Opportunities at the ORNL Spallation Neutron Source Second Target Station

Kate Scholberg, Duke University

Interplay of Nuclear, Neutrino and BSM Physics at Low Energies Institute for Nuclear Theory, Seattle. April 20, 2023

Outline

- Spallation Sources for Fundamental Physics
- Neutrino Production (and more)
- The SNS @ ORNL
- The COHERENT Experiment
- Physics with COHERENT at the FTS
 - Low-energy recoils
 - MeV to tens-of-MeV scale events
- The ORNL Second Target Station
- Future Opportunities

Neutrons

for many

Spallation Neutron Sources

3

They also make weakly-interacting particles as a free by-product

THO WOULD FRANKLE MO

Maybe even exotic ones...

Stopped-Pion (π**DAR)** Neutrinos

 ν_e

 $\mu^+ \rightarrow e^-$

3-body decay: range of energies between 0 and $m_{\mu}/2$ DELAYED (2.2 μ s)

Fluxes depend on proton energy as well as power

From Becca Rapp: Geant4 simulations on Hg target

G4 QGSP_BERT, validated vs HARP/HARP-CDP

Based on: Phys.Rev.D 106 (2022) 3, 032003 arXiv:2109.11049

Neutrinos per proton, per MW

- Quite large uncertainties > 1.5 MeV
- QGSP_BERT is less optimistic

- Assuming QGSP_BERT parameterization to 3 GeV,
- ~1.5 GeV is optimal vs/power

Note: higher proton energy, fewer protons per MW When the beam is **pulsed**,

make use of the time structure to reject background

- Only look for stopped- π v's within few μ s of proton pulse
- Measure the steady-state background off-pulse
- You only care about sqrt of steady-state bg...
- (Beam-related bg is more pernicious...

- \circ "Duty factor" or "duty cycle" = fraction of time beam is on
- \circ Inverse duty factor \rightarrow "background rejection factor"

Stopped-Pion Neutrino Sources Worldwide

Comparison of stopped-pion v sources

Spallation Neutron Source

Oak Ridge National Laboratory, TN

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW +... Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!

The SNS has large, extremely clean stopped-pion v flux

0.08 neutrinos per flavor per proton on target

Time structure of the SNS source 60 Hz *pulsed* source

COHERENT in Neutrino Alley at the ORNL Spallation Neutron Source

The COHERENT collaboration

http://sites.duke.edu/coherent

~90 members, 20 institutions 4 countries

The COHERENT Spirit (so far)

POORLY DRAWN LINES

Siting for deployment in SNS basement

(measured neutron backgrounds low,

~ 8 mwe overburden)

View looking down "Neutrino Alley"

Isotropic v glow from Hg SNS target

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For $QR \ll 1$, [total xscn] ~ A² * [single constituent xscn]

A: no. of constituents

The only experimental signature:

> tiny energy deposited by nuclear recoils in the target material

Low-threshold detectors (e.g. for WIMPs) developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils [...understanding of detector response matters!]

CEvNS: what's it good for?

CEvNS as a signal for signatures of *new physics*

CEvNS as a signal for understanding of "old" physics

CEvNS as a **background** for signatures of new physics

CEvNS as a **signal** for *astrophysics*

CEvNS as a practical tool

So

What we can get at experimentally (in principle)

Observables:

Event rate Recoil spectrum Time distribution wrt beam pulse Scattering angle

Knowable/controllable parameters:

Neutrino flavor, via source, and timing (reactor: v_e -bar, stopped- π : v_e , v_μ -bar, v_μ) N, Z via nuclear target type Baseline Direction with respect to source

Expected recoil energy distribution

Non-Standard Interactions of Neutrinos:

new interaction specific to v's

Non-Standard Interactions of Neutrinos:

new interaction specific to v's

Observe less or more CEvNS than expected? ...could be beyond-the-SM physics!

