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Dynamical Theory

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:
e Critical equation of state.

e Stochastic fluxes, fluctuation-dissipation relations.

e Possible Goldstone modes (chiral field in QCD?)



Outline:

1. Stochastic field theories: Diffusion of a conserved charge.
2. What if fluctuations are large? Functional methods, the nPl action.

3. Numerical approaches to stochastic diffusion.



1. Stochastic diffusion

Consider diffusion of a conserved charge
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Introduce noise and non-linear interactions
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Equilibrium distribution



Stochastic Field Theory

Stochastic effective lagrangian
L =1 (0y — DV?) ) + yDTV*) + DAV + . ..
Diffusion Noise Interactions

Matrix propagator
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Analytic structure of the Schwinger-Keldysh propagator

Interaction vertex

D2 k What are the rules for constructing
more general vertices?



Time reversal invariance

Stochastic theory must describe detailed balance
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Related to T-reversal symmetry
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Ward identities: Fluctuation-Dissipation relations
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New and non-classical interactions

At this order (I3, V?) there is one more interaction

Multiplicative noise : £ ~ DApth(V))?
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Contribute to (non-critical) order parameter relaxation
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Analytical structure
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Diffusive cut dominates over (split)

diffusive pole.
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Even higher order: Non-linear noise with no contribution to constitutive

equations.

Chao, T.S. [2008.01269], see also Chen-Lin et al. [1811.12540] and Jain & Kovtun [2009.01356]



2. 1Pl effective action

Consider 1Pl effective action
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Loop expansion
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“Classical” equation of motion
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2P1 effective action

Consider 2Pl effective action
1
LW, Gap| = WJa, Kap) — JaV 4 — iKAB WAV p + Gap|

Matrix propagator G, Bilocal source K

Equation of motion for ¥, unchanged, but X, satisfies Dyson-Schwinger

equation
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Gap equation (mixed representation)

Consider mixed representation X(¢, k?). Free propagator G% = @(15)6_“7"C2
N(t, k%) ~ )\2/d3k’ G(t,k— KNGt )
Have to determine G from Dyson equation (matrix structure suppressed)
G(t, k%) = Go(t, k*) — /dt1 dty Go(t1, k*)S(te — t1, k*)G(t — t2, k?)

Short time singularities regulated by Pauli-Vilars “Diffuson”

Gr(t,k?) at fixed k is
non-perturbative for E
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3. Stochastic relaxation/diffusion

Stochastic relaxation equation (“model A")
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Naive discretization
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Noise dominates as At — 0, leads to discretization ambiguities in the

Yt + At) =P (t) + (At) 0 6%) =1

equilibrium distribution.

|ldea: Use Metropolis update

Y (t + At) )+ 2 (At)6 p = min(1,e P27)



Stochastic relaxation

Central observation

(Wt + At T) — (¢, T)) = —(At)r%+0((m)2)
([t + At Z) —(t, D)]°) = 2(ATT + 0 ((At)?) .

Metropolis realizes both diffusive and stochastic step. Also

Ply] ~ exp(=SF[Y])

Note: Still have short distance noise; need to adjust bare parameters such
as I', m?, \ to reproduce physical quantities.



Dynamic scaling (model A)

Correlation functions at T, V = L3, L = 8, 16, 24, 32
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Dynamic critical exponent z = 2.026(56).



Correlation functions of higher moments

Correlation functions at 7,
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Dynamic scaling holds for all n, but decay constant depends on n.



Relaxation after a quench

Thermalize at T' > T,.. Study evolution at T
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Observe separate early (“slip”) and late ( “dynamical”) exponents.



Stochastic diffusion (model B)

Stochastic diffusion equation (“model B")
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Write this as a conservation law
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Dynamic scaling (model B)

Correlation functions at T, V = L3, L = 8,12,16, 24
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Dynamic critical exponent z = 3.972(2).



Stochastic diffusion

Correlation length and relaxation time as a function of m?
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Kibble-Zurek scaling

Sweep m? = m2[1 4+ To(t —t.)] (g = F_l)
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Summary

Dynamical evolution of fluctuations is important.

Old and new ideas about effective actions on the Keldysh contour. In
principle allows systematic derivation of hydro equations for n-point

functions.

Alternative approach: Direct simulation of stochastic fluid dynamics.
New idea: Ignore back-reaction, and use Metropolis (or heat bath?)

algorithm.



