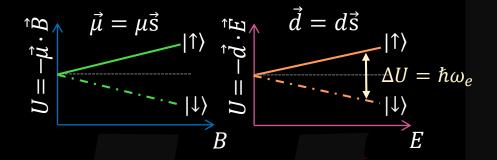


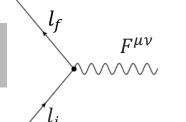
Philipp Schmidt-Wellenburg :: Scientist :: Paul Scherrer Institute

Search for a muon EDM

New physics searches at the precision frontier, Seattle, 05/10/23



Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI


CP violation & edm

Lepton form factors and dipole moments

Effective Hamiltonian:

$$\mathcal{H}_{\mathrm{eff}} = c_R^{l_f l_i} \bar{l}_f \sigma_{\mu\nu} P_R l_i F^{\mu\nu} + \mathrm{h.\,c.}$$

magnetic-dipole Anapole - moment
$$\langle p'|J_{\mu}^{\rm EM}|p\rangle = \bar{\Psi}(p')\left[F_{1}\gamma_{\mu} + \underbrace{\frac{iF_{2}}{2M}\sigma_{\mu\nu}q^{\nu}}_{\text{charge}} + \underbrace{\frac{iF_{3}}{2M}\sigma_{\mu\nu}\gamma_{5}q^{\nu}}_{\text{electric-dipole}} + \underbrace{\frac{F_{4}}{M^{2}}(q^{2}\gamma_{\mu} - \gamma^{\mu}q_{\mu}q_{\mu})}_{\text{Anapole - moment}} \right]\Psi(p)$$

$$\delta F_2 = a_{l_i} = -\frac{2m_{l_i}}{e} \left(c_R^{l_i l_i} + c_R^{l_i l_{i*}} \right) = -\frac{4m_{l_i}}{e} \operatorname{Re} c_R^{l_i l_i}$$

$$F_3 = d_{l_i} = i \left(c_R^{l_i l_i} - c_R^{l_i l_{i*}} \right) = -2 \operatorname{Im} c_R^{l_i l_i}$$

Lepton dipole moments (non-relativistic)

Non relativistic Hamiltonian: $\mathcal{H} = -\mu \vec{s} \cdot \vec{B} - d\vec{s} \cdot \vec{E}$

$$\mathcal{H} = -\mu \vec{s} \cdot \vec{B} - d\vec{s} \cdot \vec{B}$$

$$|\vec{s}| = 1$$

The magnetic μ and electric d dipole moment of a lepton are defined by

$$\mu = \frac{gq}{2m}\frac{\hbar}{2}$$

 $\vec{\omega}_L = \frac{gq}{2m} \vec{B}$

$$d = \frac{\eta q}{2mc} \frac{\hbar}{2}$$

$$\vec{\omega}_E = \frac{\eta q}{2mc} \; \vec{E}$$

For leptons:

$$g = 2 + 2a$$

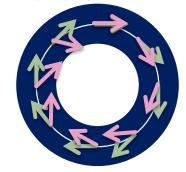
 $d = 0 + 10^{-36}$ ecm

Lepton spin precession and motion in a B-field

Relativistic lepton spin precession in a perpendicular magnetic field

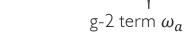
$$\vec{\omega}_L = \frac{gq\vec{B}}{2m} + (1 - \gamma)\frac{q\vec{B}}{\gamma m} = \frac{aq\vec{B}}{m} + \frac{q\vec{B}}{\gamma m}$$

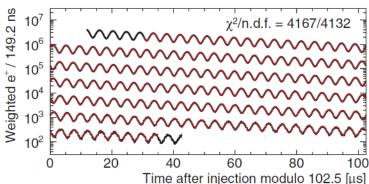
Cyclotron frequency of a lepton in a perpendicular magnetic field


$$\vec{\omega}_C = \frac{q\vec{B}}{\gamma m}$$

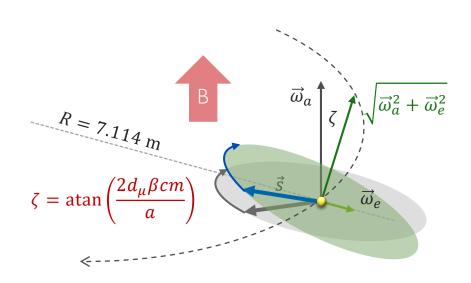
Measurement of the anomalous magnetic moment by observing relative precession

