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Open quantum systems
“tracing/integrating out” the QGP

» Given an initial density matrix p,.(f = 0), quarkonium coupled with the QGP
evolves as

Prot(D) = U(0)po(t = 0) UT(I).
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Open quantum systems
“tracing/integrating out” the QGP

» Given an initial density matrix p,.(f = 0), quarkonium coupled with the QGP
evolves as

Prot(D) = U(0)po(t = 0) UT(I).

 We will only be interested in describing the evolution of quarkonium and its
final state abundances

= py(1) = Trogp |UDpet = OVUT (1)

» Then, one derives an evolution equation for p¢(#), assuming that at the initial
time we have p,_(t = 0) = p(t = 0) @ e o'l | OGP -
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Lindblad equations for quarkonia at low 7

quantum Brownian motion limit & guantum optical limit in pNRQCD

» After tracing out the QGP degrees of freedom, one gets a Lindblad-type

equation:
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* This can be done in two different limits within pNRQCD:

Quantum Brownian Motion: Quantum Optical:
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relevant for Mv > T > Mv? relevant for Mv > Mv>, T > my,
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How does the QGP enter the
dynamics?



See also: N. Brambilla et al. hep-ph/1612.07248, hep-ph/1711.04515, hep-ph/2205.10289 X. Yao and T. Mehen, hep-ph/2009.02408
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Why are these correlators
interesting?



These determlne the dlssocnatlon and formatlon rates of quarkonla in the quantum
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They are also directly related to the correlators that define the transport coefficients in ;
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S0, let’s calculate



T. Binder, K. Mukaida, B. Scheihing-Hitschfeld and X. Yao, hep-ph/2107.03945

Weakly coupled calculation in QCD
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The spectral function at NLO

It Is simplest to write the integrated spectral function:
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The spectral function at NLO

and a comparison with its heavy quark counterpart
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But they look so similar...



Heavy quark and quarkonia correlators

a small, yet consequential difference

The heavy quark diffusion coefficient can be defined from the real-time

CO rrelatOr J. Casalderrey-Solana and D. Teaney, hep-ph/0605199; see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

(Tretor [U=00. DEDUGOEO)U(0. = o0)] )

whereas for quarkonia the relevant quantity is

Tr (Ef(OW(t,0)E;(0))
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Heavy quark and quarkonia correlators

a small, yet consequential difference

A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

What we just found, and had been noticed even earlier by Eller, Ghiglieri and
MOOre, |S S|mp|y Stat|ng tha't They compared M. Eidemuller and M. Jamin, hep-ph/9709419 with

Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

T (ELOW P GOENO), # T [U= 00, DEWUGOEOU(O, ~ )] ).

Foi(t) Fo;(t)

Fo:(0) u £, (0)
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An axial gauge puzzle

an apparent (but not actual) inconsistency

* This finding presents a puzzle:
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The difference In terms of diagrams

operator ordering is crucial!

QQ Q

Perturbatively, one
can Isolate the
difference between

%% > the correlators to
l. A these diagrams.
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The difference In terms of diagrams

operator ordering is crucial!

Perturbatively, one
can Isolate the
difference between

%% > : the correlators to
o) i these diagrams.
® " | |
: ® The difference is due g T
: — : to different operator
: ‘.‘ 00 Py p orderings (different 5 A :
i= & possible gluon ; ;
A insertions). 5 5 5
&
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B. Scheihing-Hitschfeld and X. Yao, hep-ph/2205.04477

Gauge independence of the difference

explicit gauge interpolation

 We performed an explicit calculation of the difference between the correlators

|
in vacuum at NLO, with a gauge condition G,[A] = IAg(x) + 0"A/(x).
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Gauge independence of the difference

explicit gauge interpolation

 We performed an explicit calculation of the difference between the correlators
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explicit gauge interpolation

 We performed an explicit calculation of the difference between the correlators

|
in vacuum at NLO, with a gauge condition G,[A] = IAg(x) + 0"A/(x).

O One finds that the difference is independent of A, and equal to the Feynman
gauge result.

O The axial gauge limit A — 0 is singular only if it is taken at the beginning of
the calculation. However, gauge invariance is manifest in the result!
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B. Scheihing-Hitschfeld and X. Yao, hep-ph/2205.04477

Gauge independence of the difference

explicit gauge interpolation

 We performed an explicit calculation of the difference between the correlators

|
in vacuum at NLO, with a gauge condition G,[A] = IA(C)Z(X) + 0"A/(x).

O One finds that the difference is independent of A, and equal to the Feynman
gauge result.

O The axial gauge limit A — 0 is singular only if it is taken at the beginning of
the Calculatlon However gauge mvarlanee |s manlfest |n the result'
{ = The QQ and Q correlators are different, gauge invariant quantities.
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S0, we understand the weakly coupled
limit in QCD.

What about at strong coupling?




