(Prospects) on open and hidden charm production in fixed-target experiments

E. Scomparin – INFN Torino (Italy)

INSTITUTE for **NUCLEAR THEORY**

HEAVY FLAVOR PRODUCTION IN HEAVY-ION AND ELEMENTARY COLLISIONS

OCTOBER 21, 2022

 \Box Open charm and charmonia in nuclear collisions \rightarrow probe of the QGP

□ Extensive information available at collider energy

Heavy-ion collisions at fixed target energies

□ Few results on open charm production at top SPS energy \rightarrow dilepton spectrum □ Many results on charmonia at top SPS energy \rightarrow J/ ψ , ψ (2S)

□ Is it meaningful/relevant to revive these studies and extend them to lower energy ?

□ An experiment is being proposed with this aim \rightarrow NA60+ at CERN SPS (also focuses on electromagnetic probes!)

It is crucial to sharpen the physics program in this area, your feedback is important!

Proposing a new experiment at the CERN SPS

- □ Aim: perform accurate measurements of the dimuon spectrum from threshold up to the charmonium mass region, and of hadronic decays of charm and strange hadrons
- Energy scan with a Pb beam from top SPS energy ($\sqrt{s_{NN}}=17$ GeV) down to $\sqrt{s_{NN}}\sim 6$ GeV ($E_{lab}\sim 20$ A GeV)
- □ Based on a muon spectrometer (toroid field) coupled to a vertex spectrometer (dipole field) □ High luminosity, to access rare probes of QGP $\rightarrow \sim 10^6 \text{ s}^{-1}$ Pb ions/s

Open charm at low \sqrt{s} in pA: nuclear PDFs

□ Sensitivity to **nuclear PDFs in p-A** collisions

 \Box Probe EMC and anti-shadowing for $\sqrt{s_{NN}} \sim 10-20$ GeV

□ Perform measurements with various nuclear targets to access the A-dependence of nPDF

 \Box NA60+ offers a unique opportunity to investigate the large x_{Bi} region (study ratio to pA/pBe) \Box 0.1<x_{Bi}<0.3 at Q²~10-40 GeV²

Lourenco, Wohri, Phys.Rept.433 (2006) 127

E. Scomparin – INFN Torino

Open charm in Pb-Pb: R_{AA} and v_2

Insight into QGP transport properties

- \square Charm diffusion coefficient larger in the hadronic phase than in the QGP around $T_{\rm c}$
- □ Hadronic phase represents a large part of the collision evolution at SPS energies
 - Sensitivity to hadronic interactions
 - Test models which predict strongest in-medium interactions in the vicinity of the quark-hadron transition
- Measurement also important for precision estimates of diffusion coefficients at the LHC

\Box Study charm thermalization at low \sqrt{s}

□ Current measurements of HF-decay electron v_2 at $\sqrt{s_{NN}}$ =39 and 62 GeV/c from RHIC → Smaller v_2 than at \sqrt{s} =200 GeV → Not conclusive on v_2 >0

Prino, Rapp, JPG43 (2016) 093002

STAR, PRC 95 (2017) 034907

Open charm hadrochemistry

□ Reconstruct different charm hadron species to get insight into hadronization mechanism

 \Box Strange/non-strange meson ratio (D_s/D): □ D_c/D enhancement expected in A-A collisions due to hadronisation via recombination in the strangeness rich QGP

Baryon/meson ratios (Λ_c/D):

Expected to be enhanced in A-A in case of hadronisation via coalescence \Box Interesting also in p-A since Λ_c/D^0 in pp (p-Pb) at LHC is higher than in e+e-

STAR, PRL 127 (2021) 092301 ALICE, PLB827 (2022) 136986

(Prospects) on open and hidden charm production

INT Seattle Oct. 21, 2022

Total charm cross section

□ Total charm cross section in A-A collisions

- Measured so far by NA60 in In-In collisions from intermediate-mass dimuons with 20% precision
 NA60, EPJ C59 (2009) 607
- □ Upper limit from NA49 measurements of D⁰ mesons

NA00, LFJ CJ9 (2009) 007

NA49, PRC73 (2006) 034910

□ Precise measurement requires to reconstruct all meson and baryon ground states (D⁰, D⁺, D_s^+ and Λ_c^+ and their antiparticles)

