Dark matter Admixed Neutron Stars

Shafayat Shawqi^{1*}, Sharon Morsink¹ Neutron Rich Matter on Heaven and Earth June 28, 2023 ¹University of Alberta

DM Admixed NSs

- Dark Matter can accumulate in stars (the Sun, white dwarfs and neutron stars)
- Significant amounts (few percent of NS total mass) of DM can exist in stable equilibrium configurations of neutron stars
- Lead to observable effects through GW (tidal deformability) and EM (X-ray) radiation

Dark matter Accumulation

Accretion from DM galactic halo

$$M_{\rm accretion} \sim 10^{-16} \left(\frac{\rho_{\chi}}{\rm GeV/cm^3} \right) \left(\frac{\sigma_{\chi n}}{10^{-45} \rm \ cm^2} \right) \left(\frac{t}{10^8 \rm \ yrs} \right) M_{\odot}$$

- mostly considered too inefficient for observable effects (Goldman & Nussinov 1989), (Kouvaris 2007), (Kouvaris & Tinyakov 2010, 2011), (Nelson et al. 2019), etc.
- Produced from SM species and trapped within NS (~ $0.01 M_{\odot}$)
 - Due to high core densities (Mckeen et al. 2018), (Baym et al. 2018), (Motta et al. 2018a, 2018b)
 - Due to high temperatures in progenitor supernovae or proto-NS (Nelson et al. 2019), (Reddy & Zhou 2022), (Collier et al. 2022)

Dark matter Accumulation

- Mergers with dark compact objects
 - self-interacting DM can form dark stars (~ $0.1 M_{\odot}$)

(Kouvaris & Nielsen 2015, Collier et al. 2022)

Rest of the talk – Assume DM exists in NSs in equilibrium configurations and explore observable effects.

Dark Core or Halo

Dark Core or Halo

Depending on i. DM particle mass (m_{χ}) ii. self-interaction

iii. DM mass fraction in the star (f_{χ})

strength (y)

DANS Model Generation

- Single fluid description
 - Compute equation of state with SM couplings between DM and baryonic matter (Panotopoulos & Lopes 2017), (Quddus et al 2020), (Das et al. 2019), (Das et al. 2021), (Lopes et al. 2022)
- Two-fluid description

(Sandin & Ciarcelluti 2009), (Ciarcelluti & Sandin 2011), (Miao et al. 2022), (Shakeri et al. 2022a, 2022b), (Collier et al. 2022), (Rutherford et al. 2023)

- No SM couplings between DM and baryonic matter
- Only gravitational interaction between the two

Our method of choice since it is more relevant for NICER X-ray observations!

Two-Fluid TOV equations

Energy-momentum of each fluid is conserved separately $G_{\mu\nu} = 8\pi (T_{\mu\nu,B} + T_{\mu\nu,D})$ $\frac{dP_B}{dr} = -\frac{(\epsilon_B + P_B)(M + 4\pi r^3 P)}{r(r - 2M)} \qquad \frac{dM_B}{dr} = 4\pi r^2 \epsilon_B$ $dP_D \qquad (\epsilon_D + P_D)(M + 4\pi r^3 P) \qquad dM_D \qquad 2$

 $\frac{dP_D}{dr} = -\frac{(\epsilon_D + P_D)(M + 4\pi r^3 P)}{r(r - 2M)} \qquad \qquad \frac{dM_D}{dr} = 4\pi r^2 \epsilon_D$

 $(M = M_B + M_D, P = P_B + P_D, \epsilon = \epsilon_B + \epsilon_D)$

4 coupled equations with 6 unknowns. Need 2 EOSs relating pressure and energy density of each fluid.

Equation of State

Baryonic EOS – NL3 $\omega\rho$ L55

 choosing stiff EOS just to easily illustrate effects of DM in MR profile

DM EOS

- bosonic (requires repulsive self-interaction)
 - without self-interaction collapses to a black hole at the centre of the NS
- fermionic (no self-interaction required due to degeneracy pressure)
 - we choose to include self-interaction to explore effects

Dark Matter EOS

$$\epsilon_D = \epsilon_{D,\text{kin}} + m_{\chi} n_D + \frac{n_D^2}{m_I^2}$$

Assume ideal Fermi gas at zero temperature (Nelson et al. 2019)

$$\epsilon_{D,\text{kin}} = \frac{1}{\pi^2} \int_0^{k_F} dk \, k^2 \left(\sqrt{k^2 + m_\chi^2} - m_\chi \right)$$

$$P_D = -\epsilon_D + \frac{\mu_D}{\sqrt{g_{tt}}} n_D \qquad \frac{\mu_D}{\sqrt{g_{tt}}} = \frac{\partial \epsilon_D}{\partial n_D} \qquad n_D = \frac{k_F^3}{3\pi^2}$$

