussed in the paper by
one of us [28]. However several principal and tech-
nical tools were different. In particular, the light
front hamiltonian HLF was different (constructed a
la mesonic Hamiltonian of Vary et al [21]), and the
set of basis functions was completely different.

As in the preceding section, we start with baryons
without quasi-local instanton-induced ’t Hooft inter-
action, namely �++(3/2) = uuu, and proceed simi-
larly by expressing the potential V as a matrix in the
Laplacian basis, and diagonalize HLF = H0 + V . If
we use the basis of 12 such functions, the spectrum
(of squared masses) is

Pairing in the proton p = uud takes place in two
(ud) channels, which we denote as (13) and (23). For
that, it is more convenient to use alternative Jacobi
coordinates ⇢±, �±, rotated from the original ⇢, �
by the “triple symmetry" matrices of the equilateral
triangle

M± =

"
cos(2⇡/3) ±sin(2⇡/3)

⌥sin(2⇡/3) cos(2⇡/3)

#
(42)

The hamiltonian now has two pairing terms, and
each can be written as a matrix in our basis in appro-
priate coordinates using the same form (16), adding
those to the light front hamiltonian HLF and diag-
onalizing it, we obtain the spectrum and the wave
functions. For one choice of the ’t Hooft coupling,
the results for the squared masses of the lowest �, N
baryons are shown in Fig.6.

Recall that these masses are calculated from lim-
ited basis set, with only 12 longitudinal eigenfunc-
tions of the Laplacian. Also note, that neither the
perturbative Coulomb nor the spin-dependent inter-
actions are included. The Delta-N splitting is due
only to the ’t Hooft operator treated in a quasi-local
approximation.

The lower part of the plot shows the light front
wave functions of the lowest mass � and N baryons.
The attractive and quasi-local interaction makes the
wave function of the nucleon N wider than that
of the isobar �, i.e. greater both at the left and
right side of the plot (corresponding to xd ! 1 and
xd ! 0.). This widening effect is similar to that
observed for mesons. The LFWF of vector mesons
is relatively narrow, while that of the pion is nearly

FIG. 6: Upper: Squared masses of the Delta (open
points) and N (closed) resonances versus their

successive quantum number n. The two straight
lines shown for comparison, are the Regge

trajectories fitted to the experimental values of
M2(J) , versus the total angular momentum J ,

with the slope ↵0 = 0.88 GeV 2.
Lower: LFWFs for the lowest Delta (dashed lines)
and N (solid lines). The plots are shown versus the

Jacobi coordinate �, for fixed ⇢ = 0, 0.1, 0.2, 0.3,
top to bottom.

flat. Furthermore, as d participates in two pairings
while each u only in one, this effect is more pro-
nounced for the d quark.

VII. BARYON FORMFACTORS

In the non-relativistic formulation, the formfac-
tors are defined as overlap integrals. This carries to
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flat. Furthermore, as d participates in two pairings
while each u only in one, this effect is more pro-
nounced for the d quark.

VII. BARYON FORMFACTORS

In the non-relativistic formulation, the formfac-
tors are defined as overlap integrals. This carries to

x=1 x=0

versus Delta

two diquark  channels

already makes noticeable


differences

especially near x->1

note that effect of pairing

 is smaller


in excited states
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Nucleon and Delta GPDspaper VI

Zero skewness: 
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GPDs of the nucleon are captured by the off-diagonal formfactors []
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Here H,E are the unpolarized quark GPDs, and H̃, Ẽ their polarized counterparts. Note that for ⇠ = 0, we
have t = ��2

?, and Ẽ drops out. The generic form of the nucleon wavefunction is

|p⇤i =
Z 3Y

i=1

dxidki?p
xi

�

✓
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3X

i=1

xi

◆
�

✓ 3X

i=1

ki?

◆
 
⇤([xi, ki?,�i])|[xip

+
, ki� + xipi?,�i]i (9)

for a nucleon of total momentum p
µ and helicity ⇤ = ±1. The conversion to the Jacobi coordinates is

subsumed, with the delta-functions readily enforced. At low resolution, the nucleon state  ⇤ is a quark-
diquark q[qq]0 Fock state.

To proceed, we note the identities for the matrix elements of the nucleon spinors in (8) on the right-hand-
side,
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+
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(10)

Inserting the free field decomposition of the good component of the quark field in (8), and carrying the
contractions yield the respective GPDs.

Zero skewness:
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�1 �(x� x1) 
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(11)

with qL = q
1 � iq

2, and the phase space helicity sum and integration
Z

P
=

X
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dxid
2
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The kinematical arrangement is as follows: a/ active quark i = 1: x
0
1 = x1 and k

0
1? = k1? + (1 � x1)�?

and �1 = ±1; b/ passive quarks i = 2, 3: and x
0
i = xi and k

0
i? = k1? � xi�?.

Finite skewness:
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Here H,E are the unpolarized quark GPDs, and H̃, Ẽ their polarized counterparts. Note that for ⇠ = 0, we
have t = ��2

?, and Ẽ drops out. The generic form of the nucleon wavefunction is

|p⇤i =
Z 3Y

i=1

dxidki?p
xi

�

✓
1�

3X

i=1

xi

◆
�

✓ 3X

i=1

ki?

