Event Schedule

Intersection of nuclear structure and high-energy nuclear collisions

Towards Bayesian constraints on nuclear structure via isobar collisions Shuzhe Shi (Stony Brook University)

reference:

Yi-Lin Cheng, SS, Y.-G. Ma, H Stoecker, K. Zhou, 2301.03910

ONS - EVENTS -

The isobar program was designed to detect the Chiral Magnetic Effect(CME)

expectation before the isobar collisions:

The isobar program was designed to detect the Chiral Magnetic Effect(CME)

expectation before the isobar collisions:

- measurement in the isobar collisions: Correlator[Ru] < Correlator[Zr]

expectation before the isobar collisions:

- measurement in the isobar collisions: Correlator[Ru] < Correlator[Zr]

Bulk properties are not identical!

STAR [PhysRevC.105.014901]

Bulk properties are not identical!

STAR [PhysRevC.105.014901]

Plot from Chunjian Zhang's talk

Giuliano Giacalone, Jiangyong Jia, Chunjian Zhang, et al.

Plot from Chunjian Zhang's talk

Giuliano Giacalone, Jiangyong Jia, Chunjian Zhang, et al.

Key argument: ratios of observable are insensitive to transport details.

Plot from Chunjian Zhang's talk

Giuliano Giacalone, Jiangyong Jia, Chunjian Zhang, et al.

Key argument: ratios of observable are insensitive to transport details.

Question: can we recover the nuclear structures from only the ratios of observable?

Background: isobar collision √

- Proof of concept study:
 - reconstruct nuclear structures of **both nuclei** \bullet

from observables and/or ratios

Outline

Background: isobar collision √

Bayesian Inference

- Proof of concept study:
 - reconstruct nuclear structures of both nuclei

Summary and outlook

from observables and/or ratios

Bayesian Inference

$L(\text{parameter} | \text{data}) \propto P(\text{data} | \text{parameter}) \times Prior(\text{parameter})$

L(parameter | data) : likelihood of structure parameter given HIC data

L(parameter | data) : likelihood of structure parameter given HIC data

$$\frac{y_{a,b}^{-1}}{2}(y_a^{\text{model}} - y_a^{\text{exp}})(y_b^{\text{model}} - y_b^{\text{exp}})\Big)$$

Model needed to map the nuclear structure to final state observables

Model needed to map the nuclear structure to final state observables

$initial \\ E \\ \varepsilon_2 \\ \varepsilon_3 \\ d_\perp$

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

final N_{ch} v_2 v_3 $\langle p_T \rangle$

"perfect mappings"

As a proof of concept study, assumed "perfect" Monte-Carlo Glauber modeling:

final

- $E \Rightarrow N_{ch} = \lambda_N E$ $\varepsilon_2 \qquad \Rightarrow \qquad v_2 = \lambda_2 \varepsilon_2$ $\varepsilon_3 \qquad \Rightarrow \qquad v_3 = \lambda_3 \varepsilon_3$ $\Rightarrow \qquad \langle p_T \rangle = f(d_1)$

As a proof of concept study, assumed "perfect" Monte-Carlo Glauber modeling:

nuclear structure

"observables"

As a proof of concept study, assumed "perfect" Monte-Carlo Glauber modeling:

nuclear structure

 $\rho(r,\theta,\phi) = \frac{\rho_0}{1 + \exp[r - R(\theta,\phi)]/a},$

"observables"

 $R(\theta, \phi) = \mathbf{R} \times (1 + \beta_2 Y_2^0 + \beta_3 Y_3^0 + \cdots),$

As a proof of concept study, assumed "perfect" Monte-Carlo Glauber modeling:

"scan" R, a, β_2, β_3 space

 $L(R, a, \beta_2, \beta_3) \propto \exp(-\chi^2/2)$

each parameter set

each parameter set **Emulator +** Markov Chain MC

"scan" R, a, β_2, β_3 space

 $L(R, a, \beta_2, \beta_3) \propto \exp(-\chi^2/2)$

Emulator + Markov Chain MC

"scan" R, a, β_2, β_3 space

 $L(R, a, \beta_2, \beta_3) \propto \exp(-\chi^2/2)$

parameter space

Emulator + Markov Chain MC

"scan" R, a, β_2, β_3 space

 $L(R, a, \beta_2, \beta_3) \propto \exp(-\chi^2/2)$

parameter space

ensemble of parameter sets that follows the likelihood distribution

single system test

- 1. start from *known* parameters;
- 2. run *high-stat MCGlauber* sim. and use it as *mock data*;
- 3. run MCMC and reconstruct WS parameters from *mock data*.

single system test

- 1. start from *known* parameters;
- 2. run *high-stat MCGlauber* sim. and use it as *mock data*;
- 3. run MCMC and reconstruct WS parameters from *mock data*.

1d and 2d marginal distribution

single system test

- 1. start from *known* parameters;
- 2. run *high-stat MCGlauber* sim. and use it as *mock data*;
- 3. run MCMC and reconstruct WS parameters from *mock data*.

1d and 2d marginal distribution

red dots/lines: ground truth

single system

- 1. start from *known* parameters;
- 2. run *high-stat MCGlauber* sim. and use it as *mock data*;
- 3. run MCMC and reconstruct WS parameters from *mock data*.

isobar system

- 1. start from *two* parameter sets;
- 2. take *Ru to Zr ratio* as *mock data*;
- 3. run MCMC and *simultaneously* reconstruct Ru and Zr WS parameters.

observables: $R[P(N_{ch})], R[v_2], R[v_3], R[\langle p_T \rangle]$

observables: $R[P(N_{ch})], R[v_2], R[v_3], R[\langle p_T \rangle]$

observables: $P^{\text{Ru}}(N_{ch}), P^{\text{Zr}}(N_{ch}), R[v_2], R[v_3], R[\langle p_T \rangle]$

11

observables: $P^{\text{Ru}}(N_{ch}), P^{\text{Zr}}(N_{ch}), R[v_2], R[v_3], R[\langle p_T \rangle]$

							- - - - - - - - - - - - - - - - - - -		N. A. MANNAL - ALL ALL						
0.525	$0.12 \\ 0.14$	0.16 0.18	0.20	0.00	0.05	0.10	0.15	-0.1	0.0	0.1	0.2	$0.18 \\ 0.20$	$0.22 \\ 0.24$	0.26	0.28

11

observables: $P^{\text{Ru}}(N_{ch}), P^{\text{Zr}}(N_{ch}), R[v_2], R[v_3], R[\langle p_T \rangle]$

observable ratio => same parameter correlation

Summary and Outlook

- proof of concept study: "perfect" initial-final mapping assumed
- single system
 - observable \Rightarrow nuclear structure
- isobar pair \bullet
 - only ratio of obs. \Rightarrow nuclear structures
- Outlook: more realistic model needed; AMPT-based in progress.

• multiplicity distribution + ratio of other obs. \Rightarrow nuclear structures