$$\vec{\omega}_a = \vec{\omega}_C - \vec{\omega}_L = -\frac{q}{m} a \vec{B}$$

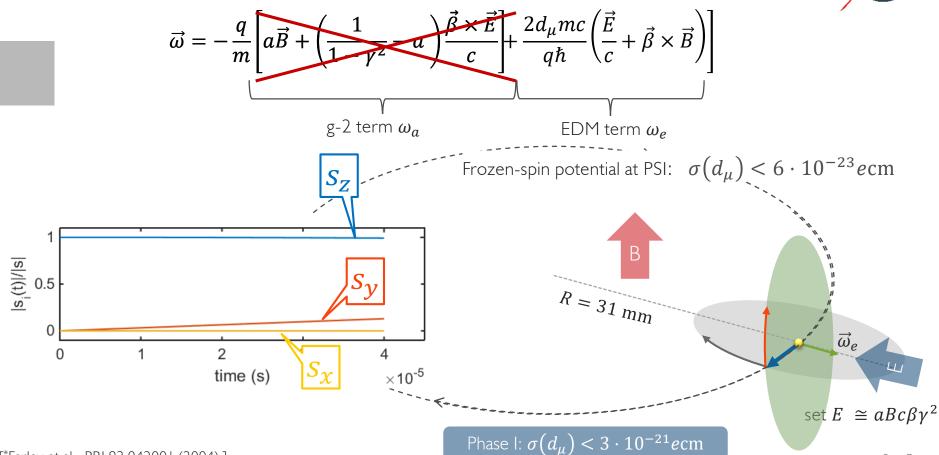




Muon dipole moments and frequencies

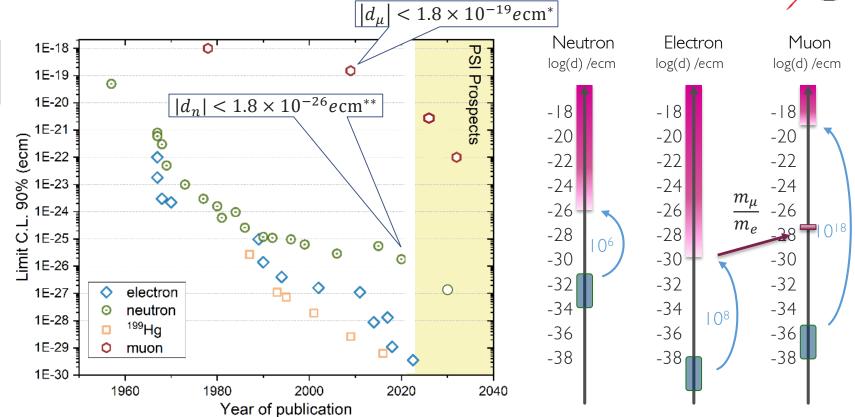


$$\vec{\omega} = \vec{\omega}_L - \vec{\omega}_c = -\frac{q}{m} \left[a\vec{B} + \left(\frac{1}{\gamma^2 - 1} - a \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$



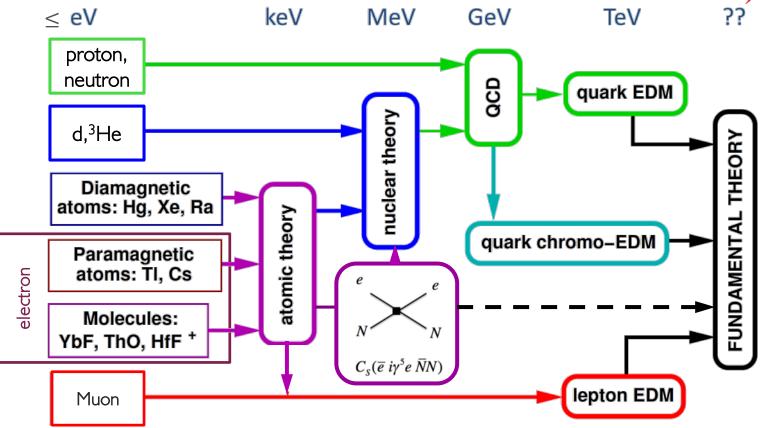
FNAL* & JPARC**: $\sigma(d_{\mu}) \approx 10^{-21} e \text{cm}$

Muon dipole moments –freezing the spin at PSI


[*Farley et al,, PRL93 042001 (2004)],

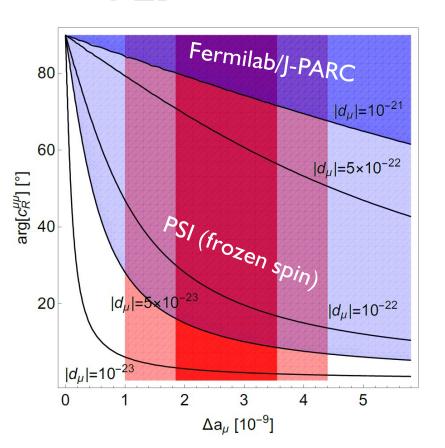
Page 7

A not so brief history of EDM searches



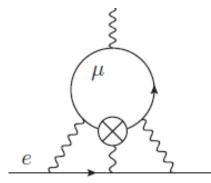
al.,PRD80(2009)052008 Abel et al., PRL124(2020)081803 *Bennett et

Complementarity of EDM searches



⁹ Scheme: adapted from Rob G.E.Timmermans

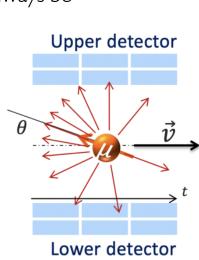
General limits on μEDM

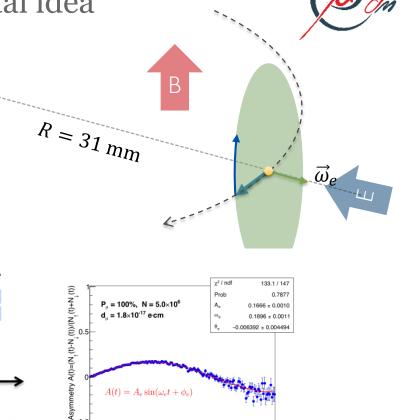


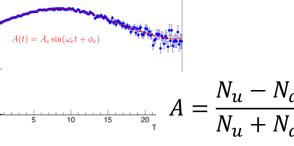
- MFV: $|d_{\mu \leftarrow e}^{\text{MFV}}| < 8.5 \times 10^{-28} e\text{cm}$
- Contribution only starts at the 3-loop level* $|d_{u\leftarrow e}| < 4 \times 10^{-20} \ ecm$
- Y. Ema et al., PRL128, 131801 (2022)

$$|d_{\mu}(^{199}\text{Hg})| < 6 \times 10^{-20} \text{ ecm}$$

 $|d_{\mu}(\text{ThO})| < 2 \times 10^{-20} \text{ ecm}$

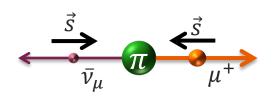

• Bennett et al., PRD80, 052008 (2009) $\left|d_{\mu}\right| < 1.5 \times 10^{-19} \, e \mathrm{cm}$

