Ab initio calculations of beta decay recoil-order form factors for precision measurements

Grigor Sargsyan

INT 23-1b program, 9 May 2023,

Seattle, WA

LLNL-PRES-848793 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Beta decay as a probe for BSM studies

Precision measurements need input from nuclear theory

Unitarity of the CKM quark mixing matrix

$\begin{pmatrix} d_w \\ s_w \\ b_w \end{pmatrix} =$	$\begin{pmatrix} V_{ud} & V_{us} & V_{u} \\ V_{cd} & V_{cs} & V_{c} \\ V_{td} & V_{ts} & V_{t} \end{pmatrix}$	$\begin{pmatrix} a_{b} \\ b_{b} \\ b \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$
Weak states	CKM mixing matrix	Mass eigenstates

Neutrinoless double beta decay

From first principles to nuclear properties

Explosive growth of the model space

Lawrence Livermore National Laboratory LLNL-PRES-848793

Symmetry-adapted basis helps dramatically reduce the models space size

Lawrence Livermore National Laboratory

Symmetry-adapted Basis: SU(3)-coupled

oscillator (HO): basis states given by {N | m} $N = n_{z} + n_{x} + n_{y}$ Basis states given by {n_x n_y n_z}

$$a_{Nlm}^+ \equiv a_{(N\ 0)lm}^+$$

Basis states given by $(\lambda \mu)$ quantum numbers

6

Weak interaction in Standard Model

A series of β -decay experiments lead to the formulation of the V – A structure of the weak interaction:

C. S. Wu, *et al.*, Phys. Rev. 105, 1413 (1957).
W. B. Herrmannsfeldt, *et al.*, Phys. Rev. 107, 641 (1957).
C. Johnson, *et al.*, Phys. Rev. 132, 1149 (1963).

Weak interaction in Standard Model

Precision measurements of ⁸Li beta decay to probe BSM physics

M. G. Sternberg, R. Segel, N. D. Scielzo, *et al.*, PRL **115**, 182501 (2015). MT Burkey, G Savard, AT Gallant, *et al.*, PRL 128 (20), 202502 (2022).

Precision measurements of ⁸Li beta decay to probe BSM physics

M. G. Sternberg, R. Segel, N. D. Scielzo, *et al.*, PRL **115**, 182501 (2015). MT Burkey, G Savard, AT Gallant, *et al.*, PRL 128 (20), 202502 (2022).

Systematic Uncertainty	$\Delta C_T/C_A ^2$	
Calibration	$1.4 imes 10^{-4}$	
α energy corrections	1.17×10^{-3}	
Cuts to the data	1.25×10^{-3}	
Radiative and recoil order terms	3.36×10^{-3}	>
α Si detector lineshape	6.3×10^{-4}	
β Scattering	$5.0 imes10^{-4}$	
Total	$3.62 imes10^{-3}$	

From Mary Burkey's PhD Thesis (U. Chicago/ANL/LLNL, 2019)

Precision measurements of ⁸Li beta decay to probe BSM physics

M. G. Sternberg, R. Segel, N. D. Scielzo, *et al.*, PRL **115**, 182501 (2015). MT Burkey, G Savard, AT Gallant, *et al.*, PRL 128 (20), 202502 (2022).

Systematic Uncertainty	$\Delta C_T/C_A ^2$	
Calibration	$1.4 imes 10^{-4}$	
α energy corrections	1.17×10^{-3}	
Cuts to the data	1.25×10^{-3}	
Radiative and recoil order terms	$3.36 imes 10^{-3}$	
α Si detector lineshape	$6.3 imes 10^{-4}$	
β Scattering	$5.0 imes10^{-4}$	
Total	$3.62 imes10^{-3}$	

From Mary Burkey's PhD Thesis (U. Chicago/ANL/LLNL, 2019)

$$\langle A \rangle = a \times 1 + b \times \frac{q}{M} + c \times \frac{q^2}{M^2} + \dots$$

Leading order Recoil-order
(Gamow-Teller)