Charm cross section ideal reference for charmonia

Towards a precise measurement of open charm at SPS energy

A measurement of hadronic decays is required

	Mass	сτ	Decay	BR
	MeV)	(µ m)		
D^0	1865	123	K⁻π⁺	3.95%
D^+	1869	312	$K^{-}\pi^{+}\pi^{+}$	9.38%
D_{s}^+	1968	147	$\phi\pi^{^+}$	2.24%
Λ_{c}^{+}	2285	60	pΚ ⁻ π ⁺ pK ⁰ s Λπ ⁺	6.28% 1.59% 1.30%

D-meson performance studies

Fast simulations for central Pb-Pb collisions:

- \Box D-meson signal simulation: p_T and y distributions from POWHEG-BOX+PYTHIA
- \Box Combinatorial background: dN/dp_T and dN/dy of p, K and p from NA49
- □ Parametrized simulation of VT detector resolution + track reconstruction with Kalman filter
- □ Reconstruct D-meson decay vertex from decay tracks
- Geometrical selections based on displaced decay vertex topology
 - \Box For D⁰ in central Pb-Pb:
 - \Box initial S/B ~10⁻⁷

 $\Box \rightarrow$ after selections S/B ~0.5

(Prospects) on open and hidden charm production INT Seattle Oct. 21, 2022

1.5

Charm hadrons: performance plots

□ With 10¹¹ minimum bias Pb-Pb collisions (1 month of data taking)
 □ More than 3·10⁶ reconstructed D⁰ in central Pb-Pb collisions at √s_{NN}=17.3 GeV
 □ Allows for differential studies of yield and v₂ vs. p_T, y and centrality
 □ D⁰ accessible also at lower collision energies with statistical precision at the percent level
 □ Measurement of D_s yield feasible with statistical precision of few percent
 □ Λ_c baryon also accessible, possible improvement using timing layers under study

 $D^0 \rightarrow K\pi$

 $D_s^+ \rightarrow \Phi \pi \rightarrow KK\pi$

E. Scomparin – INFN Torino

(Prospects) on open and hidden charm production INT Seattle Oct. 21, 2022 $\Lambda_{c}^{+} \rightarrow \mathsf{D}\mathsf{K}\pi$

Charmonia: high vs low \sqrt{s}

Hot matter effects: regeneration counterbalances (overcomes) suppression

Collider (LHC)

Initial state effects: shadowing $x \sim 10^{-5} (y \sim 3),$ $x \sim 10^{-3} (y=0),$ $x \sim 10^{-2} (y \sim -3)$

(Final state) CNM effects: negligible, extremely short crossing time $\tau = L/(\beta_z \gamma) \sim 7 \ 10^{-5} \text{ fm/c} (\gamma \sim 3)$ $\tau = L/(\beta_z \gamma) \sim 4 \ 10^{-2} \text{ fm/c} (\gamma \sim -3)$

Fixed target (SPS)

Hot matter effects: suppression effects (if existing) dominate

> Initial state effects: moderate anti-shadowing $x \sim 10^{-1} (y=0)$

(Final state) CNM effects: break-up in nuclear matter can be sizeable $\tau = L/(\beta_z \gamma) \sim 0.5 \text{ fm/c}(y=0)$

J/ψ suppression: Pb-Pb at top SPS energy

- □ Contrary to open charm, accurate studies were performed at \sqrt{s} =17.3 GeV (NA50, NA60)
- \Box J/ ψ yields normalized to Drell-Yan reference
- QGP-induced suppression evaluated with respect to a CNM reference obtained with systematic p-A studies
- □ ~30-40% anomalous suppression effect possibly due to disappearance of feed-down from χ_c and $\psi(2S)$

CNM effects are (very) large

❑ Shadowing effects are moderate
 ❑ Dominated by nuclear absorption
 → ~30% effect in p-Pb at √s_{NN} = 17 GeV

□ Strong √s-dependence

 \rightarrow CNM may become the dominant effect at low energy

Lourenco, Vogt, Woehri, JHEP 0902:014,2009

L: thickness of nuclear matter crossed by the cc pair (evaluated with Glauber model)

NA60, PLB 706 (2012) 263

E. Scomparin – INFN Torino

J/ψ : going below top SPS energy

Track matching Vertex tracking Muon identification in a (dipole field) spectrometer (toroidal field) Track matching: measure muon kinematics before multiple scattering and energy loss

Excellent resolution

Quarkonium production not studied below top SPS energies!