◆
 
⇤([xi, ki?,�i])|[xip

+
, ki� + xipi?,�i]i (9)

for a nucleon of total momentum p
µ and helicity ⇤ = ±1. The conversion to the Jacobi coordinates is

subsumed, with the delta-functions readily enforced. At low resolution, the nucleon state  ⇤ is a quark-
diquark q[qq]0 Fock state.
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Inserting the free field decomposition of the good component of the quark field in (8), and carrying the
contractions yield the respective GPDs.
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The kinematical arrangement is as follows: a/ active quark i = 1: x
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it is a formfactor

but for particular


x of the struck quark,

and that turns out to be


Gaussians, with

x-dependent slopes

x

<latexit sha1_base64="sHOrL/tUF/fxJvtha1hyaIdpa6g=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJRo9ELx4hyiOBlcwOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fjpvv5Y6RVLbtmdg6wSLyMlyFDrFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LLv1i1L1JosjDydwCufgwRVU4Q5q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz/RiI19</latexit>

Q2

<latexit sha1_base64="2wXYreHxSDOi7o1nYHL1nwJ4UiE=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoMQIYTdoOgx6CUnScA8INmE2dnZZMjsg5lZNSz5Dy8eFPHqv3jzb5wke9DEgoaiqpvuLifiTCrT/DYya+sbm1vZ7dzO7t7+Qf7wqCXDWBDaJCEPRcfBknIW0KZiitNOJCj2HU7bzvh25rcfqJAsDO7VJKK2j4cB8xjBSkv92sDt3xWfSmap0a+cD/IFs2zOgVaJlZICpKgP8l89NySxTwNFOJaya5mRshMsFCOcTnO9WNIIkzEe0q6mAfaptJP51VN0phUXeaHQFSg0V39PJNiXcuI7utPHaiSXvZn4n9eNlXdtJyyIYkUDsljkxRypEM0iQC4TlCg+0QQTwfStiIywwETpoHI6BGv55VXSqpSty7LZuChUb9I4snACp1AEC66gCjWoQxMICHiGV3gzHo0X4934WLRmjHTmGP7A+PwBG1qQ8w==</latexit>

H
N
d (x, 0, Q2)

<latexit sha1_base64="rz31s47bKgzWyPdV+SjsMzCYViw=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZaAkEQjGChbGFtGHlKaV4zqtVceJbAe1irrwKywMIMTKZ7DxN7htBmg50pWOzrlX997jx4xKZVnfxtLyyuraem4jv7m1vbNr7u3XZZQITGo4YpFo+kgSRjmpKaoYacaCoNBnpOEPbid+45EISSP+oEYx8ULU4zSgGCktdczDlqQhJMPYPau2HXjfdorD03PH65gFq2RNAReJnZECyFDpmF+tboSTkHCFGZLSta1YeSkSimJGxvlWIkmM8AD1iKspRyGRXjp9YAxPtNKFQSR0cQWn6u+JFIVSjkJfd4ZI9eW8NxH/89xEBddeSnmcKMLxbFGQMKgiOEkDdqkgWLGRJggLqm+FuI8Ewkpnltch2PMvL5K6U7IvS1b1olC+yeLIgSNwDIrABlegDO5ABdQABmPwDF7Bm/FkvBjvxsesdcnIZg7AHxifP891lJk=</latexit>

⇠ exp[�Q2R2(x)/2]

<latexit sha1_base64="LF+HG+B+z9UyHi1x9Et9Cc7DePE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LGoB48V7Ae0oWy2m3btZjfsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNCrVlDWoEkq3Q2KY4JI1kKNg7UQzEoeCtcLRzdRvPTFtuJIPOE5YEJOB5BGnBK3U7N4ygaRXrnhVbwZ3mfg5qUCOeq/81e0rmsZMIhXEmI7vJRhkRCOngk1K3dSwhNARGbCOpZLEzATZ7NqJe2KVvhspbUuiO1N/T2QkNmYch7YzJjg0i95U/M/rpBhdBRmXSYpM0vmiKBUuKnf6utvnmlEUY0sI1dze6tIh0YSiDahkQ/AXX14mzbOqf1H17s8rtes8jiIcwTGcgg+XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AWHejwA=</latexit>

�

<latexit sha1_base64="5KHB8FxNb0KZ2NdZSp+ZM1JPCKA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68SQt2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzDhBP6IDyUPOqLFS/b5XKrsVdwayTLyclCFHrVf66vZjlkYoDRNU647nJsbPqDKcCZwUu6nGhLIRHWDHUkkj1H42O3RCTq3SJ2GsbElDZurviYxGWo+jwHZG1Az1ojcV//M6qQmv/YzLJDUo2XxRmApiYjL9mvS5QmbE2BLKFLe3EjakijJjsynaELzFl5dJ87ziXVbc+kW5epPHUYBjOIEz8OAKqnAHNWgAA4RneIU359F5cd6dj3nripPPHMEfOJ8/p+OM1g==</latexit>

N

<latexit sha1_base64="mi5ezxnMuVG/VzxOAGQY0dFvKZU=">AAACB3icbVDLSgMxFM3UV62vUZeCBIvgxjpTFF0W3XTZgn3AdCyZNNOGZpIhyQhl6M6Nv+LGhSJu/QV3/o2Ztoi2HgicnHPvTe4JYkaVdpwvK7e0vLK6ll8vbGxube/Yu3tNJRKJSQMLJmQ7QIowyklDU81IO5YERQEjrWB4k/mteyIVFfxWj2LiR6jPaUgx0kbq2oensBMjqSlikIm+V/XPfu71u3LXLjolZwK4SNwZKYIZal37s9MTOIkI15ghpTzXibWfZhMxI+NCJ1EkRniI+sQzlKOIKD+d7DGGx0bpwVBIc7iGE/V3R4oipUZRYCojpAdq3svE/zwv0eGVn1IeJ5pwPH0oTBjUAmahwB6VBGs2MgRhSc1fIR4gibA20RVMCO78youkWS65FyWnfl6sXM/iyIMDcAROgAsuQQVUQQ00AAYP4Am8gFfr0Xq23qz3aWnOmvXsgz+wPr4BSDqYTA==</latexit>

�@log[H]/@Q2



Nucleon and Delta GPDspaper VI
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GPDs of the nucleon are captured by the off-diagonal formfactors []
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Here H,E are the unpolarized quark GPDs, and H̃, Ẽ their polarized counterparts. Note that for ⇠ = 0, we
have t = ��2

?, and Ẽ drops out. The generic form of the nucleon wavefunction is
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for a nucleon of total momentum p
µ and helicity ⇤ = ±1. The conversion to the Jacobi coordinates is

subsumed, with the delta-functions readily enforced. At low resolution, the nucleon state  ⇤ is a quark-
diquark q[qq]0 Fock state.

