INITIAL CONDITION IN ISOBAR COLLISIONS

W. M. SERENONE^{1,2}, A. GIANNINI^{3,} F. GARDIM⁴, F. GRASSI¹, K. PALA¹

^LUNIVERSIDADE DE SAO PAULO, SP/BRAZIL ²UNIVERISTY OF ILLINOIS AT URBANA-CHAMPAIGN, IL/USA ³UNIVERSIDADE FEDERAL DE GRANDE DOURADOS MS/BRAZIL ⁴UNIVERSIDADE FEDERAL DE ALFENAS, MG/BRAZIL

- Mapping between initial hydrodynamic state and final state well tested
- Less tested: what are the effects of pre-equilibrium on final-state estimators?

G. Giacalone, L. Yan, J. Noronha-Hostler, J-Y. Ollitrault PRC **95**, 014913 (2017)

NUCLEUS MODEL

• Random sample nucleon positions according to deformed Wood-Saxon

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + \exp\frac{[r - R(\theta,\varphi)]}{a}}$$

$$R(\theta,\varphi) = R_0 \left\{ 1 + \beta_2 \left[Y_2^0(\theta,\varphi)\cos\gamma + \frac{2}{\sqrt{2}} \Re Y_2^0(\theta,\varphi)\sin\gamma \right] \right\}$$

$$+ \beta_3 Y_3^0(\theta,\varphi)$$

• If the distance d between the sorted position and any other nucleon is smaller than a parameter d_{min} , the value is discarded and a new point sorted

NUCLEUS MODEL

	R ₀ (fm)	a (fm)	β ₂	β ₃	γ
Case 1	5.09	0.46	0.16	0	$\pi/6$
Case 2	5.09	0.46	0.16	0	0
Case 3	5.09	0.46	0.16	0.2	0
Case 4	5.09	0.46	0.06	0.2	0
Case 5	5.09	0.52	0.06	0.2	0
Case 6	5.02	0.52	0.06	0.2	0

NUCLEUS MODEL

	R ₀ (fm)	a (fm)	β ₂	β ₃	γ
Case 1	5.09	0.46	0.16	0	$\pi/6$
Case 2	5.09	0.46	0.16	0	0
Case 3	5.09	0.46	0.16	0.2	0
Case 4	5.09	0.46	0.06	0.2	0
Case 5	5.09	0.52	0.06	0.2	0
Case 6	5.02	0.52	0.06	0.2	0

Zr

Ru

SIMULATION

FREESTREAM VARIABLE TIME

Variable freestream time with is $\tau_{FS} \sim 1.35 - 1.5$ fm/c

FS EFFECTS

- SMALL DIFFERENCE BETWEEN
 SYSTEMS
- EXPECTED BEHAVIOR
 - Increase in mean radius
 - Decrease in eccentricities

THE DEVIL IS IN THE DETAILS

- REMOVAL OF eta_2 decreases $arepsilon_2$
- β_3 ADDITION ENHANCES ε_2
 - See J. Jia, Phys. Rev. C 105, 014905
- MINIMAL EFFECTS DUE
 FREESTREAMING

- REMOVAL OF eta_2 decreases $arepsilon_2$
- eta_3 Addition enhances $arepsilon_2$
 - See J. Jia, Phys. Rev. C 105, 014905
- MINIMAL EFFECTS DUE FREESTREAMING
- LARGELY UNSENSITIVE TO
 FLUCTUATIONS

- REMOVAL OF eta_2 decreases $arepsilon_2$
- eta_3 Addition enhances $arepsilon_2$
 - See J. Jia, Phys. Rev. C 105, 014905
- MINIMAL EFFECTS DUE
 FREESTREAMING
- LARGELY UNSENSITIVE TO
 FLUCTUATIONS

- NOT SENSITIVE TO eta_2
- LARGE EFFECTS FROM
 DIFFUSIVENESS

ECCENTRICITIES- ε_4 , ε_5 AND ε_6

20

MEAN RADIUS

- ONLY SMALL SIZE DIFFERENCES IN SIZES
- MOST SENSITIVE TO DIFFUSIVENESS

MOMENTUM ANISOTROPY

FREESTREAM INPUT: $T^{tt} = \epsilon$, $T^{ij} = P(\epsilon)\delta^{ij}$, $T^{0i} = 0$

```
FREESTREAM OUTPUT: T^{\mu\nu}(\tau_{Hydro}, x, y) \neq 0
```

POSSIBILITY FOR A MOMENTUM ANISOTROPY: $\varepsilon'_p = \frac{\int d^2x \, T^{xx} - T^{yy}}{\int d^2x \, T^{xx} + T^{yy}}$

J. Liu, C. Shen, U. Heinz, PRC 91 (2015), 064906

IT WILL PRESENT ADDITIONAL CONTRIBUTION TO FINAL STATE ON TOP OF THE GEOMETRY 22INDUCED CONTRIBUTIONS.