Other new physics results in a distortion of the recoil spectrum (Q dependence)

BSM Light Mediators

SM weak charge

Effective weak charge in presence of light vector mediator Z'

specific to neutrinos and guarks

e.g. arXiv:1708.04255

Neutrino (Anomalous) Magnetic Moment

e.g. arXiv:1505.03202, 1711.09773

energy

$$\left(\frac{d\sigma}{dT}\right)_m = \frac{\pi \alpha^2 \mu_\nu^2 Z^2}{m_e^2} \left(\frac{1 - T/E_\nu}{T} + \frac{T}{4E_\nu^2}\right) \quad \begin{array}{l} \text{Specific ~1/T upturn} \\ \text{at low recoil energy} \end{array}$$

Sterile Neutrino Oscillations

$$P_{\nu_{\alpha} \to \nu_{\alpha}}^{\rm SBL}(E_{\nu}) = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right)$$

"True" disappearance with baseline-dependent Q distortion

e.g. arXiv: 1511.02834, 1711.09773, 1901.08094

Full Csl[Na] dataset

with >2 x statistics

- + improved detector response understanding
- + improved analysis

arXiv: 2110.07730

Flavored CEvNS cross sections

Separate electron and muon flavors by timing

Example constraints on BSM physics with *flavored* CEvNS cross sections

Separate electron and muon flavors by timing

Phys.Rev.Lett. 129 (2022) 8, 081801 e-Print: 2110.07730

Important advantage of a clean stopped-pion source:

Measure the delayed CEvNS to **constrain** uncertainties in the prompt DM ROI

Accelerator-produced DM search

https://indico.phy.ornl.gov/event/126/ arXiv:2110.11453

Phys.Rev.Lett. 130 (2023) 051803 arXiv:2110.11453 *Phys.Rev.D* 106 (2022) 5, 052004 arXiv:2205.12414 leptophobic DM

COHERENT future deployments in Neutrino Alley

So far considered signal from faint recoils... **bright** signals are possible too... Neutrinos: eES, inelastic neutrino-nucleus interactions, [inelastic DM interactions, axions...]

Low-energy neutrino interactions

	Electrons	Protons	Nuclei	
Charged current	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$ $[-]_{v_e}$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$ γ $e^+ \gamma$	$\nu_e + (N, Z) \rightarrow e^- + (N + v_e + (N, Z)) \rightarrow e^+ + (N + v_e + (N, Z)) \rightarrow e^+ + (N + v_e + v_$	(-1, Z + 1) + 1, Z - 1)
	e e	v _e n	γ • e ^{+/-}	Various possible ejecta and
Neutral	ve	Elastic scattering P	$ \nu + A \rightarrow \nu + A^* $	products
current	Useful for pointing	very low energy recoils	γ $\nu + A \rightarrow \nu + A$ Cohe elasti	erent brent (CEvNS)

Neutrino interaction signals in the few to few-tens of MeV range

Stopped-pion neutrinos relevant for supernova burst regime

- understanding of SN processes & detection
- understanding of weak couplings (g_A quenching)
 & nuclear transitions

See:Workshop on Neutrino Interaction Measurements for Supernova Neutrino Detection https://indico.phy.ornl.gov/event/217/ 38

COHERENT results for neutrino-induced neutrons (NINs) on Pb

D. Pershey, Nu2022 S. Hedges thesis, FNAL Wine & Cheese

Data Steady-State Bgnd Model 10³ BRN Bgnd NINs (nominal) NINs (observed) Events / 250 ns 10² MARLEY prediction 10 Best fit NINs -2000 -1000 0 1000 2000 3000 4000 5000 6000 Time (ns)

Sam Hedges talk

Combined fit yields MARLEY cross section suppressed by a factor of $0.29\substack{+0.17\\-0.17}$

+ 1.8 σ significance, >4 σ disagreement with MARLEY model

Lower than expectation

COHERENT results for CC ν_{e} on ^{127}I

S. Hedges thesis, FNAL Wine & Cheese

Especially interesting to measure electron neutrino interactions on on argon in the few tens of MeV range

$$\begin{array}{ll} \text{CC} & \nu_e \texttt{+}^{40}\text{Ar} \rightarrow e^- \texttt{+}^{40}\text{K}^* \\ \text{NC} & \nu_x \texttt{+}^{40}\text{Ar} \rightarrow \nu_x \texttt{+}^{40}\text{Ar}^* \end{array}$$

- critical to understand (differential) cross sections for supernova physics in DUNE
- large theoretical uncertainties on cross sections

Impact on SNB in DUNE arXiv:2303.17007

More soon from COHERENT!