To proceed, we note the identities for the matrix elements of the nucleon spinors in (8) on the right-hand-
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Inserting the free field decomposition of the good component of the quark field in (8), and carrying the
contractions yield the respective GPDs.
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2, and the phase space helicity sum and integration
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The kinematical arrangement is as follows: a/ active quark i = 1: x
0
1 = x1 and k

0
1? = k1? + (1 � x1)�?

and �1 = ±1; b/ passive quarks i = 2, 3: and x
0
i = xi and k
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i? = k1? � xi�?.
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it is a formfactor

but for particular


x of the struck quark,

and that turns out to be


Gaussians, with

x-dependent slopes
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Nucleon and Delta GPDspaper VI

Zero skewness: 
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Here H,E are the unpolarized quark GPDs, and H̃, Ẽ their polarized counterparts. Note that for ⇠ = 0, we
have t = ��2

?, and Ẽ drops out. The generic form of the nucleon wavefunction is
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for a nucleon of total momentum p
µ and helicity ⇤ = ±1. The conversion to the Jacobi coordinates is

subsumed, with the delta-functions readily enforced. At low resolution, the nucleon state  ⇤ is a quark-
diquark q[qq]0 Fock state.

To proceed, we note the identities for the matrix elements of the nucleon spinors in (8) on the right-hand-
side,
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Inserting the free field decomposition of the good component of the quark field in (8), and carrying the
contractions yield the respective GPDs.
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The kinematical arrangement is as follows: a/ active quark i = 1: x
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after x integration
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Nucleon and Delta Formfactors 
are approximately 1/Q^4 

but show differences at large 
enough Q, Delta is softer 

which means its size is about 2^(1/4)  
times larger
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FIG. 8: Q4F d

1 (Q2), (GeV 4) versus the momentum
transfer Q2 (GeV 2). The triangles and closed

points correspond to the Delta and Proton LFWFs,
respectively. The red circles are extraction from

the experimental data on the p and n formfactors
mentioned in the text. The solid line shown for

comparison, corresponds to the dipole form factor
Q4/(1 + Q2/m2

⇢
)2.

asymmetry must be related with the asymmetry of
the spin-orbit part of the wave function, which in
our approximations is so far ignored.

Note that the corresponding formfactor for Delta
(triangles) is significantly softer, as one would ex-
pect from the size of the wave function. Recall that
the large difference between the Delta and Proton
formfactors (so well seen in this plot) is completely
due to the ’t Hooft quasi-local pairing ud interaction.
While we do not have Delta targets for experiments,
perhaps its formfactor can be calculated on the lat-
tice, or in other models.

Let us now make a more general comment on pos-
sible improvements of the LFWFs calculated in this
work, and in particular their consequences for form-
factors at large Q2

! 1 and PDFs at large x ! 1.
We treated light quarks as “constituent quarks" with
fixed mass M ⇠ 400 MeV everywhere, including the
“cup potential" ⇠ M2/x diverging at kinematical
edges. As a result, our LFWFs vanish at these edges
in a smooth way. However it is known that M2 de-
creases with virtuality of the quark and vanishes if
it is highly virtual. The instanton-based theory of
chiral symmetry breaking shows how it is related
to the instanton zero modes and describe smooth
transition from on-shell constituent quarks to near-
massless quark-partons. We are planning to include

this effect in subsequent works.
Completing the section on formfactors and trying

to avoid any confusion, let us comment on the rela-
tion between our results and those in the literature
on “hard regime" Q2

! 1 limit. These terminol-
ogy is used in literature in very different settings.
One is physics of heavy boson or quark produc-
tion W, Z, H, t or jet observables at colliders: here
Q2

⇠ (100 GeV )2 and pQCD is fully accountable for
those.

A completely different situation is with exclusive
processes, such as elastic scattering and formfactors.
Specific powers of 1/Q2 and powers of ↵s(Q2) follow
from the lowest orders pQCD diagrams [33]. Fur-
thermore, in some cases (e.g. the pion formfactor)
even the constant in the hard limit can be expressed
in terms of f⇡, so the pQCD asymptotic prediction
is fully known. It is further known for decades, that
in the “semi-hard" domain of current experiments
Q2 < 10 GeV 2 the formfactors are not dominated
by pQCD mechanisms. In our paper on formfactors
[34] we included the instanton contributions in the
hard blocks. While important in the “semi-hard" do-
main, at large Q2 those become exponentially small
⇠ exp(�Q⇢) at Q⇢ � 1. In this series of papers, we
used the ’t Hooft Lagrangian as a quasi � local op-
erator. This means the opposite regime, where the
distance scales considered are large compared to the
instanton size hri � ⇢.

VIII. BRIDGING THE GAP BETWEEN
HADRONIC AND PARTONIC DYNAMICS

A. The matching scale

Before building a bridge, one should have a good
assessment of both sides of the river. Therefore let
us start with a brief summary of what we know on
the two extremes.

