Quarkonium transport in weakly and strongly coupled plasmas

Heavy Flavor Production in Heavy-Ion and Elementary Collisions Institute for Nuclear Theory Workshop 22-3
University of Washington October 21, 2022

Bruno Scheihing-Hitschfeld (MIT) collaborators: Xiaojun Yao (UW) and Govert Nijs (MIT) based on 2107.03945, 2205.04477, 2211.XXXXX

Time scales of quarkonia

 an open quantum system picture of pNRQCD [*]Transitions between quarkonium energy levels
(the system)

Interaction with the environment

$$
\frac{1}{\tau_{S}} \sim \Delta E_{n} \sim M v^{2}
$$

$$
\frac{1}{\tau_{I}} \sim \frac{H_{\mathrm{int}}^{2}}{T} \sim T \frac{T^{2}}{(M v)^{2}}
$$

QGP
(the environment)

$\mathscr{L}_{\mathrm{pNRCCD}}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }}\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\right.\right.$ h.c..$\left.)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]$

Time scales of quarkonia

 an open quantum system picture of pNRQCD [*]Transitions between quarkonium energy levels
(the system)

Interaction with the environment

$$
\frac{1}{\tau_{S}} \sim \Delta E_{n} \sim M v^{2}
$$

$$
\frac{1}{\tau_{I}} \sim \frac{H_{\mathrm{int}}^{2}}{T} \sim T \frac{T^{2}}{(M v)^{2}}
$$

QGP
(the environment)

Time scales of quarkonia

 an open quantum system picture of pNRQCD [*]Transitions between quarkonium energy levels
(the system)

Interaction with the environment

QGP
(the environment)

Time scales of quarkonia

 an open quantum system picture of pNRQCD [*]Transitions between
quarkonium energy levels
(the system)

$$
\frac{1}{\tau} \sim \Delta E_{n} \sim M v^{2}
$$

$$
\tau_{S}
$$

$$
\frac{1}{\tau_{I}} \sim \frac{H_{\mathrm{int}}^{2}}{T} \sim T \frac{T^{2}}{(M v)^{2}}
$$

Interaction with the environment

environment

QGP
(the environment)

$$
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {lightquarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }}\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
$$

Open quantum systems
 "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t) .
$$

Open quantum systems "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)
$$

- We will only be interested in describing the evolution of quarkonium and its final state abundances

$$
\Longrightarrow \rho_{S}(t)=\operatorname{Tr}_{\mathrm{QGP}}\left[U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)\right] .
$$

Open quantum systems "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)
$$

- We will only be interested in describing the evolution of quarkonium and its final state abundances

$$
\Longrightarrow \rho_{S}(t)=\operatorname{Tr}_{\mathrm{QGP}}\left[U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)\right]
$$

- Then, one derives an evolution equation for $\rho_{S}(t)$, assuming that at the initial time we have $\rho_{\mathrm{tot}}(t=0)=\rho_{S}(t=0) \otimes e^{-H_{\mathrm{QGP}} / T} / \mathscr{Z}_{\mathrm{QGP}}$.

Lindblad equations for quarkonia at low T

 quantum Brownian motion limit \& quantum optical limit in pNRQCD- After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$
\frac{\partial \rho}{\partial t}=-i\left[H_{\mathrm{eff}}, \rho\right]+\sum_{j} \gamma_{j}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}\right)
$$

- This can be done in two different limits within pNRQCD:

Quantum Brownian Motion:

$$
\begin{gathered}
\tau_{I} \gg \tau_{E} \\
\tau_{S} \gg \tau_{E}
\end{gathered}
$$

relevant for $M v \gg T \gg M v^{2}$

Quantum Optical:

$$
\begin{aligned}
& \tau_{I} \gg \tau_{E} \\
& \tau_{I} \gg \tau_{S}
\end{aligned}
$$

relevant for $M v \gg M v^{2}, T \gtrsim m_{D}$

Lindblad equations for quarkonia at low T

quantum Brownian motion limit \& quantum optical limit in pNRQCD

- After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$
\frac{\partial \rho}{\partial t}=-i\left[H_{\mathrm{eff}}, \rho\right]+\sum_{j} \gamma_{j}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}\right)
$$

- This can be done in two different limits within pNRQCD:

Quantum Brownian Motion:

Quantum Optical:

relevant for $M v \gg M v^{2}, T \gtrsim m_{D}$

How does the QGP enter the dynamics?

