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Motivation
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Separation of scales in quarkonia

I Quarkonia are non-relativistic bound states of heavy quark
(Q) and anti-quarks (Q̄)

I The large mass M provides a high energy scale

I They are characterized by the energy scales M � 1
r � Eb

where r is the bound state size and Eb is the binding energy

I M � 1
r ensures that the heavy quarks in the bound states are

non-relativistic

I 1/r � Eb means that at leading order in M, the Q̄Q
interaction is a potential
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Separation of scales

I For example, using potential models one finds for Bottomonia
(Υ states):
I M ∼ 4.7GeV
I 1/r ∼ 1GeV
I Eb ∼ 0.5GeV

I In QGP, they should be compared with T ∼ [0.2, 0.5]GeV
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Motivation

I Assume that 1/r � Eb,T

I Depending on whether Eb � T , T � Eb different processes
dominate the dynamics of quarkonia in the QGP [Brambilla,
Ghiglieri, Vairo, Petreczky, Escobedo, Soto. (2008, 2010,
2011, 2013), Thermal pNRQCD] [Brambilla, Ghiglieri, Rapp,
Riek, Du, Emerick, He (2010, 2011, 2012, 2017), scattering
dynamics]

I Our goal in this work is to numerically compare the relative
contributions of the various processes in a simple setting
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Formalism
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The lagrangian

I The lagrangian in terms of the singlet and the octet
wavefunctions is (pNRQCD)

LpNRQCD =

∫
d3rtr{S†[i∂0 − hs ]S + O†[iD0 − ho ]O

+ (O†r · gES) +
1

2
O†{r · gE,O}+ . . .}

I r is the relative separation between the Q and Q̄

I E is the chromo-electric field

I ho,s = −∇2

M + Vs/o(r)
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The potentials in the static limit
I Vs , Vo in the static limit is well understood. In this limit the

kinetic energy of the heavy quarks is ignored. The relevant
energy scale is much less than T

I We know that Vs , Vo are complex (thermal decay and
dissociation). Real and imaginary parts have been calculated
in weak coupling for both singlet [Laine et. al. (2007);
Brambilla et. al. (2008)], and octet [Akamatsu (2013);
Brambilla et. al. (2017)] channels

I The real and imaginary parts for Vs also now well studied on
the lattice although the imaginary part is challenging to
compute [Petreczky, Rothkopf, Weber (2018); Burnier,
Kaczmarek, Rothkopf (2015); Burnier, Rothkopf (2017); Bala,
Datta (2019); HOTQCD (2021)]

I Less is known about Vo . The real and imaginary parts of the
Vo have been computed in quenched QCD [Bala, Datta
(2021)]

I Key finding, at large r , the real parts of Vs and Vo approach
each other. This is what happens in weak coupling also
[Akamatsu (2013)], and will be our working assumption
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Vs , Vo at Eb scale
I The static approximation misses an important dynamic

associated with energy transfer to and from the bound state

I Our goal is to explore this phenomenon

I Model assumption: Vs , Vo at this scale are dominantly real.
Assume that thermal losses arise from dynamics ∼ Eb

I Can be rigorously justified only in the limit T � Eb

I For T ∼ Eb it is just a model assumption

I In our model we take Vs to be the real part of the potential
validated on the lattice [Krouppa, Rothkopf, Strickland
(2017)]

I For Vo a well motivated choice is

Vo =
g2

2Nc

e−mD r

4πr
+ Vs(∞)

[Bala, Datta (2021)]. Today’s results are without the
screening
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The self-energy correction to S

P

K

Q P

I The diagram in pNRQCD was first evaluated in [Brambilla,
Ghiglieri, Vairo, Petreczky (2008)]

I The gluon is a “dressed” (in medium) gluon
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The self-energy correction

I The self energy correction is given formally by

Σ11(P, r) =− ig2CF

3
ri
∫

d4k

(2π)4
[〈EE〉]11(k0, k)

i

q0 − q2

2M − hs + iε
ri

I P = (p0, p) is the center of mass momentum of the initial
state (assumed at rest with p = 0), K is the gluon
momentum, and Q = P − K

I q2/(2M) is the centre of mass kinetic energy (recoil) of the
octet. |q| ∼ T , q0, hs ∼ Eb. Thus the recoil is suppressed by
T/M and can be ignored

I [〈EE〉]11(k0, k) =
∫
e ik

0·t′−ik·r′〈Ea(r′, t ′)Ea(0, 0)〉11 (not shown
the adjoint connections that we will not need in leading order)
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=m[Σ]

I Σ11 has both a real and an imaginary piece. The imaginary
piece is directly related to decay and we focus on it here

I In weak coupling at leading order

=mΣ(P, r) =
CFg

2

3
×

rk

∫
d4K

(2π)3
δ(q0 − ho)[k20ρii (K ) + k2i ρ00(K )]

[θ(q0)(θ(−k0) + f (k0)) + θ(−q0)(θ(k0) + f (k0))]rk

I Here ρ00(K ) and ρii (K ) are components of the gluon spectral
functions which are related to the longitudinal and the
transverse spectral densities,

ρµν(K ) = PL
µνρL(K ) + PT

µνρT (K ) .
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=m[Σ]

