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Cowperthwaite et al. (2017)

More r-process rich ejecta
implies a brighter, longer-lasting
light curve.
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Drout et al. (2017)
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Chornock et al. (2017)
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Kasen et al. (2017)

More lanthanides imply a higher opacity and 
therefore a less-peaked, longer-lasting light curve 
with a redder spectrum.
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GW170817 makes it clear that binary neutron 
star mergers produce r-process elements.

GW170817 does not by itself imply that all r-
process nucleosynthesis comes from massive 
compact object mergers involving a neutron star.
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Siegel (2019)



  

Kevin Schlaufman
27 May 2022Two New r-process Constraints

(1) The most neutron-capture poor star requires a 
low-yield source of r-process elements
(Casey & Schlaufman 2017).

(2) The chemical evolution of the Magellanic Clouds 
require a prolific source of r-process elements 
that are produced with a significant time delay 
after the era of the first core-collapse
supernovae in those stellar populations 
(Reggiani et al. 2021).
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Casey & Schlaufman  (2017)

Sr II Sr II Ba II

2MASS J15111324-2130030 is the most neutron-
capture-poor star ever observed.

Its Sr and Ba lines are 100x weaker than HD 126587, 
a standard extremely metal-poor star with similar 
photospheric parameters and solar [Sr/Fe] & [Ba/Fe].



  

Definition of [X/Y] Kevin Schlaufman
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Key points:
(1) Relative to solar abundances
(2) Logarithmic

Useful values:
(1) N

O,Sun
 = 8.69 (3) N

Fe,Sun
 = 7.46

(2) N
Mg,Sun

 = 7.55 (4) N
Eu,Sun

 = 0.52

Asplund et al. (2021)
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Casey & Schlaufman  (2017)

2MASS J1511-2130 is the most neutron-capture-poor 
star ever observed.
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Casey & Schlaufman  (2017)

2MASS J1511-2130 has ordinary α, light odd Z, and 
iron-peak elemental abundances.

O 2MASS J15111324-2130030
Roederer et al. (2014) compilation 
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Casey & Schlaufman  (2017)

2MASS J1511-2130 has [Sr/Ba] = -0.11 +/- 0.14, fully 
consistent with the solar r-process [Sr/Ba] = -0.25.
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Casey & Schlaufman  (2017)

2MASS J1511-2130 has about 5 x 10-14 M
Sun

 of 

strontium.  GW170817 produced about 10-2 M
Sun 

of 

neutron-capture elements.  Therefore:

(1) Since strontium is the most abundant element in 
the solar r-process pattern by a factor of 
two, 2MASS J1511-2130 has a total mass in 
neutron-capture elements of about 10-13 M

Sun
.

(2) A cold gas mass of 1011 M
Sun

 would be 

necessary to dilute a GW170817-like yield down 
to the level observed in 2MASS J15111-2130.  
This is the entire gas content of the Milky Way.



  

Reticulum II

Ji et al. (2016a,b)
Roederer et al. (2016)
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Casey & Schlaufman  (2017)
Tension with Reticulum II
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(1) The inference of magnesium and iron 
abundances in stellar photospheres is usually 
straightforward at all metallicities.

(2) Magnesium is mostly produced in hydrostatic 
carbon & neon burning and ejected into the 
interstellar medium by core collapse 
supernovae.

(3) Iron is mostly produced as radioactive nickel in 
oxygen or silicon-rich environments with
T ≈ 4 x 109 K and low neutron excesses, either 
in core collapse (a little) or thermonuclear 
supernovae (a lot).
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Tinsley (1979)
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Tinsley (1979)
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SDSS DR17

Nucleosynthesis t-scale Diagnostics



  

Kevin Schlaufman
27 May 2022Nucleosynthesis t-scale Diagnostics

Tinsley (1979)
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This is true of all massive galaxies:

(1) any element X produced promptly in massive 
stars or their supernovae, before the era of the 
first thermonuclear supernovae, will have 
significantly positive [X/Fe] at low [Fe/H].