Heavy water detector in Neutrino Alley (R2D2O)

Dominant current uncertainty is ~10%, on neutrino flux from SNS

cross section known to ~1-2% $\nu_e + d \longrightarrow p + p + e^-$ CC d CC ¹⁶O 12 $CC^{12}C+^{13}C$ Events / 0.5 MeV / SNS-Year FS 10 20 30 40 10 50 **Observable Energy (MeV)**

- Measure electrons to determine flux normalization
- Currently deployed with light water
- Opportunity to measure inelastics on ¹⁶O

NuThor Neutrino-induced fission in 52 kg of ²³²Th

Phil Barbeau, APS 2023

Future LArTPC

Yun-tse Tsai, SLAC

- Proposed: 250 kg Ar (50x60x60 cm³) [larger for STS]
- DUNE-like, relevant for SN burst & solar detection
- R&D test bed (e.g. pixelated readout, photon detectors, ...)

SNS upgrades: Beam Power and Second Target Station

PPU and STS upgrades will ensure SNS remains the world's brightest accelerator-based neutron source

Today	2024 after PPU	early 2030's
 900 users Materials at atomic resolution and fast dynamics 	 1000+ users Enhanced capabilities 	 2000+ users Hierarchical materials, time- resolution and small samples STS 0.7 MW 15 Hz
1.4 MW	2.0 MW	2.8 MW
1 GeV	1.3 GeV	1.3 GeV
25 mA	27 mA	38 mA
60 Hz	60 Hz	60 Hz
FTS	FTS	FTS
1.4 MW	2 MW	2 MW
60 Hz	60 Hz	45 pulses/sec

STS will make optimal use of the SNS accelerator capability

*animation courtesy of Matt Stone

From Ken Herwig

Second Target Station Neutrino Opportunities

Many exciting possibilities for v's + DM!

Second Target Station Neutrino Production

- tungsten wedges
- 0.39 v/proton (slightly larger than FTS @1.3 GeV)
- still very clean DAR

Phys.Rev.D 106 (2022) 3, 032003 arXiv:2109.11049

Directionality of flux at the SNS

DM flux produced in-flight is **boosted forward**

Can in principle test angular dependence of boosted DM flux

STS Neutrino Facility Concept

Good options within basement footprint that do not affect the SNS mission

accommodate

2x10-ton-scale instruments

- dedicated neutron shielding
- overburden for cosmic suppression
- neutrino Instrument bunker 500 sqft
 + supporting utilities room 500 sqft
 + supporting corridor ~1500 sqft

Many possible detector concepts

• "Strawperson":

10-ton argon, single phase or TPC

• Others: germanium, cryoCsl, water, scintillator, directional, solids,

STS Basement Concept for Neutrinos

10-ton Argon Cryostat Concept, IU

Future flavored CEvNS cross section measurements

Sensitive to ~few % SM differences in μ - and *e*-flavor cross sections, testing lepton universality of CEvNS (at tree level)

Stringent NSI parameters constraints, resolving oscillation ambiguities

Sterile neutrino sensitivity

$$1 - P(\nu_e \to \nu_s) = 1 - \sin^2 2\theta_{14} \cos^2 \theta_{24} \cos^2 \theta_{34} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$
$$1 - P(\nu_\mu \to \nu_s) = 1 - \cos^4 \theta_{14} \sin^2 2\theta_{24} \cos^2 \theta_{34} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

Cancel detector-related systematic uncertainties

w/ different baselines in one CEvNS detector seeing 2 sources Can also exploit flavor separation by timing Assume $L_{STS} = 20$ m and $L_{FTS} = 121$ m, 10-t argon CEvNS detector In 5 years, test ~entire parameter space allowed by LSND/MiniBooNE

Future COHERENT sensitivity to dark matter

- Short term: Ge detector will explore scalar target at lower masses
- Medium term: large Ar, Csl detectors to lower DM flux sensitivity, probe of Majorana fermion target
- Longer term: large detectors placed forward at the STS (dashed lines) will test even pessimistic scenarios

Take-Away Messages

- Spallation sources are prodigious producers of πDAR neutrinos, and maybe BSM signatures...
- Low energy nuclear recoil signals
 - CEvNS (BSM & nuclear physics)
 - DM recoils
 - Sterile neutrinos
- Few-tens-of-MeV signals
 - Neutrino eES + inelastics, especially interesting for SN/solar
 - Other BSM opportunities
- Many exciting opportunities at the SNS FTS+STS
 - Power upgrade happening now
 - STS in early 2030's w/expanded space for neutrinos

arXiv: 2209.02883

Extras/Backups