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Dynamical Theory

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:

� Critical equation of state.

� Stochastic fluxes, fluctuation-dissipation relations.

� Possible Goldstone modes (chiral field in QCD?)



Outline:

1. Stochastic field theories: Diffusion of a conserved charge.

2. What if fluctuations are large? Functional methods, the nPI action.

3. Numerical approaches to stochastic diffusion.



1. Stochastic diffusion

Consider diffusion of a conserved charge

∂0ψ + ~∇ · ~ = 0 ~ = −D∇ψ + . . .

Introduce noise and non-linear interactions

∂0ψ = κ∇2 δF
δψ

+ ξ

F =

∫
ddx

[
γ

2
(~∇ψ)2 +

m2

2
ψ2 +

λ

3
ψ3 +

u

4
ψ4

]

〈ξ(x, t)ξ(x′, t′)〉 = κT∇2δ(x− x′)δ(t− t′) D = κm2

Equilibrium distribution

P [ψ] ∼ exp

(
−F [ψ]

kBT

)



Stochastic Field Theory

Stochastic effective lagrangian

L = ψ̃
(
∂0 −D∇2

)
ψ + ψ̃DT∇2ψ̃ + ψ̃Dλ∇2ψ2 + . . .

Diffusion Noise Interactions

Matrix propagator

 〈ψ̃ψ̃〉 〈ψ̃ψ〉
〈ψψ̃〉 〈ψψ〉

 =

 0 GR

GA GS

 =

 

Analytic structure of the Schwinger-Keldysh propagator

Interaction vertex

Dλk2
k What are the rules for constructing

more general vertices?



Time reversal invariance

Stochastic theory must describe detailed balance

P (ψ1 → ψ2)

P (ψ2 → ψ1)
= exp

(
− ∆F
kBT

)
Related to T-reversal symmetry

ψ(t) → ψ(−t)

ψ̃(t) → −
[
ψ̃(−t) +

δF
δψ

]
L → L+

dF
dt

Ward identities: Fluctuation-Dissipation relations

2κ Im
{
k2〈ψ(ω, k)ψ̃(−ω,−k)〉

}
= ω〈ψ(ω, k)ψ(−ω,−k)〉



New and non-classical interactions

At this order (Ψ3,∇2) there is one more interaction

Multiplicative noise : L ∼ DλDψ(~∇ψ̃)2

DλDk1 · k2
k1

k2

Non-linear noise vertex

Retarded self energy

noise non−linear noise



Contribute to (non-critical) order parameter relaxation

Σ(ω, k) =
λ′

32π

(
iλ′ωk2 + λD

[
iω −Dk2

]
k2
)√

k2 − 2iω

D

Analytical structure

Diffusive cut dominates over (split)

diffusive pole.

Even higher order: Non-linear noise with no contribution to constitutive

equations.

Chao, T.S. [2008.01269], see also Chen-Lin et al. [1811.12540] and Jain & Kovtun [2009.01356]



2. 1PI effective action

Consider 1PI effective action

Γ[Ψ, Ψ̃] = W [J, J̃ ]−
∫
dt d3x

(
JΨ + J̃Ψ̃

) δW

δJ
= 〈ψ〉 = Ψ ,

Loop expansion

“Classical” equation of motion

(∂t −D∇2)Ψ− Dλ

2
∇2Ψ2 +

∫
d3x dtΨ(x′, t′)Σ(x, t;x′, t′) = 0

Σ(t, x) ∼ λ2θ(t)

t3/2
exp

(
−Dk

2t

2

)



2PI effective action

Consider 2PI effective action

Γ[Ψa, Gab] = W [Ja,Kab]− JAΨA −
1

2
KAB [ΨAΨB +GAB ]

Matrix propagator Gab, Bilocal source Kab

Equation of motion for Ψa unchanged, but Σab satisfies Dyson-Schwinger

equation


Σ11 Σ12

Σ21 Σ22

 =







Gap equation (mixed representation)

Consider mixed representation Σ(t, k2). Free propagator G0
R = Θ(t)e−tDk

2

Σ(t, k2) ∼ λ2

∫
d3k′G(t, k − k′)G(t, k′)

Have to determine G from Dyson equation (matrix structure suppressed)

G(t, k2) = G0(t, k2)−
∫
dt1 dt2G0(t1, k

2)Σ(t2 − t1, k2)G(t− t2, k2)