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{-}-\right]_{i_{i i} i}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{V}_{2} E_{i_{i}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{V}_{1}\right)^{a}\right\rangle_{T}
$$

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

bound state:
color singlet

QGP chromoelectric correlators

for quarkonia transport

unbound state: color octet

medium-induced transition
bound state: color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{2 i} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

unbound state: color octet
the unbound state carries color charge and interacts with the

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

bound state:

unbound state: color octet
the unbound state carries color charge and interacts with the

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

medium-induced
transition

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{-}-\right]_{i_{i i} i}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{V}_{2} E_{i_{i}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{V}_{1}\right)^{a}\right\rangle_{T}
$$

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{2 i} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

$$
\left(R_{1},-\infty\right) \quad\left(R_{2},-\infty\right)
$$

$$
\left.\left[g_{E}^{++}\right]_{\left.i_{i 1}\right\rangle_{1}}^{t_{2}}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

Why are these correlators interesting?

These determine the dissociation and formation rates of quarkonia in the quantum optical limit:

$$
\begin{aligned}
\left.\Gamma^{\mathrm{diss}} \propto \int \frac{\mathrm{~d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\mathrm{rel}}}\right\rangle\left.\right|^{2}\left[g_{E}^{++}\right]_{i i}^{>}\left(q^{0}=E_{\mathscr{B}}-\frac{\mathbf{p}_{\mathrm{rel}}^{2}}{M}, \mathbf{q}\right), \\
\left.\Gamma^{\text {form }} \propto \int \frac{\mathrm{d}^{3} \mathbf{p}_{\mathrm{cm}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\text {rel }}}\right\rangle\left.\right|^{2}\left[g_{E}^{--}\right]_{i i}^{>}\left(q^{0}=\frac{\mathbf{p}_{\mathrm{rel}}^{2}}{M}-E_{\mathscr{B}}, \mathbf{q}\right) \\
\times f_{\mathcal{S}}\left(\mathbf{x}, \mathbf{p}_{\mathrm{cm}}, \mathbf{r}=0, \mathbf{p}_{\mathrm{rel}}, t\right) .
\end{aligned}
$$

They are also directly related to the correlators that define the transport coefficients in the quantum brownian motion limit (see Michael Strickland's talk on 10/03):

$$
\begin{aligned}
\gamma & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Im} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) E^{a, i}(0, \mathbf{0})\right\rangle \\
\kappa & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Re} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) E^{a, i}(0, \mathbf{0})\right\rangle
\end{aligned}
$$

They are also directly related to the correlators that define the transport coefficients in the quantum brownian motion limit (see Michael Strickland's talk on 10/03):

$$
\begin{aligned}
\gamma & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Im} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle, \\
\kappa & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Re} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle .
\end{aligned}
$$

They are also directly related to the correlators that define the transport coefficients in the quantum brownian motion limit (see Michael Strickland's talk on 10/03):

$$
\begin{aligned}
\gamma & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Im} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle, \\
\kappa & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Re} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle .
\end{aligned}
$$

Adjoint representation Wilson lines!
(as appropriate for color octet states)

So, let's calculate

Weakly coupled calculation in QCD

The real-time calculation proceeds by evaluating these diagrams (+ some permutations of them) on the Schwinger-Keldysh contour

The spectral function at NLO

It is simplest to write the integrated spectral function:

$$
\varrho_{E}^{++}\left(p_{0}\right)=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \delta^{a d} \delta_{i j}\left[\rho_{E}^{++}\right]_{j i}^{d a}\left(p_{0}, \mathbf{p}\right)
$$

We found

$$
g^{2} \varrho_{E}^{++}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}+\frac{\pi^{2}}{3}\right) N_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

The spectral function at NLO

and a comparison with its heavy quark counterpart
It is simplest to write the integrated spectral function:

$$
\varrho_{E}^{++}\left(p_{0}\right)=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \delta^{a d} \delta_{i j}\left[\rho_{E}^{++}\right]_{j i}^{d a}\left(p_{0}, \mathbf{p}\right)
$$

We found

$$
g^{2} \varrho_{E}^{++}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}+\frac{\pi^{2}}{3}\right) N_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

and the heavy quark counterpart is, with the same T-dependent function $F\left(p_{0} / T\right)$,
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
g^{2} \rho_{E}^{\mathrm{HQ}}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}-\frac{2 \pi^{2}}{3}\right) N_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

The spectral function at NLO

and a comparison with its heavy quark counterpart

It is simplest to write the integrated spectral function:

$$
\varrho_{E}^{++}\left(p_{0}\right)=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \delta^{a d} \delta_{i j}\left[\rho_{E}^{++}\right]_{j i}^{d a}\left(p_{0}, \mathbf{p}\right)
$$

We found

$$
\left.g^{2} Q_{E}^{++}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{140}{36}+\frac{\pi^{2}}{3}\right)\right\rangle-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

and the heavy quark counterpart is, with the same T-dependent function $F\left(p_{0} / T\right)$,
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
\left.g^{2} \rho_{E}^{\mathrm{HQ}}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}-\frac{2 \pi^{2}}{3}\right)\right)_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

But they look so similar...