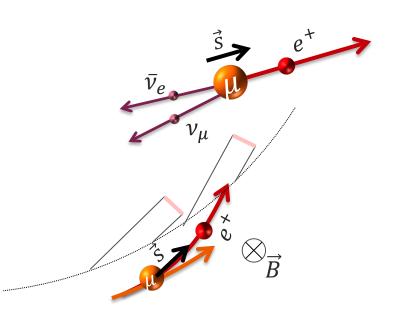




The general experimental idea

- If the EDM ≠ 0, then there will be a vertical precession out of the plane of the orbit
 - An asymmetry increasing with time will be observed recording decay positrons
- If the EDM = 0, then the spin should always be parallel to the momentum asymmetry should be zero
- Some asymmetry could still be observed due to systematic effects

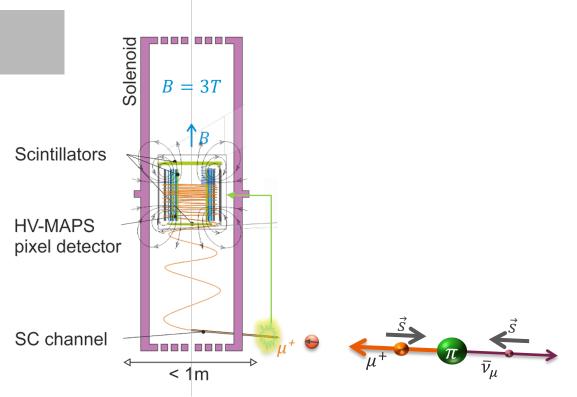

μ -polarization and analysis

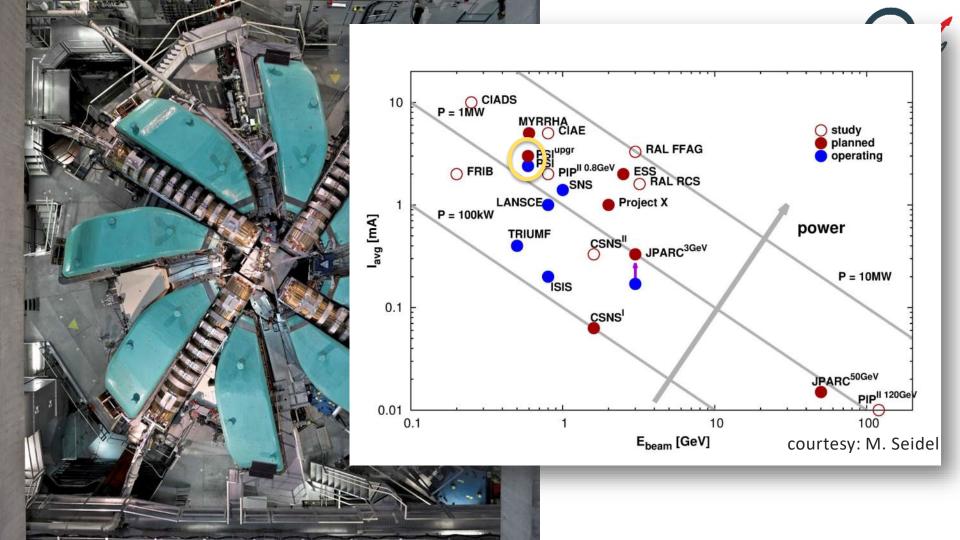


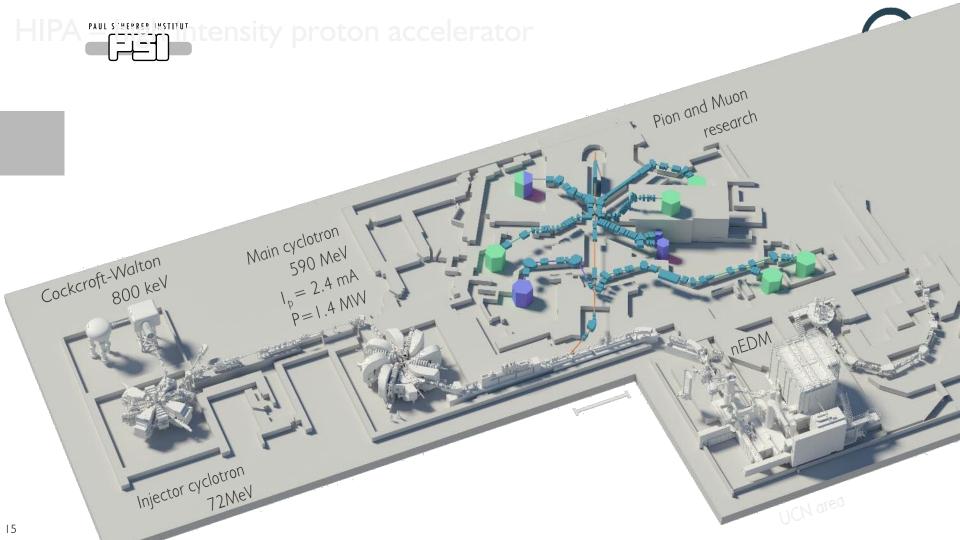
- Weak decay $\pi^+ \rightarrow \mu^+ + \bar{\nu}_{\mu}$ result in $P_{\mu} \approx 95\%$ for $p_{\pi}{\sim}220 {\rm MeV}/c^2$ backward decay in $P_{\mu} \approx 95\%$
- Weak decay $\mu^+ \rightarrow e^+ + \bar{\nu}_e + \nu_\mu$ results in decay asymmetry