For ⁸Li beta decay q/M ~ 0.002

Experiment needs reliable β -decay recoil-order terms

Systematic Uncertainty	$\Delta C_T/C_A ^2$	
Calibration	$1.4 imes 10^{-4}$	
α energy corrections	$1.17 imes 10^{-3}$	
Cuts to the data	1.25×10^{-3}	
Radiative and recoil order terms	$3.36 imes 10^{-3}$	\triangleright
α Si detector lineshape	$6.3 imes 10^{-4}$	
β Scattering	$5.0 imes10^{-4}$	
Total	$3.62 imes10^{-3}$	

From Mary Burkey's PhD Thesis (U. Chicago/ANL/LLNL, 2019)

Need more accurate and precise $j_{2,3}/A^2c_0$ and other recoil-order terms

Use ab initio methods to calculate them

Beta decays with SA-NCSM

Correlation between j_K and Q helps constrain recoil order terms

Lawrence Livermore National Laboratory LLNL-PRES-848793

Most precise beta-decay measurement of its type in 50 years!

Mary Burkey's PhD Thesis (U. Chicago/ANL/LLNL, 2019)				
	Systematic Uncertainty	$\Delta C_T/C_A ^2$		
	Calibration	$1.4 imes 10^{-4}$		
	α energy corrections	1.17×10^{-3}		
	Cuts to the data	1.25×10^{-3}		
	Radiative and recoil order terms	3.36×10^{-3}	\supset	
	α Si detector lineshape	$6.3 imes 10^{-4}$		
,	β Scattering	$5.0 imes 10^{-4}$		
	Total	$3.62 imes 10^{-3}$		

TABLE I. Summary of dominant systematic uncertainties. listed at 1σ .

Sy	stematic Uncertainty	$\Delta C_T/C_A ^2$
ory	Intruder State (added linearly)	0.0005
The	Recoil-Order Terms & Radiative Corrections	0.0015
at	α -Energy Calibration	0.0007
imeı	Detector Lineshape	0.0009
xper	Data Cuts	0.0009
É	β Scattering	0.0010
To	otal	0.0028

Most precise beta-decay measurement of its type in 50 years!

MT Burkey, G Savard, AT Gallant, et al., PRL 128 (20), 202502 (2022).

Weak magnetism and induced tensor recoil-order terms

- Weak magnetism (b) and induced tensor (d) recoil terms: next significant after j₂ and j₃
- Important for the tests of conserved vector current (CVC) hypothesis and existence of second class currents
- With SA-NCSM we can calculate these beta decay recoil-order terms for up to intermediate mass nuclei

Possible intruder states in ⁸Be can explain the discrepancy in ⁸Li beta decay

Adapted from https://nucldata.tunl.duke.edu

Lawrence Livermore National Laboratory LLNL-PRES-848793

0⁺ and 2⁺ intruder states in ⁸Be

⁸Be low-lying 0⁺ and 2⁺ states not confirmed in experiments

F. C. Barker. Australian Journal of Physics, vol. 21, 239–257, 1968. F. C. Barker. Australian Journal of Physics, vol. 22, 293–316, 1969.

Recoil terms for all ⁸Li β -decay accessible states

⁸ Be states	j_2/A^2c_0	j_3/A^2c_0	d/Ac_0	b/Ac_0
2^+_1	-966 ± 36	-1546 ± 44	10.0 ± 1.0	6.0 ± 0.4
$2^+_2(\mathrm{new})$	-10 ± 10	-80 ± 30	-0.5 ± 0.5	3.7 ± 0.4
$2^+_3(\operatorname{doublet} 1)$	12 ± 5	-60 ± 15	0.3 ± 0.2	3.8 ± 0.2
$2^+_4(\operatorname{doublet} 2)$	11 ± 3	-65 ± 11	0.2 ± 0.2	3.8 ± 0.2

→ j_2/A^2c_0 and j_3/A^2c_0 values for the lowest 2⁺ are much larger than for other states

> b/Ac_0 and d/Ac_0 values are also important for tests of conserved vector current hypothesis

Previous state-of-the-art values for j_2 and j_3

PHYSICAL REVIEW C 83, 065501 (2011)

Test of the conserved vector current hypothesis by a β -ray angular distribution measurement in the mass-8 system

T. Sumikama,^{1,2} K. Matsuta,¹ T. Nagatomo,³ M. Ogura,¹ T. Iwakoshi,¹ Y. Nakashima,¹ H. Fujiwara,¹ M. Fu M. Mihara,¹ K. Minamisono,⁴ T. Yamaguchi,⁵ and T. Minamisono⁶