Heavy quark and quarkonia correlators

a small, yet consequential difference

The heavy quark diffusion coefficient can be defined from the real-time correlator J. Casalderrey-Solana and D. Teaney, hep-ph/0605199; see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

$$
\left\langle\operatorname{Tr}_{\text {color }}\left[U(-\infty, t) E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right]\right\rangle_{T}
$$

whereas for quarkonia the relevant quantity is

$$
T_{F}\left\langle E_{i}^{a}(t) \mathscr{W}^{a b}(t, 0) E_{i}^{b}(0)\right\rangle_{T}
$$

Heavy quark and quarkonia correlators

a small, yet consequential difference

A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

What we just found, and had been noticed even earlier by Eller, Ghiglieri and Moore, is simply stating that:
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
T_{F}\left\langle E_{i}^{a}(t) \mathscr{W}^{a b}(t, 0) E_{i}^{b}(0)\right\rangle_{T} \neq\left\langle\operatorname{Tr}_{\text {color }}\left[U(-\infty, t) E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right]\right\rangle_{T}
$$

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or
B. one of the correlators is not gauge invariant.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gauge invariant.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gauge invariant.

False: both definitions are explicitly invariant

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0 . \Longrightarrow$ The problem is here
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gauge invariant.

False: both definitions are explicitly invariant

The difference in terms of diagrams

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

The difference in terms of diagrams

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

The difference is due to different operator orderings (different possible gluon insertions).

Gauge independence of the difference explicit gauge interpolation

- We performed an explicit calculation of the difference between the correlators in vacuum at NLO, with a gauge condition $G_{M}^{a}[A]=\frac{1}{\lambda} A_{0}^{a}(x)+\partial^{\mu} A_{\mu}^{a}(x)$.

Gauge independence of the difference explicit gauge interpolation

- We performed an explicit calculation of the difference between the correlators in vacuum at NLO, with a gauge condition $G_{M}^{a}[A]=\frac{1}{\lambda} A_{0}^{a}(x)+\partial^{\mu} A_{\mu}^{a}(x)$.
- One finds that the difference is independent of λ, and equal to the Feynman gauge result.

Gauge independence of the difference explicit gauge interpolation

- We performed an explicit calculation of the difference between the correlators in vacuum at NLO, with a gauge condition $G_{M}^{a}[A]=\frac{1}{\lambda} A_{0}^{a}(x)+\partial^{\mu} A_{\mu}^{a}(x)$.
- One finds that the difference is independent of λ, and equal to the Feynman gauge result.
- The axial gauge limit $\lambda \rightarrow 0$ is singular only if it is taken at the beginning of the calculation. However, gauge invariance is manifest in the result!

Gauge independence of the difference explicit gauge interpolation

- We performed an explicit calculation of the difference between the correlators in vacuum at NLO, with a gauge condition $G_{M}^{a}[A]=\frac{1}{\lambda} A_{0}^{a}(x)+\partial^{\mu} A_{\mu}^{a}(x)$.
- One finds that the difference is independent of λ, and equal to the Feynman gauge result.
- The axial gauge limit $\lambda \rightarrow 0$ is singular only if it is taken at the beginning of the calculation. However, gauge invariance is manifest in the result!
\Longrightarrow The $Q \bar{Q}$ and Q correlators are different, gauge invariant quantities.

So, we understand the weakly coupled limit in QCD.

What about at strong coupling?

Wilson loops in AdS/CFT

setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. $\left.{ }^{[\times \star}\right]$
- Wilson loops can be evaluated by solving classical equations of motion:

$$
\langle W[\mathscr{C}=\partial \Sigma]\rangle_{T}=e^{i S_{\mathrm{NG}}[\Sigma]}
$$

Strongly coupled calculation in $\mathcal{N}=4$ SYM

setup

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :
$\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]$

Strongly coupled calculation in $\mathcal{N}=4$ SYM

setup

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :

$$
\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]
$$

- Same in spirit as the lattice calculation of the heavy quark diffusion coefficient:

Figure from Luis Altenkort's talk on 10/19

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution

AdS/Schwarzschild black hole
time-ordered branch of SK
Σ
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations

AdS/Schwarzschild black hole
time-ordered branch of SK
Σ

anti time-ordered branch of SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations
3. Evaluate the deformed Wilson loop and take derivatives

Σ contour
 SK contour

Review: Heavy Quark Diffusion in AdS/CFT

 using the same computational techniqueSteps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbations
3. Evaluate the deformed Wilson loop and take derivatives
From here: $\kappa=\pi \sqrt{g^{2} N_{c}} T^{3}$
time-ordered branch of SK

Σ contour

Quarkonia correlator in AdS/CFT

Quarkonium transport in AdS/CFT

Conceptually, same steps as before.