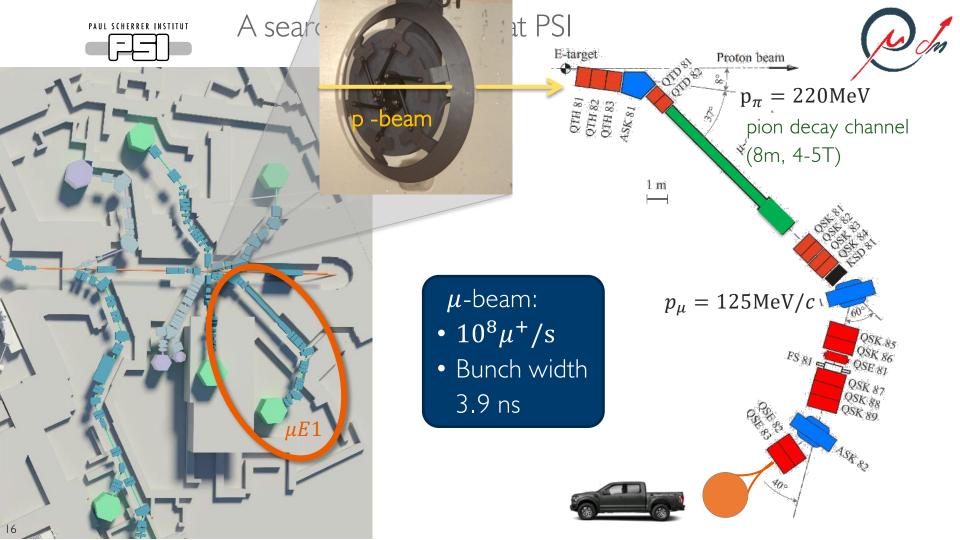
$$\bar{\alpha} \approx 0.3$$

• Detection of e^+ of decay (for EDM vertical resolution)




Search for a muon EDM using the frozen-spin technique with longitudinal injection





- μ^+ from Pion-decay \rightarrow high polarization $p \approx 95\%$
- Injection through superconducting channel
- Fast scintillator triggers pulse
- Magnetic **pulse stops** longitudinal motion of μ^+
- Weakly focusing field for **storage**
- Thin electrodes provide electric field for frozen spin
- Pixelated detectors for e⁺- tracking

 μ^{+} @ 125MeV/c or 28MeV/c

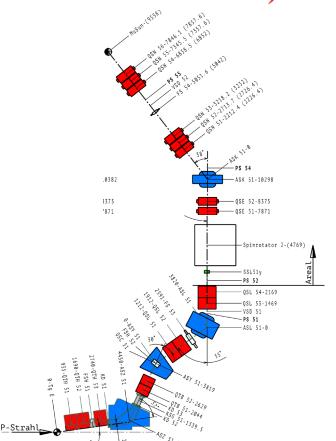
A phased approached

Phase I (small solenoid, surface muons)

- Existing solenoid at PSI, max 5T
- Bore diameters 200mm
- Field was measured in 2022 (found suitable for injection)

Phase 2 (dedicated magnet muon momentum $\geq 125 \text{MeV}/c$)

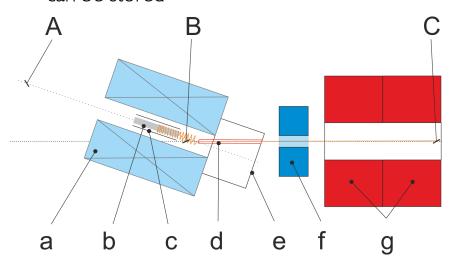
- Large bore (up to 900 mm diameter)
- High Temporal field stability (10ppb/h)
- Excellent spatial field uniformity (< I ppb/mm)


Surface muons for phase-I

Horizontal Emittance: 200 πmm mrad

Vertical Emittance: 170π mm mrad

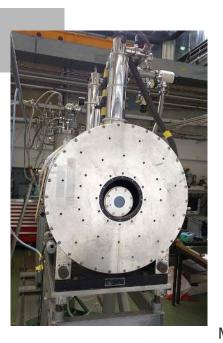
- Beam rate about $4 \times 10^6 \, \mathrm{s}^{-1}$
- Acceptance phase space:
 - High transmission through channel 3%
 - Injection efficiency about 2%
 - Expected μ^+ storage rate 2kHz
 - Expected e^+ detection rate 0.5kHz
- Moderate E field 3kV/cm

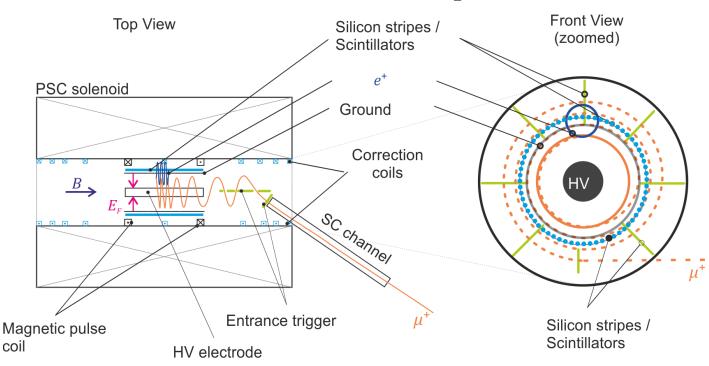


Injection and statistical sensitivity

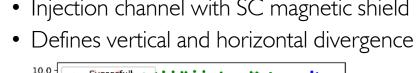
- Large phase space at exit of beam collimated by passage through a collimation channel (d)
- Due to adiabatic magnetic collimation large part of transmitted μ^+ are reflected.
- Simulations show, only about 0.5×10^{-3} muons can be stored