Short time singularities regulated by Pauli-Vilars “Diffuson”

GR(t, k2) at fixed k is

non-perturbative for

t >
τ

(kξ)2
log

(
2

αg2
3(kξ)2

)
D = ξ4/τ, g3 = λ3ξ

3/2T1/2

δ
G

R
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3. Stochastic relaxation/diffusion

Stochastic relaxation equation (“model A”)

∂tψ = −Γ
δF
δψ

+ ζ 〈ζ(x, t)ζ(x′, t′)〉 = ΓTδ(x− x′)δ(t− t′)

Naive discretization

ψ(t+ ∆t) = ψ(t) + (∆t)

[
−Γ

δF
δψ

+

√
ΓT

(∆t)a3
θ

]
〈θ2〉 = 1

Noise dominates as ∆t→ 0, leads to discretization ambiguities in the

equilibrium distribution.

Idea: Use Metropolis update

ψ(t+ ∆t) = ψ(t) +
√

2Γ(∆t)θ p = min(1, e−β∆F )



Stochastic relaxation

Central observation

〈ψ(t+ ∆t, ~x)− ψ(t, ~x)〉 = −(∆t) Γ
δF
δψ

+O
(
(∆t)2

)
〈[ψ(t+ ∆t, ~x)− ψ(t, ~x)]

2〉 = 2(∆t) ΓT +O
(
(∆t)2

)
.

Metropolis realizes both diffusive and stochastic step. Also

P [ψ] ∼ exp(−βF [ψ])

Note: Still have short distance noise; need to adjust bare parameters such

as Γ,m2, λ to reproduce physical quantities.



Dynamic scaling (model A)

Correlation functions at Tc, V = L3, L = 8, 16, 24, 32

G1(t) = 〈M(0)M(t)〉 M(t) =

∫
d3xψ(x)

Dynamic critical exponent z = 2.026(56).



Correlation functions of higher moments

Correlation functions at Tc

Inset: Dynamic scaling of

G3(t) with

z = 2.026(56).

Gn(t) = 〈Mn(0)Mn(t)〉 M(t) =

∫
d3xψ(x)

Dynamic scaling holds for all n, but decay constant depends on n.



Relaxation after a quench

Thermalize at T > Tc. Study evolution at Tc

Cn(t) = 〈〈Mn(t)〉〉M(0)(n = 2, 4) M(t) =

∫
d3xψ(x)

Observe separate early (“slip”) and late (“dynamical”) exponents.



Stochastic diffusion (model B)

Stochastic diffusion equation (“model B”)

∂tψ = Γ∇2 δF
δψ

+ ζ 〈ζ(x, t)ζ(x′, t′)〉 = −ΓT∇2δ(x− x′)δ(t− t′)

Write this as a conservation law

∂tψ + ~∇ · ~ = 0, ~ = −Γ
δF
δψ

+ ~ξ

and update fluxes qµ = n̂µ · ~

ψ(t+ ∆t, ~x) = ψ(t, ~x) + qµ ,

ψ(t+ ∆t, ~x+ µ̂) = ψ(t, ~x+ µ̂)− qµ ,

with qµ =
√

2Γ∆t θ.



Dynamic scaling (model B)

Correlation functions at Tc, V = L3, L = 8, 12, 16, 24

G1(t, k) = 〈M(0, k)M(t, k)〉 M(t, k) =

∫
d3xψ(x)eix·k

Dynamic critical exponent z = 3.972(2).



Stochastic diffusion

Correlation length and relaxation time as a function of m2

ξ ∼ 1

(m2 −m2
c)
ν

(ν ' 0.54) τ ∼ ξz (z ' 3.73)



Kibble-Zurek scaling

Sweep m2 = m2
c [1 + ΓQ(t− tc)] (τQ = Γ−1

Q )

Expect scaling with τKZ ∼ τ2/3
Q and lKZ ∼ τ1/6

Q



Summary

Dynamical evolution of fluctuations is important.

Old and new ideas about effective actions on the Keldysh contour. In

principle allows systematic derivation of hydro equations for n-point

functions.

Alternative approach: Direct simulation of stochastic fluid dynamics.

New idea: Ignore back-reaction, and use Metropolis (or heat bath?)

algorithm.