Since the 1970’s we know that hard processes de-
fined at some high scale Q2

� 1 GeV 2 can be de-
scribed as a set of independent “partons", g, q, q̄.
The probabilities to find those in a target (or beam)
hadrons are known as PDFs q(x, Q2). Due to high
resolving power in this regime, the pointlike quark-
partons and gluons can emit each other with “split-
ting functions" following directly from the QCD La-
grangian. So PDFs and structure functions at dif-
ferent Q are related by perturbative DGLAP “evo-
lution". Combining these with fits to experimental

N
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A. Electromagnetic formfactors

This notwithstanding, a number of electromag-
netic and gravitational formfactors of the nucleon,
can be extracted from the present GPDs, allowing
also for estimates of the spin and mass sum rules.
More specifically, the Dirac F1, the Pauli F2 electro-
magnetic formfactors and the axial formfactor GA,
are all tied to the zeroth moment of the GPDs on
the LF, at zero skewness [6] (and references therein)

F1(t) =

Z
dxH(x, 0, t)

F2(t) =

Z
dxE(x, 0, t)

GA(t) =

Z
dxH̃(x, 0, t) (21)

In Fig.3 we show the numerical results for Q
4
F

d
1

versus Q
2 in GeV2, for a struck d-quark, follow-

ing from the integration of the unpolarized d-quark
H GPD, for the nucleon (filled-point) and �-isobar
(open-point). The standard dipole-form factor with
the rho mass is depicted by the solid-curve, using
Q

4
/(1 + Q

2
/m

2
⇢)

2 and m⇢ = 780 MeV. The results
follow the dipole curve below 1 GeV2, and devi-
ate substantially above, to asymptote a constant at
much larger Q2, as expected from the QCD counting
rules for both nucleons. The rescaled formfactor for
the isobar is found to fall faster than the nucleon at
large Q

2, which indicates that the nucleon is more
compact electromagnetically than the isobar, with a
smaller electromagnetic radius.

B. Gravitational formfactors

As we noted earlier, our low-resolution LFWFs are
dominated by the lowest Fock state of three con-
stituent quarks. Hence, the GPD is mostly that of
the constituent quarks. The first moment of the un-
polarized GPDs at zero skewness, is tied to the quark
A,B form factors of the energy-momentum tensor [6]

A(t) =

Z
dx xH(x, 0, t)

B(t) =

Z
dx xE(x, 0, t) (22)

They can be used to quantify the distribution
of momentum, angular momentum and pressure-
like stress, inside the nucleon [14] (and references
therein). More specifically, the total nucleon angu-
lar momentum at this low-resolution, is given by Ji0s

FIG. 3: Scaled Dirac form factor Q
4
F

d
1 (Q

2) in
GeV4 versus Q

2 in GeV2, for the nucleon
(filled-point) and � (open-point), obtained by

integrating the unpolarized d-quark-H GDP. For
comparison we show a “dipole fit" curve

Q
4
/(1 +Q

2
/m

2
⇢)

2 (solid-line).

sum rule [15]

J =
1

2
= A(0) +B(0) (23)

with the non-perturbative gluons implicit in the bal-
ance, as they enter implicitly in the composition of
the LF Hamiltonian (mass, string tension, ...) for
the constituent quarks. Since our LFWFs are so
far unpolarized, we do not have acces to the B-
formfactor, as it involves the overlap between spin
flipped LFWFs. The polarized GPDs together with
the role of the spin forces, will be discussed else-
where.

In Fig.4 (top) we show the numerical results for
Q

4
A

d versus Q
2 in GeV2, for a struck d-quark, fol-

lowing from the integration of the unpolarized d-
quark-A GPD, for the nucleon (filled-point) and �-
isobar (open-point). Again, we observe that the iso-
bar form factor falls faster than the mucleon form
factor, an indication that the nucleon is more com-
pact gravitationally than the isobar, with a smaller
gravitational radius. In Fig.4 (top) we plot the ratio
of the gravitational formfactor relative to the elec-
tromagnetic form factor, for the struck d-quark in
the nucleon (filled-points) and isobar (open-points).
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pact gravitationally than the isobar, with a smaller
gravitational radius. In Fig.4 (top) we plot the ratio
of the gravitational formfactor relative to the elec-
tromagnetic form factor, for the struck d-quark in
the nucleon (filled-points) and isobar (open-points).

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.2

1.4

1.6

1.8

FIG. 4: Scaled gravitational form factor Q
4
Ad(Q2)

in GeV4 versus Q
2 in GeV2 (top), for the struck

d-quark in a nucleon (closed-points) and the isobar
(open-points). Ratio of the gravitational to

electromagnetic formfactors 3Ad(Q2)/F d
1 (Q

2)
versus Q

2 in GeV2 (bottom), for the nucleon
(closed-points) and the isobar (open points).

The decrease in Q
2 of the gravitational form fac-

tor, is slower than the electromagnetic form factor
for both hadrons. This means that the spatial mass
distribution of the struck d-quark, is more compact
than the spatial charge distribution. More specifi-
cally, we find

3Ad(Q2)

F
d
1 (Q

2)
= C0 +

Q
2

M
2
fit

, (24)

with slopes close to one C
N
0 = 1.05, C

�
0 = 0.95,

M
N
fit = M

�
fit = 2.15 GeV. We have multiplied A

d by
a factor of 3, which accounts for the mean momen-
tum hxi = 1/3, to bring the ratio close to 1.

C. Comparison to lattice simulations

The moments of the GPDs at different momentum
transfer t, were evaluated on the lattice. Here, we
will follow the detailed analysis by the LHPC col-
laboration [16], where detailed numerical tables for
the moments of the GPDs are given. More specif-
ically, the longitudinal moments of the unpolarized
nucleon GPD are defined as

H
n(⇠, t) =

Z
dxx

n�1
H(x, ⇠, t) (25)

In their notations, the Dirac and gravitational
formfactors at zero skewness ⇠ = 0, are denoted by
A1(0, t) and A2(0, t) respectively. Before we start
comparing their results to ours, several warnings
are in order.
(1) Although the simulations are done with domain
wall fermions, they are still done with large quark
masses. The pion mass varies between m⇡ = 760
and 350MeV for different datasets. The chiral
extrapolation to a small physical mass is clearly
nonlinear, and produce significant uncertainties.
(2) All reported results are quoted at a normaliza-
tion scale µ

2 = 4GeV2, a standard value used for
internal and external comparison. As we repeatedly
emphasized in the previous papers of this set, our
LF wave functions and GPDs should correpond to
a much lower normalization point, and even with
“chiral evolution" are only taken up to µ

2
� = 1GeV2.