> $j_2/A^2c_0 = -490 \pm 70$ $j_3/A^2c_0 = -980 \pm 280$

Extremely difficult measurements ⇒ Large uncertainties
 *j*₂ and *j*₃ values were considered constant over the entire beta decay energy range

Strong correlation between j_2 and j_3 recoil-order terms

Sargsyan, et al., PRL128 (20), 202503 (2022)

Recoil terms for ⁸B to inform precision beta decay experiments

Weak magnetism and induced tensor terms in ²²Na

S. Triambak, et al., Phys. Rev. C 95, 035501 (2017)

Using CVC they determined $|b/Ac| = 8.9 \pm 1.2$ $|d/Ac| = 21 \pm 6$

Which disagree with shell model calculations

Form factor	Calculated value
Weak magnetism b/Ac_1	-19
Second-order axial vector $c_2/c_1 R^2$	-0.37
First-class induced tensor d/Ac_1	-3.2

R. B. Firestone, W. C. McHarris, and B. R. Holstein, Phys. Rev. C 18, 2719 (1978)

- ➢ If the sign of *b*/*Ac* is different from shell model prediction, then $|d/Ac| = 3 \pm 6$
- > Our preliminary calculations favor this scenario

Summary

- The SA-NCSM employs emergent symmetries in nuclei to decrease the dimensionality of the model space, thus allowing us to reach heavier nuclei and large model spaces
- Our calculations of ⁸Li beta decay recoil-order terms helped experiment to constrain BSM tensor currents in the weak interaction
- The calculated b/Ac₀ and d/Ac₀ values are important for tests of conserved vector current hypothesis
- Low-lying intruder states in ⁸Be can have important implications for A=8 beta decays and related precision measurements

Acknowledgements

Mary Burkey, Aaron Gallant, Brenden Longfellow, Nick Scielzo

Kristina Launey, Alexis Mercenne

Louis Varriano, Guy Savard

Tomas Dytrych

Nuclear physics Institute of Czech Academy of Sciences

Lawrence Livermore National Laboratory

LSU Science

Argonne

Experimental crew at the ATLAS facility at Argonne National Lab

Backup slide zone

Recoil-order terms in β -decay

Beta decay rate:

T matrix in SM (V–A):

$$d\Gamma \propto |T|^2$$

1-12

$$T \propto l^{\mu} \langle \beta | V_{\mu} - A_{\mu} | \alpha \rangle$$

$$\begin{split} l^{\mu} \langle \beta, J'M' | A_{\mu} | \alpha, JM \rangle &= C_{J'M'1k}^{JM} \epsilon_{ijk} \epsilon_{ij\lambda\eta} \frac{1}{4M} \big[c(q^2) l^{\lambda} P^{\eta} - d(q^2) l^{\lambda} q^{\eta} \\ &+ \frac{1}{(2M)^2} h(q^2) q^{\lambda} P^{\eta} \mathbf{q} \cdot \mathbf{l} \big] \\ &+ C_{J'M'2k}^{JM} C_{1n2n'}^{2k} l_n (4\pi/5)^{1/2} Y_{2n'}(\hat{q}) \frac{q^2}{(2M)^2} j_2(q^2) \\ &+ C_{J'M'3k}^{JM} C_{1n2n'}^{3k} l_n (4\pi/5)^{1/2} Y_{2n'}(\hat{q}) \frac{q^2}{(2M)^2} j_3(q^2) + \end{split}$$

Systematic Uncertainty	$\Delta C_T/C_A ^2$
Calibration	$1.4 imes 10^{-4}$
α energy corrections	1.17×10^{-3}
Cuts to the data	1.25×10^{-3}
Radiative and recoil order terms	3.36×10^{-3}
α Si detector lineshape	$6.3 imes 10^{-4}$
β Scattering	$5.0 imes10^{-4}$
Total	$3.62 imes10^{-3}$

From Mary Burkey's PhD Thesis (U. Chicago/ANL/LLNL, 2019)

. . .

