

The future of the Neutron-Skin Program at MESA

JG U Concettina Sfienti Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Neutron Skin: Quo vadis?

Heaven and Earth MY REALITY IS UST DIFFERENT THEN YOURS Heaven and Earth Stairway or Highway? The next decade

Bad news isn't wine. It doesn't improve with age. (Colin Powell)

JG U Concettina Sfienti

I'M

Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Once upon a time...

A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Reports, 411 (2005) 325

"Multi-messengers Physics"

A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Reports, 411 (2005) 325

...that which binds us!

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\rho, \alpha = 0) + S(\rho) \alpha^2 + ...$$

$$S(\rho) = J + L \left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{1}{2}K_{\text{sym}} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \dots$$

slope parameter

$$L = 3\rho_0 \frac{\partial E_{sym}\left(\rho\right)}{\partial \rho} \bigg|_{\rho_0}$$

curvature parameter

C. Drischler, et al. Phys. Rev. Lett. **125**, 202702

The spoiler: reality!

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\rho, \alpha = 0) + S(\rho) \alpha^2 + ...$$

$$S(\rho) = J + \left[L \left(\frac{\rho - \rho_0}{3\rho_0} \right) + \frac{1}{2} K_{\text{sym}} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^2 + \dots \right]$$

...did somebody already mentioned RAMP neutron-skin to you?

The neutron skin measures how much neutrons stick out past protons

...did somebody already mentioned ready mentioned neutron-skin to you?

The neutron skin measures how much neutrons stick out past protons

Symmetry energy favours moving them to the surface

Surface tension favours spherical drop of uniform equilibrium density

The spoiler: reality!

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\rho, \alpha = 0) + \left| S(\rho) \right| \alpha^2 + \dots$$
$$S(\rho) = J + \left| L \right| \left(\frac{\rho - \rho_0}{3\rho_0} \right) + \frac{1}{2} K_{\text{sym}} \left(\frac{\rho - \rho_0}{3\rho_0} \right)^2 + \dots$$

X. Roca-Maza, at al. Phys. Rev. Lett. 106, 252501 (2011)

slope parameter

 $\sqrt{3}
ho_0$ /

The stairway to heaven

The answer to the ultimate question

The stairway to heaven

NONE is an actual MEASUREMENT of neutron skin!

The stairway to heaven

NONE is an actual MEASUREMENT of neutron skin!

(or the highway to hell, depending on your level of optimism)

(or the highway to hell, depending on your level of optimism)

(Personal selection) **PV-Asymmetry** long. polarized unpolarized γ, **Ζ**⁰ target Resonance **PVES** Strength ????.. **Cross-section** Collective **Excitation** BURNE COUNSIS DEFAT I THINK IM Hadronic **EM Probes Probes** Theo. uncertainties (a.u) per aspera ad stra ... **CETTINASFIENTI**

(or the highway to hell, depending on your level of optimism)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

 $\begin{array}{c} \gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \\ & \hookrightarrow \gamma \gamma \end{array}$

Advantages:

- Same amplitude for \boldsymbol{n} and \boldsymbol{p}
 - \rightarrow Sensitivity to nucleon dist.
- Photon is neutral
 - \rightarrow Whole volume is probed
- Quick measurement

Drawbacks:

- Final state interactions
 → Model dependence
- Delta resonance region
 - → Model dependence

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

 $\begin{array}{c} \gamma + A_{(g.s.)} \rightarrow \pi^0 + A_{(g.s.)} \\ \hookrightarrow \gamma \gamma \end{array}$

Neutron Skin of $^{208}\mathrm{Pb}$ from Coherent Pion Photoproduction

C. M. Tarbert *et al.* (Crystal Ball at MAMI and A2 Collaboration) Phys. Rev. Lett. **112**, 242502 – Published 18 June 2014

PhySICS See Synopsis: Neutron Skin Turns Out to Be Soft

tagger at the MAMI electron beam facility. On exploitation of an interpolated fit of a theoretical model to the measured cross sections, the half-height radius and diffuseness of the neutron distribution are found to be $c_n = 6.70 \pm 0.03$ (stat.) fm and $a_n = 0.55 \pm 0.01$ (stat.) $^{+0.02}_{-0.03}$ (sys.) fm, respectively, corresponding to a neutron skin thickness $\Delta r_{np} = 0.15 \pm 0.03$ (stat.) $^{+0.01}_{-0.03}$ (sys.) fm. The results give the first successful extraction of a neutron skin thickness with an electromagnetic probe and indicate that the skin of 208 Pb has a halo character. The measurement provides valuable new constraints on both the structure of nuclei and the equation of state for neutron-rich matter.