(2) any element Y produced more slowly than the 
core-collapse supernova timescale, during or 
after the era of the era of the first thermonuclear 
supernovae, will have lower [Y/Fe] at low [Fe/H].
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MW Satellite Chemical Evolution

Nidever et al. (2020)
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MW Satellite Chemical Evolution

Vargas et al. (2013)
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The Experiment

If prolific r-process nucleosynthesis takes place 
mostly in low-occurrences event with timescales 
comparable to ordinary core-collapse supernovae
—like collapsars or magnetorotationally powered 
supernovae—then the occurrence of r-process 
enhanced stars in the quickly enriched Milky Way 
and slowly enriched Magellanic Clouds should be 
similar.

Kevin Schlaufman
27 May 2022

Reggiani et al.  (2021)



  

The Experiment

On the other hand, if prolific r-process 
nucleosynthesis occurs mostly in low-
occurrences events with timescales longer than 
core-collapse supernovae but shorter than or 
comparable to thermonuclear supernovae—like 
mergers of neutron star—then the occurrence of 
r-process enhanced stars in the slowly enriched 
Magellanic Clouds should be be higher than in 
the quickly enriched Milky Way.

Kevin Schlaufman
27 May 2022

Reggiani et al.  (2021)



  

Abundance Distribution of Mg Kevin Schlaufman
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Reggiani et al.  (2021)



  

Abundance Distribution of Eu Kevin Schlaufman
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Reggiani et al.  (2021)
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Reggiani et al.  (2021)



  

Kevin Schlaufman
27 May 2022

Reggiani et al.  (2021)

Signature of r-process



  

In the Milky Way’s halo, there’s 
only a 1 in 3 million chance of 
randomly observing eleven 
stars as enriched in Eu.

Signature of r-process Kevin Schlaufman
27 May 2022

Reggiani et al.  (2021)



  

r-process Enriched Stars Kevin Schlaufman
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Reggiani et al.  (2021)

r-I +0.3 < [Eu/Fe] < +1.0 and [Eu/Ba] > 0
r-II [Eu/Fe] > +1.0 and [Eu/Ba] > 0

r-I
(%)

r-II
(%)

Milky Way 14 3

Magellanic 
Clouds

94+4

-9
38+14

-13

Beers & Christlieb (2005)
Barklem et al. (2005)



  

Conclusions

(1) There is a low-yield r-process channel, perhaps 
associated with ordinary core-collapse 
supernovae.

(2) The high occurrence of r-process enhanced 
stars in the slowly chemically enriched 
Magellanic Clouds relative to the quickly 
enriched Milky Way supports a prolific source of 
the r-process that starts to operate after the era 
of the first core-collapse supernovae in a stellar 
population.

Kevin Schlaufman
27 May 2022
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Chemical evolution has many independent variables:

(1) Mass
(2) gravitational potential depth/escape velocity
(3) ability to fully sample stellar initial mass and 

binary property distributions
(4) ability to accrete unenriched gas from the 

cosmic web



  

Infrared Metal-poor Star Selection
Schlaufman & Casey  (2014)

Kevin Schlaufman
27 May 2022



  

Infrared Metal-poor Star Selection Kevin Schlaufman
27 May 2022



  

Spitzer/SAGE LMC Map

Meixner et al. (2006)
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Spitzer/SAGE LMC Map

Meixner et al. (2006)

Kevin Schlaufman
27 May 2022



  

MC r-process Enhanced Stars
Reggiani et al.  (2021)
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Abundance Distribution of Eu
Reggiani et al.  (2020, in prep)
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Abundance Distribution of Ba Kevin Schlaufman
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Reggiani et al.  (2021)
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Reggiani et al.  (2021)



  

LMC Chemical Evolution

Nidever et al. (2020)

Kevin Schlaufman
27 May 2022
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