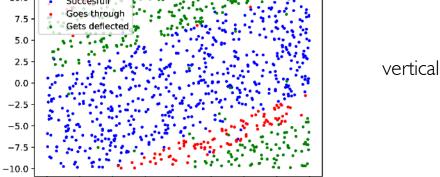
$$\sigma(d_{\mu}) = \frac{\hbar \gamma a_{\mu}}{2pE_{\rm f}\sqrt{N} \tau_{\mu} \alpha}$$

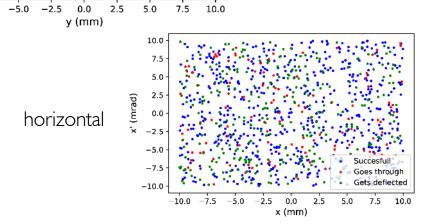

	$\pi \mathbf{E} 1$	$\mu \mathbf{E} 1$
Muon flux (μ^+/s)	4×10^{6}	1.2×10^{8}
Channel transmission	0.03	0.005
Injection efficiency	0.017	0.60
Muon storage rate (1/s)	2×10^{3}	360×10^{3}
Gamma factor γ	1.04	1.56
e^+ detection rate (1/s)	500	90×10^{3}
Detections per 200 days	8.64×10^{9}	1.5×10^{12}
Mean decay asymmetry A	0.3	0.3
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	$< 3 \times 10^{-21}$	$< 6 \times 10^{-23}$



The muEDM phase I on piEI


Test bed and frozen spin demonstrator

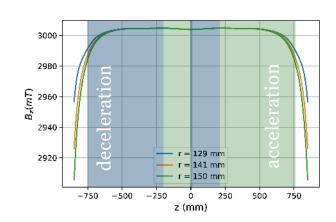


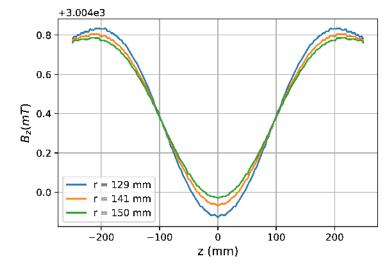

Injection channel vacuum tank main coil (2018) 4101310. $\overset{\odot}{\mathsf{B}}_{\mathsf{z}}$ Supercond. SC shield injection channel

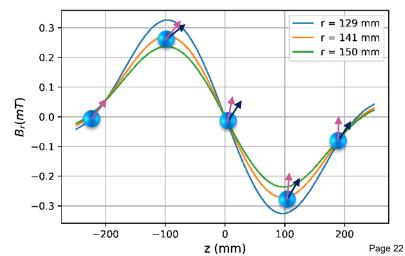
- Injection channel with SC magnetic shield

y' (mrad)

PR Acc. B 20 (2017) 041002

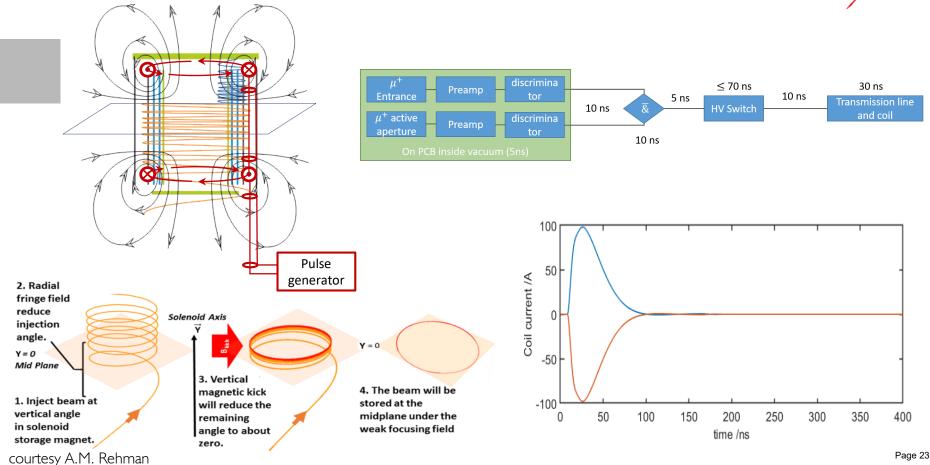

Trans. Appl.


29 (2018) 4900108.

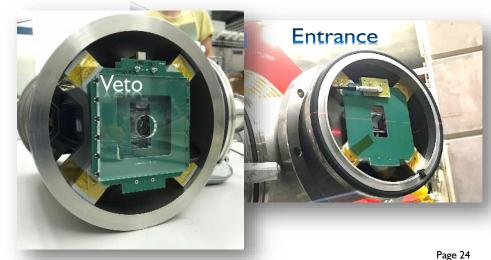


Storage and injection

- Strength of weakly focusing field in the center region defines "depth" of storage
- The deeper / stronger the weakly focusing field the stronger needs to be the pulse



Radial magnetic field pulse to kick muons

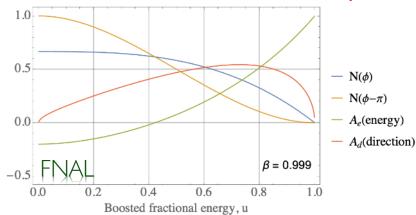

Muon entrance trigger

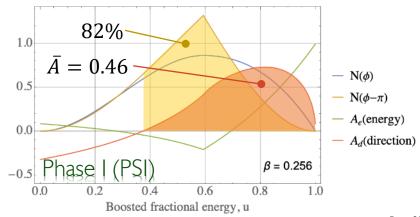
- Magnetic pulse needs to be triggered by incident muon
- Only about 2% of muons passing through the collimation channel are within the acceptance phase space
- Scattering in scintillators increase beam divergence