The difference between them is significant: if at
µ� there are no gluons and the quark fraction of
momentum is 1, at µ

2 = 4GeV2 it is about twice
smaller, and comparable to the gluon momentum
fraction. As the famous “spin crisis" shows, a similar
observation holds for the spin fractions carried by
the quarks and gluons.
(3) The lattice spacing a strongly limits the value of
the largest momentum transfer which can be used,
to roughly |t| < 1.2GeV2. As one can see from our
previous plots, interesting deviations from simple
dipole fits only are visible at larger values.

With these issues in mind, we now address the
main qualitative findings. Perhaps the most impor-
tant observation is that the Dirac formfactor A1(0, t)
decreases faster with |t|, than the gravitational form-
factor A2(0, t). This implies that spatial distribu-
tion of quarks in the nucleon is wider than that
of the stress tensor. While this qualitative phe-
nomenon is by now established empirically [17], the
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ū
<latexit sha1_base64="W0weTIqRfm8cqHgkReQjzrPpoy0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB5L2yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m186JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ22QgNGcoJ5ZQpoW9lbAR1ZShDadkQ/CWX14lrYuqV6u695eV+k0eRxFO4BTOwYMrqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+ADiSjSc=</latexit>u

<latexit sha1_base64="Kk1WnuNTYiuHAyP9601texsih/Y=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68VjBtIU2ls120y7dbMLuRCihv8GLB0W8+oO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilbyu6l4dHuVqltzZyDLxCtIFQo0epWvbj9hWcwVMkmN6XhuikFONQom+aTczQxPKRvRAe9YqmjMTZDPjp2QU6v0SZRoWwrJTP09kdPYmHEc2s6Y4tAselPxP6+TYXQd5EKlGXLF5ouiTBJMyPRz0heaM5RjSyjTwt5K2JBqytDmU7YheIsvL5Pmec27rLn3F9X6TRFHCY7hBM7Agyuowx00wAcGAp7hFd4c5bw4787HvHXFKWaO4A+czx908I5z</latexit>

⇡0

<latexit sha1_base64="W0weTIqRfm8cqHgkReQjzrPpoy0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB5L2yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m186JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ22QgNGcoJ5ZQpoW9lbAR1ZShDadkQ/CWX14lrYuqV6u695eV+k0eRxFO4BTOwYMrqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+ADiSjSc=</latexit>u <latexit sha1_base64="W0weTIqRfm8cqHgkReQjzrPpoy0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB5L2yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m186JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ22QgNGcoJ5ZQpoW9lbAR1ZShDadkQ/CWX14lrYuqV6u695eV+k0eRxFO4BTOwYMrqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+ADiSjSc=</latexit>u

<latexit sha1_base64="lNpVo8UFt7FFDCUHLIHVTUfKtA0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68diC/YA2lM120q7dbOLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LejBP0IzqQPOSMGivVH3ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD3O+M+Q==</latexit>q
<latexit sha1_base64="lNpVo8UFt7FFDCUHLIHVTUfKtA0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68diC/YA2lM120q7dbOLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LejBP0IzqQPOSMGivVH3ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD3O+M+Q==</latexit>q

<latexit sha1_base64="lNpVo8UFt7FFDCUHLIHVTUfKtA0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68diC/YA2lM120q7dbOLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LejBP0IzqQPOSMGivVH3ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD3O+M+Q==</latexit>q

<latexit sha1_base64="lwCGAz/uUq77l1nbzdeXenTD488=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOZpMx81hnZoWw5B+8eFDEq//jzb9xkuxBEwsaiqpuuruihDNjff/bK6ysrq1vFDdLW9s7u3vl/YOmUakmtEEUV7odYUM5k7RhmeW0nWiKRcRpKxrdTP3WE9WGKXlvxwkNBR5IFjOCrZOa3Qhr9NgrV/yqPwNaJkFOKpCj3it/dfuKpIJKSzg2phP4iQ0zrC0jnE5K3dTQBJMRHtCOoxILasJsdu0EnTilj2KlXUmLZurviQwLY8Yicp0C26FZ9Kbif14ntfFVmDGZpJZKMl8UpxxZhaavoz7TlFg+dgQTzdytiAyxxsS6gEouhGDx5WXSPKsGF1X/7rxSu87jKMIRHMMpBHAJNbiFOjSAwAM8wyu8ecp78d69j3lrwctnDuEPvM8fK3KO3A==</latexit>

q̄

<latexit sha1_base64="W0weTIqRfm8cqHgkReQjzrPpoy0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB5L2yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m186JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ22QgNGcoJ5ZQpoW9lbAR1ZShDadkQ/CWX14lrYuqV6u695eV+k0eRxFO4BTOwYMrqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+ADiSjSc=</latexit>u
<latexit sha1_base64="gM0IvitAqUOg0EhtrtQBXtVqEKg=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cq1hbaUDabTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjLdYIhPdCajhUijeQoGSd1LNaRxI3g5GN1O//cS1EYl6wHHK/ZgOlIgEo2ilexL2qzW37s5AlolXkBoUaParX70wYVnMFTJJjel6bop+TjUKJvmk0ssMTykb0QH vWqpozI2fzy6dkBOrhCRKtC2FZKb+nshpbMw4DmxnTHFoFr2p+J/XzTC68nOh0gy5YvNFUSYJJmT6NgmF5gzl2BLKtLC3EjakmjK04VRsCN7iy8vk8azuXdTdu/Na47qIowxHcAyn4MElNOAWmtACBhE8wyu8OSPnxXl3PuatJaeYOYQ/cD5/AB7OjRY=</latexit>

