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* Strong evidence for the existence of dark matter through its
gravitational interactions

* The big question: does dark matter interact with SM particles
through forces other than gravity?

* Several experiments have been probing various models of dark
matter 1n different ways
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Theory Motivation

Well-motivated targets 1n
sub-GeV parameter space

Sensitivities could be
limited by backgrounds
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Excesses in Low-Threshold Dark Matter Searches

e Several experiments observe a sizable number of low-energy events

e For example, searches for electron recoils like SENSEI:
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o *arXiv:2011.13939 Du, Egana-Ugrinovic, Essig, MS

Hypothesis

® High energy particles can interact to create low-energy photons
® These photons can be absorbed to produce low-energy electronic recoil events

- Vacuum

§
Cables 7

i : Transition Cherenkov
e, U ¢ Radiation Radiation

v

® Cherenkov Radiation
® Transition Radiation




Concrete Example: SENSEI at MINOS

SENSEI overview:

e Uses silicon Skipper-CCDs to
probe sub-GeV DM by precisely
measuring 1onization
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SENSEI at MINOS

SENSEI data:
® Excellent spatial resolution

® Can place cuts based on the position
of events relative to the positions of
high-energy tracks

Electron
® Observed ~ 450 1-e events per X-ray
(gram™day) after applying a 60-
pixel (~900 um) halo-mask cut
Muon
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Radiative Processes Simulation for SENSEI
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Radiative Processes Simulation for SENSEI

*paper 1n prep: Du, Egana-Ugrinovic, Essig, MS

Simulated Tracks
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Radiative backgrounds in SENSEI

*paper 1n prep: Du, Egana-Ugrinovic, Essig, MS
Results:
e SENSEI rate after a 60-pixel halo-mask cut: 450 = 45 / (gram*day)

e Estimated Cherenkov contribution: 150 = 40/ (gram*day) (including systematics)
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Theory Motivation
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Sensitivity projections assuming

background-free
kg-year exposure

Important to estimate backgrounds
in these future detectors



Photon Background
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Phonons from Coherent Atomic Scattering
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Phonons from Coherent Atomic Scattering
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Phonons from Coherent Atomic Scattering
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Conclusions

® Important to identify, characterize and mitigate new backgrounds in low
threshold experiments

® Current low-threshold electron recoil experiments could be limited by
backgrounds from radiative processes like Cherenkov

® Future experiments that will look for phonons may be limited by
backgrounds created by high energy photons

® Mitigation strategies: Increase passive shielding (less high energy
photons, muons etc.), Active shielding (correlated high energy events)
with timing, Multiple detectors