- Combine thin ($\leq 100 \mu m$) entrance scintillator with
- Active aperture as veto

Positron detection – figure of merit

Detection of g-2 precession ω_a

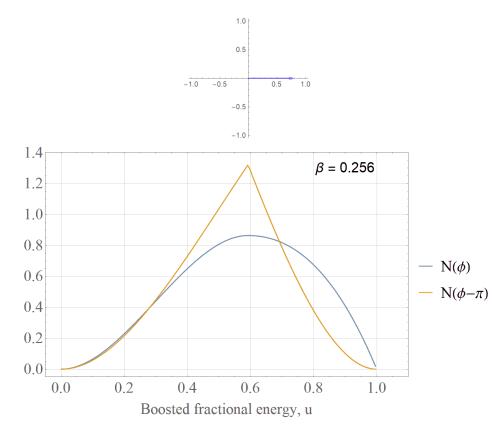

- Measurement of mean magnetic field (B)
- Measure $\omega_a(E)$ to tune electric field to frozen-spin condition


Requires momentum resolution

Detection of EDM polarization

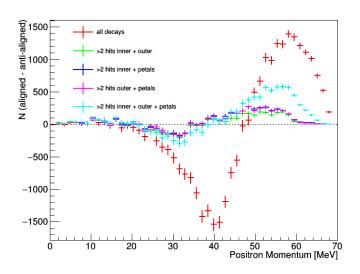
• Measurement of Asymmetry as function of time A(t)

Requires spatial resolution along cylinder



Tuning the electric field to the frozen-spin condition

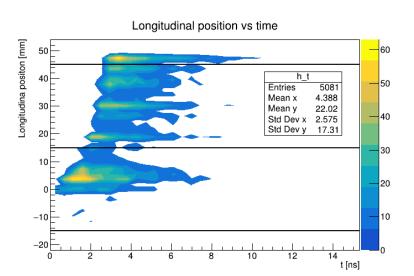
- Measure the g-2 frequency ω_a
- Two momentum bins $28 \, \mathrm{MeV}/c < p_1 < 50 \, \mathrm{MeV}/c$ $50 \, \mathrm{MeV}/c < p_2$
- Change E field in the range $\pm E_{\text{frozen}} \approx \pm 3 \text{kV/cm}$
- Extrapolate to $E_{\rm frozen}$ where $\omega_a=0$

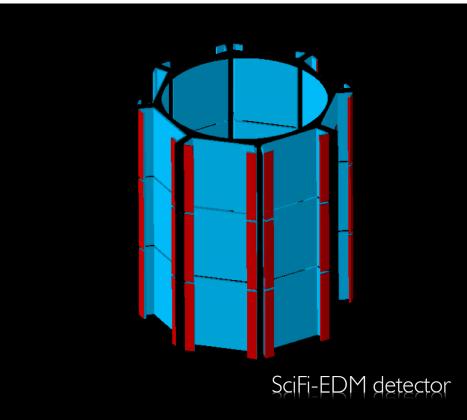


Silicon strip detector for g-2 detection

Silicon strip detector for g-2 detection

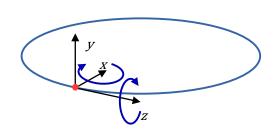
- Reconstruction of transverse positron momentum ($\Delta p \approx 5 \text{MeV/c}$)
- Timing $\Delta t \approx 2 \text{ns}$
- Spatial resolution $\approx 0.1 \text{mm}$ (lateral)




Scintillating fiber detector for EDM-signal

Scintillating fiber detector for EDM asymmetry measurement and timing

- Horizontal fiber ribbons with $250\mu m$ pitch and $100\mu m$ resolution
- Timing resolution < 2ns
- Reconstruction of longitudinal momentum

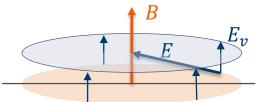

Systematic studies (example)

- Systematic effects: all effects that lead to a
 real or apparent precession of the spin
 around the radial axis that are not related to
 the EDM
- Major sources of systematic effects in the frozen spin technique:
 - Coupling of the magnetic moment with the EM fields of the experimental setup (*real*)
 - Early to late variation of detection efficiency of the EDM detectors (apparent)

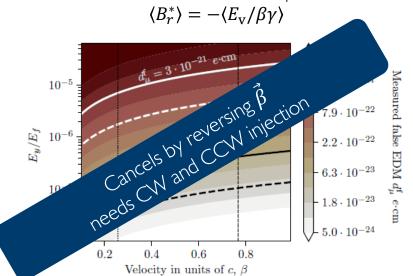
- Rotations that could mimic the EDM:
 - Radial around x
 - Azimutal around z

$$\vec{\Omega}_{\text{MDM}} = -\frac{e}{m_0} \left[a\vec{B} - a\frac{\gamma - 1}{\gamma} \frac{\left(\vec{\beta} \cdot \vec{B}\right)\vec{\beta}}{\beta^2} + \left(\frac{1}{\gamma^2 - 1} - a\right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Sources of E_v field: conical central electrode