d

<latexit sha1_base64="W0weTIqRfm8cqHgkReQjzrPpoy0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB5L2yxW36s5BVomXkwrkaPTLX71BzNKIK2SSGtP13AT9jGoUTPJpqZcanlA2pkPetVTRiBs/m186JWdWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ22QgNGcoJ5ZQpoW9lbAR1ZShDadkQ/CWX14lrYuqV6u695eV+k0eRxFO4BTOwYMrqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+ADiSjSc=</latexit>u
<latexit sha1_base64="gODwkeU9Y2h824JYjB3w6K/uDJ4=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV1R9Bj04jGCeUCyhNnZ2WTMPJaZWSEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o5cxY3//2VlbX1jc2S1vl7Z3dvf3KwWHLqEwT2iSKK92JsKGcSdq0zHLaSTXFIuK0HY1up377iWrDlHyw45SGAg8kSxjB1kmtXoQ1ivuVql/zZ0DLJChIFQo0+pWvXqxIJqi0hGNjuoGf2jDH2jLC6aTcywxNMRnhAe06KrGgJsxn107QqVNilCjtSlo0U39P5FgYMxaR6xTYDs2iNxX/87qZTa7DnMk0s1SS+aIk48gqNH0dxUxTYvnYEUw0c7ciMsQaE+sCKrsQgsWXl0nrvBZc1vz7i2r9poijBMdwAmcQwBXU4Q4a0AQCj/AMr/DmKe/Fe/c+5q0rXjFzBH/gff4AF76Ozw==</latexit>

d̄
<latexit sha1_base64="cBJOjIaue+zMJjO9SDAu2MVflnI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiih6LXjxWMG2hjWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dho5TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJYPZpxgENGB5H3OqLGS30n441m3XHGr7gxkmXg5qUCOerf81enFLI1QGiao1m3PTUyQUWU4EzgpdVKNCWUjOsC2pZJGqINsduyEnFilR/qxsiUNmam/JzIaaT2OQtsZUTPUi95U/M9rp6Z/HWRcJqlByeaL+qkgJibTz0mPK2RGjC2hTHF7K2FDqigzNp+SDcFbfHmZNM6r3mXVvb+o1G7yOIpwBMdwCh5cQQ3uoA4+MODwDK/w5kjnxXl3PuatBSefOYQ/cD5/AG1cjm4=</latexit>

⇡+

(a) (b)

(d)

(f)(e)

(c)

FIG. 1: Upper raw (a,b): gluon-mediated quark
pair production; Middle raw (c,d):

instanton-induced ’t Hooft four-fermion interaction;
Lower raw (e,f): pion-mediated quark pair

production, or iterated ’t Hooft Lagrangian in s
and t channels.

papers.
To complete our introduction to diquarks, we

briefly note the issue of heavy diquarks, e.g. made of
two charmed quarks cc. This issue reappeared after
the recent discovery of the tetraquark T++

ccūd̄
by the

LHCb collaboration. If the only force is Coulomb,
the QQ coupling is half of that in Q̄Q. Now, since for
a 1/r potential the binding scales as the square of
the coupling, we readily get B(QQ) = 1

4B(Q̄Q). Yet
we do know that charm quarks are not heavy enough
to ignore the confining forces in charmonium, and
so this relation is not expected to hold. The static
potentials between heavy quarks were discussed in
detail in our previous paper [4].

Karliner and Rosner [19, 20] conjectured a different
relation

B(QQ) =
1

2
B(Q̄Q) (3)

which turned out to be phenomenologically success-
ful. (While it resembles what we called in our pre-
vious paper “Ansatz A" for the quark-quark static
interaction, it is not the same, a half for potentials
is not half for bindings. For charmonium binding
in their analysis B(Q̄Q) ⇡ �258 MeV , so B(QQ) ⇡

�129 MeV , which led them to a predict a mass of

M(T++
ccūd̄

) = 3882 MeV just 7 MeV above the sub-
sequent experimentally measured value.)

Currently we have not performed any calculations
for tetraquarks. We had done some preliminary
studies of heavy-heavy-light QQq baryons with some
model wave functions, and concluded that for two
charm quarks QQ = cc their separation into quasi-
two-body (heavy diquark plus light “atmosphere") is
not really justified. This is in qualitative agreement
with the relatively small binding of a cc diquark in
the Karliner-Rosner conjecture. So, in this work, we
will focus on the light-light “good diquarks", known
to be more strongly bound.

B. Bridging the gap between hadronic
spectroscopy and partonic physics

In this subsection we outline our plan for bridging
this gap.

Our starting point is the well known traditional
quark model used in hadronic spectroscopy. The
main phenomenon included in this model is the
lhenomenon of chiral symmetry breaking, with an
effective mass for the “constituent quarks". For
light quarks it is mq ⇠ 1/3 GeV . This mass is
much smaller than the induced mass on gluons,
so hadronic spectroscopy is traditionally described
as bound states of these constituent quarks, with
gluonic states or excitations described as “exotica".
The traditional states are two-quark mesons and
three-quark baryons, but of course there are also
tetraquarks q3q̄ and pentaquarks q4q̄ states, re-
cently discovered with heavy quark content.

The first ark of the bridge (described in detail in
these series of works) is to transfer such quark mod-
els from the CM frame to the light front. For some
simplest cases – like heavy quarkonia – it amounts
to a transition from spherical to cylindrical coordi-
nates, with subsequent transformation of longitudi-
nal momenta into Bjorken-Feynman variable x. But
in general, it is easier to start with light-front Hamil-
tonians HLF and perform its quantization. One
of the benefit is that no nonrelativistic approxima-
tion is needed, therefore heavy and light quarks are
treated in the same way.