Dark Matter EOS

$$\epsilon_{D} = \frac{m_{\chi}^{4}}{8\pi^{2}} \Big[(2x^{3} + x)\sqrt{1 + x^{2}} - \operatorname{arcsinh}(x) \Big] + \frac{m_{\chi}^{4}y^{2}x^{6}}{(3\pi^{2})^{2}} \\ \text{kinetic and rest mass} \qquad \text{self-interaction} \\ P_{D} = \frac{m_{\chi}^{4}}{24\pi^{2}} \Big[(2x^{3} - 3x)\sqrt{1 + x^{2}} + 3\operatorname{arcsinh}(x) \Big] + \frac{m_{\chi}^{4}y^{2}x^{6}}{(3\pi^{2})^{2}} \\ x = \frac{k_{F}}{m_{\chi}}: \text{relativity parameter} \\ y = \frac{m_{\chi}}{m_{I}}: \text{self-interaction strength} \end{aligned}$$

Dependence on m_{χ}

Dependence on m_{χ}

Dependence on y

Gravitational Self-Lensing

 $\cos \psi = \cos \zeta \cos \theta_c + \sin \zeta \sin \theta_c \cos \phi$

$$\psi = \int_{R}^{\infty} \frac{dr}{r^2} \left[\frac{1}{b^2} - \frac{1}{r^2} \left(1 - \frac{R_s}{r} \right) \right]^{-1/2}$$

$$F = \delta^5 g_{tt}(R_B) \cos(\alpha) \frac{d \cos(\alpha)}{d \cos(\psi)}$$

Credit: Bogdanov et al. 2022

This can be used to calculate pulse profiles (flux vs time plots)

Gravitational Self-Lensing due to Dark Halo

Flux from NS with Dark Halo

Flux from NS with Dark Halo

Flux from NS with Dark Halo

NS Mass-Radius Measurements

- Mass measurements through radio observations measures $M_T = M_T(R_B) + M_{halo}$
- > NICER measures $M_T(R_B)$
 - Since light is emitted from *R_B* and most of light bending occurs near *R_B* due to strongest gravitational potential

Approximate ΔF_{peak}

 Try to approximate the pulse profile of a NS with dark halo by that of a pure NS of mass $M_T(R_B)$.

For sufficiently small $\left(\frac{M_{halo}}{R_{D}}\right)$, ΔF_{peak} is small.

Largest difference in *F* between pure NS and dark halo is at the peak flux F_{peak}

Relate F_{peak} to $g_{tt}(R_B)$

 $ds^{2} = -g_{tt}(r)dt^{2} + g_{rr}(r)dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}(\theta)d\phi^{2}$ $F = \delta^{5}g_{tt}(R_{B})\cos(\alpha)\frac{d\cos(\alpha)}{d\cos(\psi)} \sim g_{tt}^{2}(R_{B}) \text{ (at peak)} \sim (1+z)^{-4} \text{ (bolometric)}$ $\left|\Delta F_{\text{peak}}\right| = 2|\Delta g_{tt}(R_{B})|$

- $\frac{\left|\Delta F_{\text{peak}}\right|}{F_{\text{peak}}} \sim \frac{2\left|\Delta g_{tt}(R_B)\right|}{g_{tt}(R_B)}$
- > Energy dependent flux will depend on a different power of $g_{tt}(R_B)$
 - Even if M_{halo}/R_D relation does not hold, $\Delta g_{tt}(R_B)$ can be used to set maximum ΔF_{peak}
- > Both M_{halo}/R_D and $g_{tt}(R_B)$ can be indicators towards if ΔF_{peak} is small

Can we use current NICER results to constrain Dark Halos?

- Current NICER results assume no DM exists in the NSs
- ➤ If ΔF_{peak} (or M_{halo}/R_D or $g_{tt}(R_B)$) is large, a NICER reanalysis is required to constrain DM properties
 - Current $M_T(R_B)$ and R_B measurements significantly differ from that of NS with dark halo
- ► If ΔF_{peak} is sufficiently small, we can use current NICER results to analyse the validity of baryonic EOSs and constrain f_{χ} in the NS

Effects on Baryonic EOS constraints

- > We find that $M_T(R_B) \approx M_{T,\text{pure}}$ for large parameter space of dark halo cases
- In these cases, we can analyse whether baryonic EOSs are valid if a dark halo exists

Case 1: No radio mass measurement. Only NICER measurement available.

Case 2: Only radio mass measurement available. No NICER measurement.

Case 3: Both Radio mass and NICER measurements available.

Soft EOSs Untested by NICER

- Assume some maximum $f_{\chi} \sim 0.05$.
- Reduce NICER mass priors by f_{χ} .
- Redo NICER analysis to measure new $M_T(R_B)$ and R_B .
- Check which EOSs are valid now.

Constrain f_{χ} in NS

Constrain f_{χ} in NS

 \succ Is ΔF_{peak} small? \succ Is $M_T(R_B) \approx$ $M_{T,\text{pure}}$? \succ Constrain f_{χ} based on a particular baryonic EOS and DM m_{γ} and y.

Simulate dark halos

Conclusions

- Dark matter Admixed NSs can have M-R and X-ray pulse profiles significantly different from pure baryonic NSs
- ► If $\frac{|\Delta F_{\text{peak}}|}{F_{\text{peak}}}$ for DM halo is large, NICER reanalysis is required to constrain DM properties
- ► If $\frac{|\Delta F_{\text{peak}}|}{F_{\text{peak}}}$ for DM halo is small, we can use current NICER results to constrain both baryonic EOSs as well as DM fractions for a wide parameter space of DM m_{χ} and y