Quarkonium transport in AdS/CFT

Conceptually, same steps as before.

However, there are two key differences:

time-ordered branch of SK contour

Quarkonium transport in AdS/CFT

Conceptually, same steps as before.

However, there are two key differences:

1. Background solution: dynamics of a pair of heavy quarks

time-ordered branch of SK
 contour

Quarkonium transport in AdS/CFT

Conceptually, same steps as before.

However, there are two key differences:

1. Background solution: dynamics of a pair of heavy quarks
2. KMS relations \& map to spectral function

time-ordered branch of SK

contour

$L \rightarrow 0$

Quarkonium transport in AdS/CFT

Conceptually, same steps as before.

However, there are two k differences:

1. Background solution: dynamics of a pair of heavy quarks
2. KMS relations \& map to spectral function

How the calculation proceeds

what equations do we need to solve?

- The classical, unperturbed equations of motion from the Nambu-Goto action to determine Σ :

$$
S_{\mathrm{NG}}=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\operatorname{det}\left(g_{\mu \nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}\right)} .
$$

- The classical, linearized equation of motion with perturbations in order to be able to calculate derivatives of $\left\langle W\left[\mathscr{C}_{f}\right]\right\rangle_{T}=e^{i S_{\mathrm{NG}}\left[\Sigma_{f}\right]}$:

$$
S_{\mathrm{NG}}\left[\Sigma_{f}\right]=S_{\mathrm{NG}}[\Sigma]+\left.\int d t_{1} d t_{2} \frac{\delta^{2} S_{\mathrm{NG}}\left[\Sigma_{f}\right]}{\delta f\left(t_{1}\right) \delta f\left(t_{2}\right)}\right|_{f=0} f\left(t_{1}\right) f\left(t_{2}\right)+O\left(f^{3}\right)
$$

- In practice, the equations are only numerically stable in Euclidean signature, so we have to solve them and analytically continue back.

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport
A. at weak coupling in QCD
B. at strong coupling in $\mathcal{N}=4$ SYM
- Relevant for both quantum Brownian motion and quantum optical limits
- Next steps:
- $\left\langle B_{i}^{a} \mathscr{W}^{a b} B_{i}^{b}\right\rangle_{T}$ correlator at strong coupling in $\mathscr{N}=4$ SYM
- Use them as input for quarkonia transport codes
- Stay tuned!

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport
A. at weak coupling in QCD
B. at strong coupling in $\mathcal{N}=4$ SYM
- Relevant for both quantum Brownian motion and quantum optical limits
- Next steps:
- $\left\langle B_{i}^{a} \mathscr{W}^{a b} B_{i}^{b}\right\rangle_{T}$ correlator at strong coupling in $\mathscr{N}=4$ SYM
- Use them as input for quarkonia transport codes
- Stay tuned!

Extra slides

Extracting the EE correlator for quarkonia

the pipeline

1) Solve for the background worldsheet solution:

J.P. Boyd, "Chebyshev and Fourier Spectral Methods," Dover books on Mathematics (2001)
2) Solve for the fluctuations with a source as a boundary condition:

3) Extrapolate in the limit $L \rightarrow 0$:

The spectral function of quarkonia

symmetries and KMS relations

The KMS conjugates of the previous correlators are such that

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{++}\right]_{j i}^{<}(q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{--}\right]_{j i}^{<}(q),
$$

and one can show that they are related by

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=\left[g_{E}^{--}\right]_{j i}^{<}(-q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=\left[g_{E}^{++}\right]_{j i}^{<}(-q) .
$$

The spectral functions $\left[\rho_{E}^{++/--}\right]_{j i}(q)=\left[g_{E}^{++/--}\right]_{j i}^{>}(q)-\left[g_{E}^{++/--}\right]_{j i}^{<}(q)$ are not necessarily odd under $q \leftrightarrow-q$. However, they do satisfy:

$$
\left[\rho_{E}^{++}\right]_{j i}(q)=-\left[\rho_{E}^{--}\right]_{j i}(-q) .
$$