The second ark of the bridge is built via chiral dy-
namics , which seeds the quark sea by producing
extra quark-antiquark pair. In section VIII we dis-
cuss how it can be done, in the first order in ’t Hooft
effective action as well as via intermediate pions.
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FIG. 1: Upper raw (a,b): gluon-mediated quark
pair production; Middle raw (c,d):

instanton-induced ’t Hooft four-fermion interaction;
Lower raw (e,f): pion-mediated quark pair

production, or iterated ’t Hooft Lagrangian in s
and t channels.

papers.
To complete our introduction to diquarks, we

briefly note the issue of heavy diquarks, e.g. made of
two charmed quarks cc. This issue reappeared after
the recent discovery of the tetraquark T++

ccūd̄
by the

LHCb collaboration. If the only force is Coulomb,
the QQ coupling is half of that in Q̄Q. Now, since for
a 1/r potential the binding scales as the square of
the coupling, we readily get B(QQ) = 1

4B(Q̄Q). Yet
we do know that charm quarks are not heavy enough
to ignore the confining forces in charmonium, and
so this relation is not expected to hold. The static
potentials between heavy quarks were discussed in
detail in our previous paper [4].

Karliner and Rosner [19, 20] conjectured a different
relation

B(QQ) =
1

2
B(Q̄Q) (3)

which turned out to be phenomenologically success-
ful. (While it resembles what we called in our pre-
vious paper “Ansatz A" for the quark-quark static
interaction, it is not the same, a half for potentials
is not half for bindings. For charmonium binding
in their analysis B(Q̄Q) ⇡ �258 MeV , so B(QQ) ⇡

�129 MeV , which led them to a predict a mass of

M(T++
ccūd̄

) = 3882 MeV just 7 MeV above the sub-
sequent experimentally measured value.)

Currently we have not performed any calculations
for tetraquarks. We had done some preliminary
studies of heavy-heavy-light QQq baryons with some
model wave functions, and concluded that for two
charm quarks QQ = cc their separation into quasi-
two-body (heavy diquark plus light “atmosphere") is
not really justified. This is in qualitative agreement
with the relatively small binding of a cc diquark in
the Karliner-Rosner conjecture. So, in this work, we
will focus on the light-light “good diquarks", known
to be more strongly bound.

B. Bridging the gap between hadronic
spectroscopy and partonic physics

In this subsection we outline our plan for bridging
this gap.

Our starting point is the well known traditional
quark model used in hadronic spectroscopy. The
main phenomenon included in this model is the
lhenomenon of chiral symmetry breaking, with an
effective mass for the “constituent quarks". For
light quarks it is mq ⇠ 1/3 GeV . This mass is
much smaller than the induced mass on gluons,
so hadronic spectroscopy is traditionally described
as bound states of these constituent quarks, with
gluonic states or excitations described as “exotica".
The traditional states are two-quark mesons and
three-quark baryons, but of course there are also
tetraquarks q3q̄ and pentaquarks q4q̄ states, re-
cently discovered with heavy quark content.

The first ark of the bridge (described in detail in
these series of works) is to transfer such quark mod-
els from the CM frame to the light front. For some
simplest cases – like heavy quarkonia – it amounts
to a transition from spherical to cylindrical coordi-
nates, with subsequent transformation of longitudi-
nal momenta into Bjorken-Feynman variable x. But
in general, it is easier to start with light-front Hamil-
tonians HLF and perform its quantization. One
of the benefit is that no nonrelativistic approxima-
tion is needed, therefore heavy and light quarks are
treated in the same way.

The second ark of the bridge is built via chiral dy-
namics , which seeds the quark sea by producing
extra quark-antiquark pair. In section VIII we dis-
cuss how it can be done, in the first order in ’t Hooft
effective action as well as via intermediate pions.
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FIG. 1: Upper raw (a,b): gluon-mediated quark
pair production; Middle raw (c,d):

instanton-induced ’t Hooft four-fermion interaction;
Lower raw (e,f): pion-mediated quark pair

production, or iterated ’t Hooft Lagrangian in s
and t channels.

papers.
To complete our introduction to diquarks, we

briefly note the issue of heavy diquarks, e.g. made of
two charmed quarks cc. This issue reappeared after
the recent discovery of the tetraquark T++

ccūd̄
by the

LHCb collaboration. If the only force is Coulomb,
the QQ coupling is half of that in Q̄Q. Now, since for
a 1/r potential the binding scales as the square of
the coupling, we readily get B(QQ) = 1

4B(Q̄Q). Yet
we do know that charm quarks are not heavy enough
to ignore the confining forces in charmonium, and
so this relation is not expected to hold. The static
potentials between heavy quarks were discussed in
detail in our previous paper [4].

Karliner and Rosner [19, 20] conjectured a different
relation

B(QQ) =
1

2
B(Q̄Q) (3)

which turned out to be phenomenologically success-
ful. (While it resembles what we called in our pre-
vious paper “Ansatz A" for the quark-quark static
interaction, it is not the same, a half for potentials
is not half for bindings. For charmonium binding
in their analysis B(Q̄Q) ⇡ �258 MeV , so B(QQ) ⇡

�129 MeV , which led them to a predict a mass of

M(T++
ccūd̄

) = 3882 MeV just 7 MeV above the sub-
sequent experimentally measured value.)

Currently we have not performed any calculations
for tetraquarks. We had done some preliminary
studies of heavy-heavy-light QQq baryons with some
model wave functions, and concluded that for two
charm quarks QQ = cc their separation into quasi-
two-body (heavy diquark plus light “atmosphere") is
not really justified. This is in qualitative agreement
with the relatively small binding of a cc diquark in
the Karliner-Rosner conjecture. So, in this work, we
will focus on the light-light “good diquarks", known
to be more strongly bound.

B. Bridging the gap between hadronic
spectroscopy and partonic physics

In this subsection we outline our plan for bridging
this gap.