MOMENTUM ANISOTROPY

- ONLY SMALL SENSITIVENESS TO DIFFERENT FREESTREAM PARAMETERS
- ALSO SENSITIVE TO β_2 , β_3 AND a

FREESTREAM HAS NEGLIGIBLE EFFECTS ON BASIC QUANTITIES

- Only affects momentum anisotropy
- No observable shown so far is sensitive to triaxiality
- Pearson correlator should be sensitive

$$\rho_2 = \frac{\left< \varepsilon_2^2 E/S \right> - \left< \varepsilon_2^2 \right> \left< E/S \right>}{\sigma_{\varepsilon_2^2} \sigma_{E/S}}$$

- G. Giacalone, F. Gardim, J. Noronha-Hostler, J.-Y. Ollitrault, PRC **103**, 024909 (2021)
- B. Bally, M. Bender, G. Giacalone, V. Somà, PRL **128**, no.8, 082301 (2022)

FREESTREAM HAS NEGLIGIBLE EFFECTS ON BASIC QUANTITIES

- Only affects momentum anisotropy
- No observable shown so far is sensitive to triaxiality
- Pearson correlator should be sensitive

$$\rho_{2} = \frac{\langle \varepsilon_{2}^{2} E/S \rangle - \langle \varepsilon_{2}^{2} \rangle \langle E/S \rangle}{\sigma_{\varepsilon_{2}^{2}} \sigma_{E/S}}$$

- G. Giacalone, F. Gardim, J. Noronha-Hostler, J.-Y. Ollitrault, PRC **103**, 024909 (2021)
- B. Bally, M. Bender, G. Giacalone, V. Somà, PRL **128**, no.8, 082301 (2022)

PEARSON CORRELATOR

- AS EXPECTED, IS SENSITIVE TO γ
- ALSO β_2
- LARGE STATISTICS: 10-20M EVENTS
 - Enlarging statistics for freestreaming

PEARSON CORRELATOR

- AS EXPECTED, IS SENSITIVE TO γ
- ALSO β_2
- LARGE STATISTICS: 10-20M EVENTS
 - Enlarging statistics for freestreaming
- ho_3 IS MOSTLY SENSITIVE TO ho_3

PREDICTING RATIOS (WIP)

$$\frac{O_{Ru}}{O_{Zr}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R + c_4 \Delta a + \frac{c_5 \Delta \gamma}{c_5 \Delta \gamma}$$

• Each observable will have its own set of coefficients c_n

- We can easily obtain one of these coefficients by computing the ratio between two systems where only one parameter was changed
- Case 3/Case 4 $\rightarrow c_1$
- Case 2/Case 3 $\rightarrow c_2$
- Case 5/Case 6 $\rightarrow c_3$
- Case 4/Case $5 \rightarrow c_4$
- Case 1/Case 2 $\rightarrow c_5$

	R ₀ (fm)	<i>a</i> (fm)	β ₂	β ₃	γ
Case 1	5.09	0.46	0.16	0	$\pi/6$
Case 2	5.09	0.46	0.16	0	0
Case 3	5.09	0.46	0.16	0.2	0
Case 4	5.09	0.46	0.06	0.2	0
Case 5	5.09	0.52	0.06	0.2	0
Case 6	5.02	0.52	0.06	0.2	0

First Guess

29

PREDICTING RATIOS

- Overall good descriptions for cases 2, 3 and 4
- Investigating why it does not work for cases 1 and 5
- Once these parameters are determined, could be used for constraining Woods-Saxon parameters deltas in isobar or close-to-isobar systems

30

SUMMARY

- We showed the effects of freestreaming on several initial State estimators
 - Freestream effects are small on most (but not all cases, e.g. $arepsilon_p$)

- Similar results should also be applicable for other models such as IP-Glasma and KoMPoST
- Provided estimator used are good predictors, c_n could be used to constraint values Woods-Saxon parameters deltas (See also B. Bally et al. arXiv:2209.11042)

Acknowledgements:

FAPESP: #2018/24720-6 #2021/01670-6 Superintendência da Tecnologia da Informação HPC-USP

WHAT WE HAVE LEARNED

Strong dependence

Weak Dependence

Non-Apretiable Dependence

WHAT WE HAVE LEARNED (CENT ~< 40%)

EFFECTS OF VISCOUS COMPONENTS IN MOMENT ANISOTROPY