Perform an energy scan in $E_{lab} = 20 - 158 \text{ GeV}$

□ Decreasing √s:

□ Onset of χ_c and ψ(2S) melting
→ to be correlated to T measurement via thermal dimuons

Stronger CNM effects

→ to be accounted for with pA data taking at the same √s

J/ψ in Pb-Pb collisions at (various) SPS energies

□ With $I_{beam} \sim 10^7$ Pb/20s spill, 4mm Pb target and 1 month of data taking → $L_{int} \sim 17 \text{ nb}^{-1}$ NA60+ can aim at □ ~0(10⁴) J/ ψ at 50 GeV □ ~0(10⁵) J/ ψ at 158 GeV

□ N.B.: a factor 3 overall suppression (CNM + QGP) is assumed in these estimates

J/ψ in p-A collisions at (various) SPS energies

□ With I_{beam}~8x10⁸ p/20s spill, 7 targets with total interaction length 10% and 0.5 months of data taking NA60+ can aim at
 □ ~6000 J/ψ at 50 GeV
 □ ~50000 J/ψ at 158 GeV

 □ pp collisions unpractical
 → Use a system of several targets simultaneously exposed to the p beam

NA60+, R_{AA} estimate

\rightarrow Precise evaluation of anomalous suppression within reach even at low energy

In 15 days of data taking at 1.6 x 10^8 p/s the uncertainties on the pA reference are:

 $E_{lab} = 50 \text{GeV} \quad \begin{array}{c} \sim 15\% \text{ on } \sigma_{abs} \\ \sim 5\% \text{ on } \sigma_{pp} \end{array} \qquad \begin{array}{c} E_{lab} = 158 \text{GeV} \quad \begin{array}{c} \sim 6\% \text{ on } \sigma_{abs} \\ \sim 2\% \text{ on } \sigma_{pp} \end{array}$

E. Scomparin – INFN Torino

Low- $\sqrt{s} J/\psi$: studying intrinsic charm

Intrinsic charm component of the hadron wavefunction |uudcc>
Leads to enhanced charm production in the forward region

□ Hints from several experiments, but no conclusive results
 □ At colliders, forward x_F pushed to very high rapidity, difficult to measure
 → fixed-target configurations more appropriate

Assumed intrinsic charm content varied between 0.1% and 1%

R. Vogt, PRC 103, 035204 (2021) R. Vogt, arXiv:2207.04347

E. Scomparin – INFN Torino

Low- $\sqrt{s} J/\psi$: studying intrinsic charm

p-Pb collisions

EPPS16 shadowing σ_{abs} = 9,10,11 mb at E_{lab} =120, 80, 40 GeV P_{ic} varied between 0.1 and 1%

 \Box R_{pPb} shape is dominated by intrinsic charm, already with P_{ic}=0.1%

Prospects for $\psi(2S)$ measurements at low \sqrt{s}

Good charmonium resolution (~30 MeV for the J/ ψ) will help ψ (2S) measurements

Expectations based on

- 30 days PbPb, I_{beam} = 1e7 ions/spill
- 15 days pA, I_{beam} = 8e8 p/spill

d'lψ $E_{lab} = 80 \text{ GeV}$ (Je) 120(JeV σ^{ψ(2S)}/BR_{J/ψ}_ τ^{ψ(2S)}/BR_{J/ψ} ')/BR_{J/ψ}- 10^{-2} ь BR_{ψ(2S)→∝} BR_{µ(2S)}- $R_{\psi(2S)}$ m NA60+: $J/\psi, \psi(2S) \rightarrow \infty^+ \infty^-, E_{heam} = 80 \text{ GeV}$ NA60+: J/ψ , $\psi(2S) \rightarrow \infty^+ \infty^-$, $E_{\text{heam}} = 120 \text{ GeV}$ NA60+: J/ψ , $\psi(2S) \rightarrow \alpha^+ \alpha^-$, $E_{\text{beam}} = 158 \text{ GeV}$ • p-A, I_{beam} = 1.6e+08 p/s, 15 days • p-A, I_{beam} = 1.6e+08 p/s, 15 days • p-A, I_{beam} = 1.6e+08 p/s, 15 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days 10 10^{-3} 10 L (fm) (fm (fm)

 $\Box \psi(2S)/\psi$ measurement looks feasible down to $E_{lab} = 120$ GeV \Box Lower E_{lab} would require larger beam intensites/longer running times

E. Scomparin – INFN Torino

(Prospects) on open and hidden charm production INT Seattle Oct. 21, 2022

(assuming stronger suppression for $\psi(2S)$ than J/ψ)

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0
 0

 0</t

- Relatively low incident flux: <2kHz/cm²
- Considering MWPC and/or GEM options
- First MWPC prototype on SPS test beam at the beginning of 2023

