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QCD phase diagram
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In the vicinity of the hypothetical phase transition

Cosmic matter in the laboratory, access to vector and axial interactions
important for neutron matter

Exotic states of matter: phase transition in delta matter, pion interactions
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Nuclear matter

Consists of nucleons: protons and neutrons. Its ground state (P = 0, T = 0)
parameters estimated from properties of nuclei:

Normal nuclear density: ρ0 = 0.16 fm−3

Binding energy E/A = -16 MeV from extrapolation of energy of finite nuclei

Evidence for nuclear liquid-gas transition found experimentally [ALADIN@GSI (1995)]
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R. V. Poberezhnyuk, V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, arXiv:1708.05605 [nucl-th]

Nuclear matter model parameters are commonly constrained to ground state
properties. The phase diagram, e.g. the critical point location, are predicted.
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Dileptons in heavy ions

’Primordial’ qq̄ annihilations:
NN → ee+X

Thermal radiation from QGP and
hadrons:qq̄ → ee+, π+π− → ee+;

Short lived states, ρ, chiral
symmetry

Multi-meson reactions ”4π”

d8N
d4xd4k

= −λ1.3
π

α2

π3M2 f
BE (k0,T )13g

µν Im
[
Πµν
EM(M, k , nB ,T )

]
in-medium ρ-, ω- and ϕ meson spectral functions from
hadronic many-body theory [Rapp, R., Wambach, J. (2002)]
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Ultrarelativistic Quantum Molecular Dynamics

ṙ = ∂H
∂p

;ṗ = − ∂V (nB (r))
∂nB (r)

∂nB (r)
∂r

, nB(r) =
∑

j

(
α
π

)3/2
Bj exp

(
−α(r − rj )

2
)

U(nB) =
∂nBV (nB )

∂nB
, U(nB) = a

(
n
n0

)
+ b

(
n
n0

)γ
or m∗ −m − µ∗ + µ

M. O. Kuttan, A. Motornenko, J. Steinheimer, H. Stoecker, Y. Nara, and M. Bleicher, A chiral mean-field
equation-of-state in urqmd: effects on the heavy ion compression stage, 2022 6 / 17
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Coarse Graining

In order to extract medium properties we apply coarse graining procedure.(see
e.g.T. Galatyuk, P. M. Hohler, R. Rapp, F. Seck, and J. Stroth, “Thermal
dileptons from coarse-grained transport as fireball probes at SIS energies”, The
European Physical Journal A 52 (2016), S. Endres, H. van Hees, J. Weil, and
M. Bleicher, “Dilepton production and reaction dynamics in heavy-ion collisions
at sis energies from coarse-grained transport simulations”, Physical Review C
92, 014911 (2015), S. Endres, H. van Hees, and M. Bleicher, “Photon and
dilepton production at the facility for antiproton and ion research and
beam-energy scan at the relativistic heavy-ion collider using coarse-grained
microscopic transport simulations”, Phys. Rev. C 93, 054901 (2016))

Space-time is separated into cube‘s of size dx i = .5fm.

For each cube its four velocity is being computed from the Tµν relations in the
cube‘s rest and laboratory frames of reference.

Tµν = (e + P)uµuν − Pgµν ;

T 0ν = (ec.m., p⃗c.m.);

nµc.m. = nuµ;
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Coarse Graining
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AuAu collisions at
Ekin = 1.23, 2, 4, 6, 10 AGeV
considered.

impact parameter b = 0− 2fm.

50000 events generated in each
case.
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Equations of State
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J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara,

V. Koch, and M. Bleicher, The high-density equation

of state in heavy-ion collisions: constraints from proton

flow, 2022

Hard Skyrme reproduces proton
flow data and many other
observables however doesnt include
phenomenology beyond nuclear
saturation density

CMF includes most of the known
QCD phenomenology including
high density region. The EoS is
expected to soften at higher
density.
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First Order Phase Transition
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FOPT at HADES energy (PT 1)
and at the energy 2AGeV (PT 2)

Isentropic cooling/reheating

Softening of the equation of state
occurs
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Pion excess

0 10 20 30 40 50
t [fm/c]

0

20

40

60

80

100

N
i

Elab 1.23AGeV
AuAu, 0-2fm

 CMF
 soft
 PT 1
 CMF
 hard
 PT 2
+  CMF

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [fm/c]

1.0

1.5

2.0

2.5

3.0

3.5

4.0
x = . 5fm, t = . 5fm/c

CMF EoS, AuAu b=0 2fm

V=8fm3

1.23AGeV
2AGeV
4AGeV
6AGeV
10AGeV

The number of π‘s is way above thermal model n(T ) predictions

UrQMD has about 40% more pions than observed in the experiment

µπ ≈ T ≈ mπ pion condensation and interaction can be important
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Cumulative production of dileptons
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Emission starts around the time of nuclei overlapping and continues for some time.
FOPT increases firebals‘ lifetime.
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Cumulative production of dileptons
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Dilepton spectra
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Fugacity changes dilepton yield by roughly a factor of 2;

The slope is not sensitive to fugacity factor;
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Effects of FOPT

0.2 0.4 0.6 0.8 1.0 1.2 1.4
M[GeV/c2]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

R
PT

/C
M

F

1.23AGeV
2.0AGeV
4.0AGeV
6.0AGeV
10.0AGeV

0.2 0.4 0.6 0.8 1.0 1.2 1.4
M[GeV/c2]

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

R
PT

2/
CM

F

1.23AGeV
2.0AGeV
4.0AGeV
6.0AGeV
10.0AGeV

After the FOPT temperature of the spectra increases
R ≈ exp [M(1/TCMF − 1/TFOPT )];
Low M suggest temperature decreases but fugacity and lifetime increases
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;
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Excitation function from dileptons
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Conclusions

Dilepton production is sensitive to the hadronic equation of
state at large density.

Dileptons are created relatively early and show denser part of
the EoS.

Enhancement factor of Neē/Nπ++π− 2-3 for the emission rate
at masses of M ≈ 50 MeV and 1.4 from the integrated yield.

Dilepton temperature reduction of about 5 MeV is observed in
the low mass.

Thank you for attention!
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