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... poer aspera ad stra ...

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

PhD M. Ferretti-Bondy (exp), F. Colomer (theo), S. Tsaran (theo)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

...when not all roads lead to Rome

Theoretical analysis of the extraction of neutron skin thickness from coherent π^0 photoproduction off nuclei arXiv:2204.13395v1

> F. Colomer,^{1,2} P. Capel,^{2,1,*} M. Ferretti,² J. Piekarewicz,^{3,†} C. Sfienti,^{2,‡} M. Thiel,^{2,§} V. Tsaran,² and M. Vanderhaeghen^{2,¶}

¹Physique Nucléaire et Physique Quantique, Université Libre de Bruxelles (ULB), B-1050 Brussels ²Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany ³Department of Physics, Florida State University, Tallahassee, FL 32306, USA

 $\gamma + A \rightarrow A + \pi^0$

Plane Wave : No FSI in exit chanel π^0 -A

At the Impulse Approximation : production of π^0 on one single nucleon \Rightarrow coherent sum on each nucleon

$$\frac{d\sigma}{d\Omega} \propto \left| f_2(\vec{k}_\pi, \vec{k}_\gamma) \,\rho_{\rm A}(q) \right|^2$$

- f2 : CGLN amplitudes from MAID [Drechsel et al. EPJA 34, 69 (2007)]
- $ho_{\rm A}$: nucleus form factor
- \Rightarrow Should give access to nuclear density, but

Slide stolen from Pierre 😊

... reality is distorted though ...

...and it also has higher-order effects Miller PRC 100,044608 (2019)

Theoretical analysis of the extraction of neutron skin thickness from coherent π^0 photoproduction off nuclei arXiv:2204.13395v1

> F. Colomer,^{1,2} P. Capel,^{2,1,*} M. Ferretti,² J. Piekarewicz,^{3,†} C. Sfienti,^{2,‡} M. Thiel,^{2,§} V. Tsaran,² and M. Vanderhaeghen^{2,¶}

¹Physique Nucléaire et Physique Quantique, Université Libre de Bruxelles (ULB), B-1050 Brussels ²Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany ³Department of Physics, Florida State University, Tallahassee, FL 32306, USA

After its production, the π^0 undergoes π -A scattering \rightarrow Cross section of photoproduction in DWIA (NPA 660, 423):

$$F_{\gamma\pi}(\vec{k}_{\pi},\vec{k}_{\gamma}) = V_{\gamma\pi}(\vec{k}_{\pi},\vec{k}_{\gamma}) + \frac{A-1}{A} \int \frac{d\vec{k}_{\pi}'}{2\mathcal{M}(k_{\pi}')} \frac{T_{\pi A}(\vec{k}_{\pi},\vec{k}_{\pi}')V_{\gamma\pi}(\vec{k}_{\pi}',\vec{k}_{\gamma})}{E(k_{\pi}) - E(k_{\pi}') + i\varepsilon},$$

 $rac{d\sigma_{\rm DWIA}}{d\Omega} \propto |F_{\gamma\pi}|^2$ loses its proportionality to ho(q)

Slide stolen from Frederic 😊

...when not all roads lead to Rome

...definitely not leading to Rome!

...back to the (high-)stairway

...back to the (high-)stairway

The shortest of the roads ...

	••	•••
electric charge	1	0
weak charge	≈0.07	1

Non-PV e-scattering

Electron scattering γ exchange provides R_p through nucleus FFs

PV e-scattering

Electron also exchange Z, which is parity violating

Primarily couples to neutron

The shortest of the roads ...

The shortest of the roads ..

Welcome to Hell!

... per aspera ad stra ...

- Essentially means 1.5% on $A_{_{PV}}$
- A_{PV} is 40 parts per billion
- $\delta(A_{PV})$ is 0.6 parts per billion

$$\delta(A_{PV}) \propto \frac{1}{\sqrt{N}}$$

Welcome to Hell!

... need a few N=10¹⁸ electrons! close to 10¹¹ electrons/s

- Beam current 150 μ A
- Polarisation > 85%

ONCETTINA**SFIENTI**

High precision polarimetry

... poer aspera an Istra ...

±0.03 fm determination of neutron-skin thickness (C) 60 days)

The shortest of the roads ..

Welcome to Hell! (Part II)

... per astra da astra

CONCETTINASFIENTI

Neutron Skin: Quo vadis?

Bad news isn't wine. It doesn't improve with age.

(Colin Powell)

... pet aspeta ad astra ...