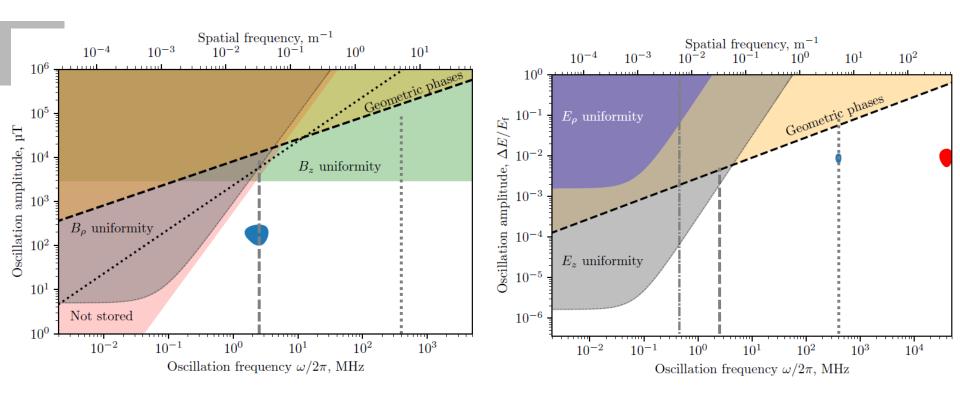


 None constant radius of cylindrical anode (cone)


$$E_y \approx E_f \frac{\Delta_R}{L} \approx E_f \alpha$$

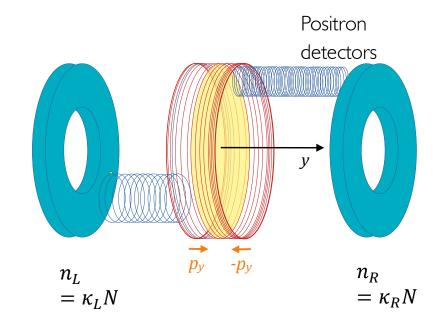
anode

- Cylindricity on the order of 50 nm is measurable even on large samples and possible to machine
- Ground electrode made of thin foil more difficult to keep deviations from cylindricity below $30\mu m$


Will move orbit out of central plane until:

Geometric phases, and non-uniformities

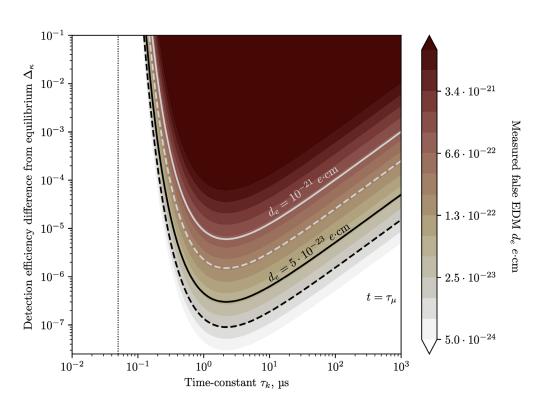
Magnetic field


Electric field

Detection efficiency asymmetry

- The EDM will be deduced from the accumulation of asymmetry between the upstream and downstream detectors that increases with time
- Static differences in the detection efficiency of one detector compared to the other is not a problem
- Change of the detection efficiency with time is a problem as it will introduce time dependent asymmetry

Constraints on the total detection efficiency



- Assumption: Change of detection efficiency triggered by pulse, exponential decay
- Detection efficiency of up and downstream detectors:

$$\kappa_u = \kappa_{u0} - \Delta_{\kappa} e^{-t/\tau_k},$$

$$\kappa_d = \kappa_{d0} + \Delta_{\kappa} e^{-t/\tau_k},$$

• Change in measured asymmetry with time:

$$\dot{A}_m = \frac{2}{\tau_k} \Delta_\kappa e^{-t/\tau_k}$$

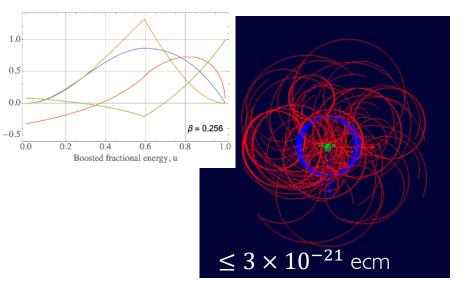
Systematic study - overview

- Systematic effects are studied using analytic expressions
- Comparison with GEANT4 spin tracking Monte Carlo for verification
- Deduce specifications for experiment

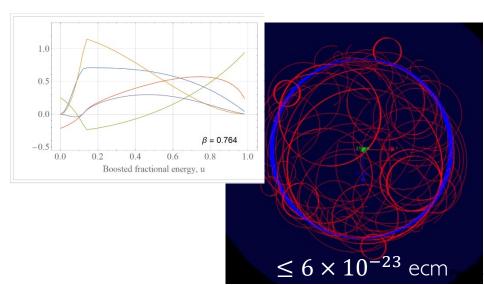
Next steps:

- Parametrization of magnetic-field nonuniformity
- Deduce magnetic-field requirements

Systematic effect	Constraints	Phase I	
	Constraints	Expected value	Syst. $(\times 10^{-21} e \cdot cm)$
Cone shaped electrodes (longitudinal E-field)	Up-down asymmetry in the electrode shape	$\Delta_R < 30 \ \mu \mathrm{m}$	0.75
Residual B-field from kick	Decay time of kicker field	< 50 ns	< 10 ⁻²
Net current flowing muon orbit area	Wiring of electronics inside the orbit	< 10 mA	< 10 ⁻²
Longitudinal B-field uniformity	Solenoid alignment	< 3 mT	-
Resonant geometrical phase accumulation	Misalignment of central axes	$\begin{array}{l} {\rm Pitch} < 1 \; {\rm mrad} \\ {\rm Offset} < 2 \; {\rm mm} \end{array}$	2×10^{-2}
TOTAL			1.1