Complete spectrometer \rightarrow 264 modules \rightarrow ~100 m² surface

R&D for the NA60+ experiment

Toroidal magnet

B [tes]a] 1.21 1.13 1.04 0.96 0.88 0.80 0.72 0.64 0.56 0.48 0.40 0.32 0.24 0.16 0.08 0.00

Warm pulsed magnet $\rightarrow 0.5 \text{ T}$ over 120 m³

Eight sectors, 12 turns each

Current \rightarrow 190 kA, total power 3 MW

Demonstrator (scale 1:5) constructed and tested (CERN/INFN) → cross-check of various aspects of the design

Measurements of the magnetic field in the prototype in agreement with simulations within 3%

R&D for the NA60+ experiment

Vertex spectrometer

Common development ALICE → NA60+, state-of-the-art imaging technology TowerJazz 65 nm

Sensor thickness: few tens of μ m of silicon \rightarrow material budget < 0.1% X₀

Spatial resolution 5 µm

Cooling studies for NA60+ geometry \rightarrow mixed air+fluid

Four sensors per station

Five to ten stations in the spectrometer

Cagliari, Torino MEP48 dipole magnet

E. Scomparin – INFN Torino

Conclusions

 \Box Open charm and charmonia in nuclear collisions \rightarrow no results below top SPS energy

 \Box Measurements from $\sqrt{s_{NN}} \sim 6$ to 17 GeV have a strong physics interest

- \Box QGP transport properties at high μ_B
- Charm thermalization and hadronization
- □ Intrinsic charm
- □ Onset of charmonium anomalous suppression (and correlation with temperature)

□ A new experiment at the CERN SPS has been designed for precise measurements of heavy-quark production → NA60+
 □ Couples state-of-the-art and well-known detection techniques

□ Project is part of the CERN Physics Beyond Collider Initiative
 □ Letter of Intent ready for submission to SPSC
 □ Aim is taking data after LHC Long Shutdown 3 → 2029 onwards!

Feedback on physics program and participation in the experimental effort are welcome!

Open charm at low \sqrt{s} : what can we learn ?

Charm production in p-A collisions
 Sensitive to nuclear PDFs
 Q²~10-40 GeV² and 0.1<x_{Bj}<0.3 (anti-shadowing and EMC)
 Possible sensitivity to intrinsic charm

 \Box Charm hadron yield and v₂ in A-A collisions

- Constrain estimates of the charm diffusion coefficient
- □ Charm quark thermalization in a short-lived QGP
- Insight into hadronization mechanism
 - \Box Enhanced D_s/D and $\Lambda_{\rm c}/{\rm D}$ ratios in case of quark recombination

Existing open charm results at SPS energy

- Match track(s) in a muon spectrometer to tracks in a vertex spectrometer
- → Excellent resolution on the muon kinematics
- → Separate prompt (DY+thermal) from nonprompt sources (open charm)

□ Analysis of open charm contribution (semileptonic decays of charm hadron pairs) leads, for In-In collisions at $\sqrt{s_{NN}}=17.3$ GeV, to $\sigma_{cc}=9.5\pm1.3$ (stat.) ±1.4 (syst.) µb assuming kinematic distribution as in PYTHIA6

→ Compatible with corresponding p-A measurements by NA50 and supporting the hypothesis of N_{coll} scaling

No other results available below top SPS energy

J/ψ at SPS energy: discovery of the suppression

NA38, Z. Phys. 38(1988) 117

Centrality-dependent ratio J/ψ / continuum \rightarrow evidence for suppression

Reference process?

→ Crucial ingredient in the interpretation of the data

L (fm)

→ Stimulated an intense experimental program at both CERN and FNAL

"Summary" J/ ψ plot

NA50, EPJC39 (2005) 335 NA60, Nucl. Phys. A830 (2009) 345 R.Arnaldi, P. Cortese, E. Scomparin Phys. Rev. C 81, 014903 Expressed in terms of measured J/ψ yield, normalized to an extrapolation of CNM effects, evaluated starting from p-A results

Drell-Yan reference used to extract results

Suppression effects beyond CNM reach ~30% in central Pb-Pb collision

□ Qualitatively consistent with suppression of feed-down from $\psi(2S)$ (measured) and χ_c (not measured)

In-In result shows small or no suppression, with the origin of "wiggle" at intermediate centrality unclear (coupling to X(3872) via DD* proposed in Blaschke et al., NPA927(2014) 1)