I For gluon absorption, k0 < 0 and we get,

=m[Σ(p0, 0, r)] =
CFg

2

3
rk κ̃(k0)rk

I

κ̃(k0) =
CFg

2

3

∫
d3k

(2π)3
[k20ρii (K ) + k2i ρ00(K )]θ(q0)f (k0)|k0=p0−q0

I A related quantity κ = 〈EE 〉symm =

CF g
2

6

∫
d3k
(2π)2

dk0
2π δ(k0)(1 + 2f (k0))

(
k2ρ00(k0, k) + k20ρii (k0, k)

)
I limk0→ κ̃(k0) = κ which is the momentum diffusion constant
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The EE correlator

I In the k0 = 0 (static) limit, or more generally if k0 � T (for
example if the binding energy is much smaller than T ), only
the longitudinal mode contributes and κ̃ is the same as the
momentum diffusion constant [Brambilla et. al. (2019);
previous talk]
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The EE correlator

I To compute EE we just need ρT and ρL
I To get some intuition, for the longitudinal components, the

Landau Damping (LD) contribution has the structure

ρL(|k0| < k) =
2[=mΠL]

[k2 + <eΠL]2 + [=mΠL]2

I The pole contribution ρL(|k0| > k) is activated in the time
like regime (pole contribution). Similarly one computes the
tansverse contribution in the space-like and the time like
regime

15 / 29



The EE spectral function

I g = 2 [Kaczmarek, Zantow (2004); Burnier, Rothkopf
(2017)], T = 250MeV.
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What do we know about κ?

I At T ≈ 1.5Tc lattice calculations give [Brambilla et. al.
(2020)]

2 <
κ

T 3
< 2.7

I [Banerjee et. al. (2011, 2022); Francis et. al. (2012);
Brambilla et. al. (2020), Ding et. al. (2011, 2021)]

I Well known that leading order weak coupling calculations
underestimate κ by a factor of roughly 5

I Do not know enough about finite frequency form of κ̃ from
non-perturbative calculations [Ilgenfritz et. al. (2018)]
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Γ

I From =m[Σ] one can calculate the decay width of singlet
states

I For eg., longitudinal Landau Damping (LD) gives,

ΓL = 2〈φ|=mΣL
11|φ〉

=
CFg

4N

6π

∫
f (k0)d3p

(2π)3

∫ ∞
0

d3k

(2π)3
kθ(k − k0)

(k2 −<Π00)2 + =Π2
00

×
∫ ∞

k+k0
2

dqq2
(

2 +
k4

4q4
− k2

q2

)
(f (q − k0)− f (q))

× |〈φ|r |o〉|2.

I Similar expressions for longitudinal pole, transverse LD, and
transverse pole contributions
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Γ

I In T � Eb, Eb � T [Brambilla, Ghiglieri, Vairo, Petreczky,
Escobedo, Soto. (2008, 2010, 2011, 2013)] the results for the
width are well known. However, for T ∼ Eb one needs to
evaluate the spectral function, and the states |s〉 and |o〉
numerically.

I Calculating decay widths in this regime was one of our goals
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S and O states

I Finally, we need the states |s〉 and |o〉
I Actually, the states are not pure states but we need to follow

the evolution of the density matrix. See previous talk

I Our goal in this work is to understand the relative
contributions between the various processes in a simple
setting. We model |s〉, |o〉 states as instantaneous eigenstates
of hs and ho (adiabatic approximation)

I The model is now completely specified and we can now
calculate the decay widths

20 / 29



Results (preliminary)
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Comparison of the contributions

I For intuition, taking Eb(1S) = 0.7GeV and Eb(2S) = 0.25GeV
as illustrative numbers and keeping the wavefunction T
independent

I To see the overall effect during the evolution, we follow the
thermal evolution in a Bjorken expanding medium
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Binding energies
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I Binding energy of the states with T
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RAA(1S)

I The uncertainty band shows the uncertainty associated with
the Bjorken evolution and its connection with Npart
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RAA(2S)

I Surprisingly similar fractional contribution from Landau
damping for 1S and 2S
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Implication for open quantum system approaches

I 〈EE 〉 at finite k0 contributes substantially, for the 1s, 2s states

I For open quantum system approaches, this has an important
implication for the Markovian approximation

I If 〈EE 〉[k0 = 0] dominates losses, then in the master equation
for the system density matrix, one can assume that the system
evolution is slow and hence the evolution evolution has no
memory. This gives rise to the Lindblad equation where the
evolution operator is local in time [Akamatsu (2014, 2017,
2020), Brambilla et. al. (2016, 2017, 2021)]

I If finite frequency effects are relevant [eg. Sharma, Tiwari
(2017)], the evolution equation involves a convolution in time
and the evolution is not Markovian
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Summary

I In a simple setting we see that 〈EE 〉 at finite k0 contributes
substantially for the 1s states and (somewhat surprisingly) the
2s states

I The higher excited states are close enough to the continuum
and 〈EE 〉 may be governed dominantly by Landau damping

I Non-perturbative effects could make the relative contribution
of finite frequency correlations weaker, as we know that κ is
substantially under-predicted in weak coupling but the
spectral function at high frequencies should be perturbative

I Higher order corrections in Eb/T to Lindblad maybe helpful in
capturing some of these effects [previous talk]

I Finally, formation dynamics not well captured in this classical
model and one needs to do a OQS study to pin these effects
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Backup slides
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Limiting cases
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I In T � Eb, Eb � T and taking g small (0.2), approach
results from [Brambilla et. al. (2008, 2013)]
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