Recoil-order terms in β -decay

				Systematic Uncertain	ty $\Delta C_T/C_A ^2$	
Beta decay	rate:	$d\Gamma \propto T $	2	Calibration	$1.4 imes 10^{-4}$	
				α energy corrections	$1.17 imes 10^{-3}$	
T matrix in S	SM (V–A	A): $T \propto l^{\mu} \langle \beta \rangle$	$ V_{\mu} - A_{\mu} \alpha\rangle$	Cuts to the data	1.25×10^{-3}	
		Leading order	Recoil-	Radiative and recoil of	order terms 3.36×10^{-3}	>
Axial current		(Gamow-Teller)	order q/M	α Si detector lineshap	6.3×10^{-4}	
matrix element				β Scattering	$5.0 imes 10^{-4}$	
$l^{\mu}\left\langle eta,J^{\prime}M^{\prime} ight A_{\mu}\left lpha,JM ight angle$	$= C^{JM}_{J'M'1k}$	$_{k}\epsilon_{ijk}\epsilon_{ij\lambda\eta}rac{1}{4M}\left[c(q^{2})l^{\lambda}P^{\eta} ight] - d(l^{\lambda})$	$(q^2) l^\lambda q^\eta$	Total	$3.62 imes10^{-3}$	
Î	$+ \frac{1}{(2M)^2}$	$h(q^2)q^{\lambda}P^{\eta}\mathbf{q}\cdot\mathbf{l}]$		From Mary Burkey's Ph	D Thesis (U. Chicago/ANI	_/LLNL, 2019)
Lepton current matrix element	$+ C^{JM}_{J'M'2k}$	$_{k}C_{1n2n'}^{2k}l_{n}(4\pi/5)^{1/2}Y_{2n'}(\hat{q})rac{q}{(2N)}$	$\frac{j^2}{M)^2} j_2(q^2)$ R ((Recoil-order q/M) ²	For ⁸ Li and ⁸ B beta decay g/M ~ 0.002	
	$+ C^{JM}_{J'M'3k}$	$_{k}C_{1n2n'}^{3k}l_{n}(4\pi/5)^{1/2}Y_{2n'}(\hat{q})\frac{q}{(2N)}$	$\frac{j^2}{M)^2} j_3(q^2) + \dots$			

Recoil-order terms b/Ac_0 and d/Ac_0

Weak magnetism (b) and induced tensor (d) recoil terms become the next significant sources of uncertainty with more precise j₂ and j₃.

$$b \propto g_M \langle \Psi_f || \sum_i^A \tau_i^{\pm} \sigma_i ||\Psi_0\rangle + g_V \langle \Psi_f || \sum_i^A \tau_i^{\pm} L_i ||\Psi_0\rangle$$
$$d \propto \langle \Psi_f || \sum_i^A \tau_i^{\pm} \sqrt{2} [L_i \times \sigma_i]^1 ||\Psi_0\rangle$$
$$g_M(0) = 4.7 \text{ Weak magnetism coupling}$$
$$g_V(0) = 1.0 \text{ Vector coupling}$$

⁸Be low-lying 0⁺ and 2⁺ states not confirmed in experiments

$$\begin{split} j_{K}(q^{2}) &= -(-)^{J'-J} \frac{2}{3} \frac{g_{A}(q^{2})}{\sqrt{2J+1}} \frac{M^{2}c^{4}}{(\hbar c)^{2}} \langle J'| \left| \sqrt{\frac{16\pi}{5}} \sum_{i}^{A} \tau_{i}^{\pm} r_{i}^{2} [Y_{2}(\hat{r}_{i})]^{K} \times \sigma_{i} \right| \left| J \right\rangle \\ &= -(-)^{J'-J} \frac{2}{3} \frac{g_{A}(q^{2})}{\sqrt{2J+1}} \frac{(Am_{N})^{2}c^{4}}{(\hbar c)^{2}} b^{2} \langle J'| \left| \sum_{i}^{A} \tau_{i}^{\pm} [\hat{Q}_{2}(\hat{r}_{i}) \times \sigma_{i}]^{K} \right| \left| J \right\rangle \\ &= -(-)^{J'-J} \frac{2}{3} \frac{g_{A}(q^{2})}{\sqrt{2J+1}} \frac{A^{2}m_{N}c^{2}}{\hbar \Omega} \langle J'| \left| \sum_{i}^{A} \tau_{i}^{\pm} [\hat{Q}_{2}(\hat{r}_{i}) \times \sigma_{i}]^{K} \right| \left| J \right\rangle, \end{split}$$