E. Scomparin – INFN Torino

Extrapolation of CNM effects

Use L as scaling variable

→ average thickness of nuclear matter crossed by the cc pair

Exponential behaviour in pA

 \rightarrow break-up effects dominate

□ Light AA collisions (S-U) → compatible with pA behaviour

□ Pb-Pb collisions → breaking of L-scaling: anomalous suppression

10 Caveats

- \Box Assume \sqrt{s} -independence of nuclear effects
- □ Extrapolation of shadowing effects is more complex
 - \rightarrow to be taken into account

NA38 Coll., PLB449 (1999)128 NA50 Coll., EPJC39 (2005)335

p-A results at fixed target: a complex environment

NA60 Coll., Phys. Lett. B 706 (2012) 263-367

 J/ψ yield in pA is modified with respect to pp, with a significant kinematic dependence

 \square α strongly decreases with x_F

□ for a fixed x_{F} , stronger CNM at lower \sqrt{s}

Superposition of several effects

Shadowing Nuclear break-up Energy loss (at large x_F)

No consistent theory description over the whole x_F range

Quantifying hot matter effects

Which observables could be used?

□ R_{AA} based on pp extrapolated from pA results at the same \sqrt{s} (<5% uncertainty)

R_{AA}/R_{pA} ~ measured/expected à la NA50/60
 → useful to compare results at various √s, since CNM are energy dependent

Drell-Yan

very much limited by statistics at high mass (x100 less wrt J/ ψ for m>m_{J/ ψ})

I J/ψ/(total charm)?

potentially accessible via hadronic charm measurements

Quarkonium at CBM: threshold production

- Sub-threshold production (rare but feasible) via multiple collision processes
- Production threshold might be exceeded with SIS100 beam of N=Z nuclei
- □ Both $\mu^+\mu^-$ and e^+e^- decay channels accessible
- □ Needs very large interaction rates \rightarrow 10 MHz (50 times NA60+)
- \Box Beam intensities \rightarrow 10⁹/s A, 10¹¹/s p

J. Steinheimer et al, Phys. Rev, C95 (2017) 014911

Quarkonium at CBM: physics performance

 $J/\psi \rightarrow \mu\mu$ AuAu ~30k J/ ψ in 4 weeks at 10 MHz interaction rate pAu ~500 J/ ψ in 4 weeks at 10 MHz interaction rate

J/ψ→ee pAu ~450 J/ψ in 4 weeks at 10 MHz int. rate

 $pA \rightarrow$ lower statistics, but very clean signal

Excited charmonium states: $\psi(2S)$, χ_c

NA50, EPJC39 (2005) 335, EPJC49 (2007) 559

 \Box Clear ordering in the suppression when moving from J/ ψ to $\psi(2S)$

□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector

□ Typical yields in the dilepton channel
 → Lower by a factor ~100

No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

Excited charmonium states: $\psi(2S)$, χ_c

Clear ordering in the suppression when moving from J/ψ to $\psi(2S)$

□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector

□ Typical yields in the dilepton channel → Lower by a factor ~100

No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

χ_c measurements

□ ~25% of the J/ ψ comes from the χ_c decay → $\alpha(\chi_c)$ important to understand the J/ ψ suppression

□ χ_c not measured at SPS (no AA data) □ Available results at HERA-B, pA@ 920 GeV (large χ_c sample: ~15000 χ_c -0.35< $x_F^{J/\psi}$ <0.15)

□ HERA-B observed no significant difference between $\alpha(\chi_c)$ and $\alpha(J/\psi)$

→ similar "global" CNM effects on both resonances in the covered kinematical range (average value $\Delta \alpha = 0.05 \pm 0.04$), but more accurate results are needed

 □ Non-trivial measurement, needs detection of low-momentum photon (<1 GeV)
 → conversion or calorimetry

HERA-B, Phys.Rev.D79:012001,2009

Conclusions

□ Charmonium measurements in A-A at fixed target energy have provided in the past → Evidence for J/ ψ suppression beyond CNM effects → Ordering of J/ ψ and ψ (2S) suppression according to binding energy

p-A studies have shown a superposition of various effects with increasing size at small collision energy

D No information exists below top SPS energy ($\sqrt{s_{NN}}=17$ GeV)

□ Prospects for measurements
 □ Low SPS energy → NA60+ project
 □ Threshold region → CBM experiment

□ Aims

□ Detecting threshold for hot matter effects on charmonia and correlate with temperature information obtained with thermal dimuon production
 □ Search evidence for new effects → intrinsic charm

p-A results at fixed target: a complex environment

Extrapolation of CNM effects from pA to AA can be delicate \rightarrow various effects superimposed

E. Scomparin – INFN Torino