Going from phase I to phase II


Phase I

- B-Field 3T
- Momentum 28 MeV/c
- Muon radius 3 I mm
- Most positrons outside

Phase II

- B-Field 3T
- Momentum 125 MeV/c
- Muon radius 141 mm
- Most positrons inside

PAUL SCHERRER INSTITUT

The collaboration

M. Giovannozzi

CERN: Beams Department, Esplanade des Particules 1, 1211 Meyrin, Switzerland

M. Hoferichter

UB: University of Bern, Bern, Switzerland

G. Hiller

UD: University of Dortmund, Dortmund, Germany

R. Appleby, I. Bailey

CI: Cockcroft Institute, Daresbury, United Kingdom

C. Chavez Barajas, T. Bowcock, J. Price, N. Rompotis, T. Teubner, G. Venanzoni, J. Vossebeld

UL: University of Liverpool, Liverpool, United Kingdom

R Chislett, G. Hesketh

UCL: University College London, London, United Kingdom

N. Berger, M. Köppel¹, A. Kozlinsky, M. Müller¹, F. Wauters **UMK:** University of Mainz - Kernphysik, Mainz, Germany

A. Keshavarzi, M. Lancaster

UM: University of Manchester, Manchester, United Kingdom

F. Trillaud

UNAM: Universidad Nacional Autonma de Mexico, Mexico City, Mexico

B. Märkisch

TUM: Technical University Munich, Munich, Germany

A. Baldini, F Cei, L. Galli, M. Grassi, D. Nicolò, A. Papa, G. Signorelli, B. Vitali INFN-P: INFN and University of Pisa, Pisa, Italy

G. Cavoto, F. Renga, C. Voena UR: University and INFN of Roma, Roma, Italy

C. Chen, T. Hu¹, K.S. Khaw, J.K. Ng¹, G.M. Wong¹, Y. Zeng¹ SJTU: Shanghai Jiao Tong University and Tsung-Dao Lee Institute, Shanghai, China

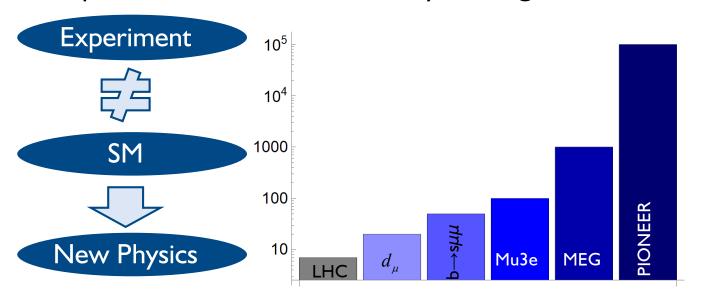
A. Adelmann, C. Calzolaio, R. Chakraborty, M. Daum, A. Doinaki¹, C. Dutsov, W. Erdmann, T. Hume¹, M. Hildebrandt, H. C. Kästli, A. Knecht, L. Morvaj, D. Reggiani, A. Rehman, P. Schmidt-Wellenburg²

PSI: Paul Scherrer Institut, Villigen, Switzerland

K. Kirch³, M. Sakurai^{1,5}
ETHZ: ETH Zürich, Switzerland

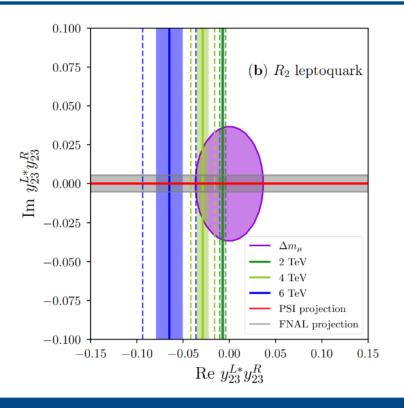
L. Caminada⁵, A. Crivellin⁵ **UZ:** University of Zürich, Zürich, Switzerland

January 24, 2023


Backup

Finding New Physics with Flavor

• At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavors



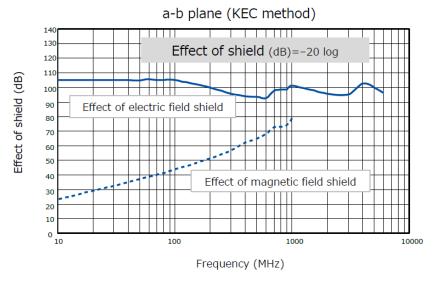
Flavor observables are sensitive to higher energy scales than collider searches

Fine-Tuning?

Bigaran, Volkas, 2110.03707

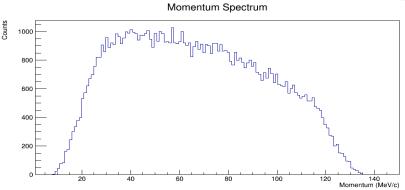
No significant tuning necessary

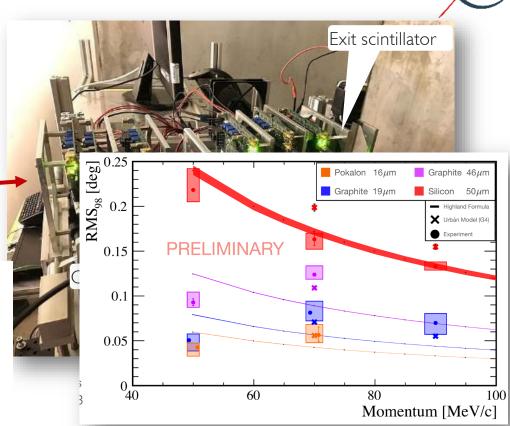
Page 39 Courtesy Andreas Crivellin



Eddy current damping of magnetic pulse

- Exist off the shelf without substrate down to $17\mu m$
- Still considerable damping of magnetic pulse possible
- Tests requires
- Alternative one dimensional wires (carbon fibers / tungsten)


Multiple scattering measurement on carbon


 μ^+ , e^+

 Characterization of potential electrode material with positrons and muons

50 MeV/c