Our starting point is the well known traditional
quark model used in hadronic spectroscopy. The
main phenomenon included in this model is the
lhenomenon of chiral symmetry breaking, with an
effective mass for the “constituent quarks". For
light quarks it is mq ⇠ 1/3 GeV . This mass is
much smaller than the induced mass on gluons,
so hadronic spectroscopy is traditionally described
as bound states of these constituent quarks, with
gluonic states or excitations described as “exotica".
The traditional states are two-quark mesons and
three-quark baryons, but of course there are also
tetraquarks q3q̄ and pentaquarks q4q̄ states, re-
cently discovered with heavy quark content.

The first ark of the bridge (described in detail in
these series of works) is to transfer such quark mod-
els from the CM frame to the light front. For some
simplest cases – like heavy quarkonia – it amounts
to a transition from spherical to cylindrical coordi-
nates, with subsequent transformation of longitudi-
nal momenta into Bjorken-Feynman variable x. But
in general, it is easier to start with light-front Hamil-
tonians HLF and perform its quantization. One
of the benefit is that no nonrelativistic approxima-
tion is needed, therefore heavy and light quarks are
treated in the same way.

The second ark of the bridge is built via chiral dy-
namics , which seeds the quark sea by producing
extra quark-antiquark pair. In section VIII we dis-
cuss how it can be done, in the first order in ’t Hooft
effective action as well as via intermediate pions.
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We will then argue that as the third ark of the
bridge one should use the well known DGLAP evo-
lution of the PDFs (perhaps modified), down to the
scale at which there are no gluons. There the qq̄
sea should be reduced to only the part generated
by chiral dynamics (step two). The antiquark flavor
asymmetry d̄� ū is the tool allowing us to tell gluon
and chiral contributions, as it cannot be generated
by “flavor blind" gluons.

II. DYNAMICAL BINDING OF DIQUARKS

A. Nonrelativistic studies of the role of
Coulomb and ’t Hooft attractions

In the previous papers of this series we have shown
how two basic nonperturbative phenomena can be
included in the light front formulation:
(i) chiral symmetry breaking represented by “con-
stituent" quark masses,
(ii) confinement represented by classical relativistic
string.
By adding the light-front form of the kinetic energy
of the constituents, we derived our basic Hamilto-
nian, modulo Coulomb, spin-spin and and spin-orbit
effects. The eigenstates of this Hamiltonian, were
evaluated using different methods.

Now we are going to focus on the “residual" inter-
actions, namely:
(iii) perturbative Coulomb interactions,
(iv) various forms of quasi-local operators descend-
ing from ’t Hooft effective Lagrangian, or, more gen-
erally, from instanton-induced zero modes for light
fermions
(v) effects due to the gauge fields of the instantons
via nonlocal correlators of Wilson lines.

The traditional starting point is the nonrelativis-
tic Schroedinger equation in the CM frame. As a
compromise needed for the use of both a nonrela-
tivistic approximation and the ’t Hooft Lagrangian,
we focus initially on the strange quark channel, with
a constituent mass mass ms = 0.55 GeV . As for any
compromise, it is not really accurate, yet it will pro-
vide a preliminary information on the relative role
of all the interactions listed above.

Since the ’t Hooft interaction must be flavor-
asymmetric, we have to invent another quark fla-
vor s0 with the same mass. (This idea is not ours,
it originated in lattice studies where it is used to
eliminate two-loop diagrams. The pseudoscalar s̄s0

meson even has an established name ⌘s.)
We start with a variational approach, using sim-

plified trial wave functions of two types

 A ⇠ e�↵r
2

,  B ⇠ e��r
3/2

(4)

to be referred to as trial functions A and B.
The former (Gaussian) form leads to simple an-
alytical expressions for the mean kinetic energy,
h1/ri, hri, h�3(~r)i. However, the trial function B
with the power of the distance in the exponent fol-
lowing from its semiclassical asymptotics, turns out
to be closer in shape to the numerical solution.
Some details about these variational functions can
be found in Appendix A.

Let us summarize the qualitative lessons we got
from these variational studies. First, we demon-
strate that the contributions of both attractive forces
– the Coulomb and the ’t Hooft ones – are com-
parable for the strange quark mass. The light di-
quark binding and the r.m.s. size suggested by
phenomenology and observed on the lattice, can
be explained with the conventional values for the
Coulomb and ’t Hooft couplings.

Second, we find the following distinction between
these interactions: their contribution to the binding
can change significantly if these values are changed.
For example, if the diquark size is reduced by a fac-
tor two, h1/ri increases by a factor of 2, while h�3(~r)i
increases by a factor 23 = 8 and becomes domi-
nant. So a reported balance between perturbative
and nonperturbative contributions to the binding, is
in fact only valid for a strange quark mass, and is
very sensitive to the actual quark masses.

Of course, in the current setting, there is no
problem to solve the Schroedinger equation numer-
ically. For convenience, we represent the ’t Hooft
quasi-local term �Gqq�3(~r) by a smeared delta func-
tion. In Fig.14 the resulting ground state wave func-
tions are compared, for four values of the coupling
Gdq = 0, 10, 20, 30 GeV �2. As expected, an increase
in the negative potential near the origin, leads to a
large wave function at small r.

In Table I we give the corresponding r.m.s. sizes
and binding energies for the lowest four states. One
can see that in order to get a binding of ⇠ �0.2 GeV
and a size of ⇠ 0.6 fm, indicated by lattice stud-
ies, the coupling needs to be Gqq ⇠ 20 GeV �2. Re-
call that by Fiertzing the ’t Hooft operator from the
q̄q to qq channel, there is an additional factor of
1/(Nc � 1) = 1/2. So this value corresponds to the
coupling in mesons of ⇠ 40 GeV �2. Finally, we note
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