[**] J. Maldacena, hep-th/9711200

Wilson loops in AdS/CFT

setup

* The holographic duality provides a way to formulate the calculation of
analogous correlators in strongly coupled theories. [**]

o Wilson loops can be evaluated by solving classical equations of motion;

(W[E = 0Z]), = e™Ncl™

D-brane

3 J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal
and U. A. Wiedemann, hep-ph/1101.0618
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setup

Strongly coupled calculation in ./ = 4 SYM

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6

oft(s,) of¥(s1)

WI&,]

=0

= (ig)zTrcolorlU 1 52] (}’(Sz))?’p (sp)U (55, sl]F DY sy (51, 0]]
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Strongly coupled calculation in ./ = 4 SYM

setup

* Field strength insertions along a Wilson loop can be generated by taking
variations of the path 6

WIE| = (8 Tregior| Ut Fop (o750 Uy Foor ()0 Uy )
=0
 Same in spirit as the lattice calculation of the heavy quark diffusion

coefficient:
. T
1
~ el el E——  EE——  E—

1] -l

20
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D-brane
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D-brane

21



D-brane
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D-brane

¢ Our task is to solve for |

f the perturbed
worldsheet for

arbitrary (but small)

21



["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational n T
technique vV T

time-ordered branch of SK
contour

Steps of the calculation: B N

1. Find the appropriate Ads/Schwarzsehid ’
background solution

anti time-ordered branch of
SK contour
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["**] J. Casalderrey-Solana and D. Teaney, hep-ph/0605199

Review: Heavy Quark
Diffusion in AdS/CFT

using the same computational
technique

time-ordered branch of SK
contour

[
/

Steps of the calculation: Ry

[ |

1. Find the appropriate AdS/Schwarzschid ’ St it bttt i i
background solution L H

2. Introduce perturbations B o RS s

3. Evaluate the deformed g T
Wilson loop and take P
derivatives anti time-ordered branch of

0 3 SK contour
From here: k = 7y / g°N_. T
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Quarkonia correlator in AdAS/CFT



G. Nijs, B. Scheihing-Hitschfeld and X. Yao, hep-ph/2211.XXXXX

time-ordered branch of SK
contour

Quarkonium
transport In f

AdS/CFT

Conceptually, same steps as
before.

—

AdS/

S . Sch hild
TEPPERRE O E Q E Cbg;:Zr?glel
N )

4+—>
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time-ordered branch of SK
contour
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However, there are two key
differences:
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Schwarzschild
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dynamics of a pair of PP
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time-ordered branch of SK
contour

Quarkonium

transport In f
AdS/CFT

Conceptually, same steps as
before.

However, there are two ke . - 2

differences: AdS/
s i o o I Schwarzschild

| Sty S iich s vt e '_:___ A aari e Q E black hole
1. Background solution: = ;

dynamics of a pair of L
heavy quarks

2. KMS relations & map to
spectral function
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How the calculation proceeds

what equations do we need to solve?

* The classical, unperturbed equations of motion from the Nambu-Goto action to

determine X
1
Se = — drdoy [ - det( 9. X¥0 X) |
NG ZﬂCZ,J' Sy g

 The classical, linearized equation of motion with perturbations in order to be able to
calculate derivatives of (W[Cgf]h = ¢"nalyl,

5 Sngl 2]
of(11)of (1)

fit)ft) + O(f).

=0

* |n practice, the equations are only numerically stable in Euclidean signature, so we

have to solve them and analytically continue back.
25




Summary and conclusions

e \We have discussed how to calculate the chromoelectric correlators of the QGP
that govern quarkonium transport

A. at weak coupling in QCD

B. at strong coupling in /' = 4 SYM

* Relevant for both quantum Brownian motion and quantum optical limits

 Next steps:
O (B;’W"bBib ) correlator at strong coupling in 4/ = 4 SYM

o Use them as input for quarkonia transport codes

e Stay tuned!
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Extra slides



G. Nijs, B. Scheihing-Hitschfeld and X. Yao, hep-ph/2211.XXXXX

Extracting the EE correlator for quarkonia

the pipeline J.P. Boyd, “Chebyshev and Fourier Spectral Methods,” Dover books on Mathematics (2001)

1) Solve for the background worldsheet solution: 2) Solve for the fluctuations with a source as a 3) Extrapolate in the limit L — O:
boundary condition:

N

0.10

0.05

| Y R S S R S S S I S S S S S S S
| | |
o P




T. Binder, K. Mukaida, B. Scheihing-Hitschfeld and X. Yao, hep-ph/2107.03945

The spectral function of quarkonia

symmetries and KMS relations

The KMS conjugates of the previous correlators are such that
OrT —— T, ——
(g7 (@) = e (g 15(q) . [ 15(q) = e g7 15(q) .
and one can show that they are related by

877 15(q) = (8 15 (—q) . (8 17(q) = (g7 5(—q) .

/

The spectral functions [pz ™~ "1:(q) = [g; K ];.(q) — [g+t ];.(q) are not

necessarily odd under g <> — g. However, they do satisfy:

[Pljerr]ji(Q) = —lpg li(=9q) .

X



