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Evidence for Dark Matter
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Our Hubble Volume Nearby Galaxies

Galaxy Clusters

Composite: NASA, Markevitch etal., Clowe et al.
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The QCD Axion: Motivation

• QCD is naturally CP violating from phenomena like QCD-
instantons

• One naively expects a neutron electric dipole moment of 10-16 e 
cm

• But nEDM is measured to be below 3x10-26 e cm (Baker, 2006)

• The best explanation?  New U(1) axial symmetry, that when 
broken, cancels CP violation in the strong sector (Peccei, Quinn, 
1977)

• Consequence: New particle, called the axion  (Weinberg, Wilczek, 
1978) d = 10-16 e cm

< 3x10-26 e cm
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Axions as Dark Matter
• Misalignment Mechanism - Long 

before nucleosynthesis, Peccei-
Quinn symmetry is broken and 
massive axions are produced.

• Getting the dark matter density 
right prefers certain axion energy 
scales / masses.

• Decay of strings/topological 
defects may also contribute to 
dark matter.

• Thermal production does not 
contribute to cold dark matter.

D. Marsh, “Axion Cosmology” arXiv:1510.07633
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Promising experimental 
techniques under development

Clean experimental signal
Well developed techniques
Ripe for incorporating 
quantum sensing 
techniques
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Axion Photon Bounds GitHub - cajohare/AxionLimits: Data, plots and code for 
constraints on axions, axion-like particles, and dark photons
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https://github.com/cajohare/AxionLimits


Axion Photon Bounds with non-photon 
bounds pasted on top in an ad-hoc way…

Black Hole 
Superradiance

Neutron 
star 
cooling
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Below 1 ueV

1 ueV – 1 meV

1 meV and above
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Theoretical Preferences

• In general, things that happen before the end of inflation could 
produce dark matter with any axion mass, but after inflation favors 
1ueV and above
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Theoretical Preferences

Incomplete sampling of recent QCD favored mass ranges

Exact preferred mass is 
assumption-dependent.  We’ll 
have to explore a wide range.
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Principle of the Sikivie Axion Haloscope

The	Axion	Haloscope
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Why is an axion haloscope hard?

• We don’t know what frequency to probe

• The signal strength is very small

• The fundamental quantum noise limit is appreciable

• Large-bore, high field magnets are expensive and slow to build
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Axion Haloscope: How to search for Dark Matter Axions

Dark Matter Axions will convert to 
photons in a magnetic field.

The conversion rate is enhanced if 
the photon’s frequency corresponds 

to a cavity’s resonant frequency.

Signal Proportional to
Cavity Volume
Magnetic Field

Cavity Q

Noise Proportional to
Cavity Blackbody Radiation

Amplifier Noise

Sikivie PRL 51:1415 (1983)
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ADMX Design
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Cavity Tuning Range
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A Quantum RF Measurement

20

JPA provided by 
Siddiq Group at UC Berkeley 

The cavity is cooled to ~100 mK. The standard quantum limit 
is ~50 mK at 1 GHz.  The signal amplified by a Josephson 
Parametric Amplifier before reaching the warm electronics.
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Operating a Quantum Amplifier is Non-Trivial
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RF Signal Path Schematic

The JPA is tuned to match the 
cavity frequency

The JPA is optimized to 
minimize system noise 



ADMX Analysis

UW REU 2021 22

Raw Data (100 Seconds)

Correct For This

Look for Bumps in Result

We measure a power spectrum 
about the cavity’s resonance and 
look for a power excess that could 
come from an axion

See Bartram et al. Phys. Rev. D 
103, 032002 (2021)



ADMX Operations

The cavity is tuned every 100 seconds, during which power spectra are 
taken.  Overlapping power spectra are examined for the characteristic 
axion signal shape appearing on-resonance.

The picture on the left shows how an axion signal would appear in the 
data.  This is a synthetic signal.
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Data Taking Cadence

24

14 “nibbles” = ∼ 10 MHz sweeps single scans: range: 50 kHz, resolution: 100Hz,  integration time: 100s
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Blind-Injection Synthetic Signal Detection

The lineshape was 
consistent with 
cosmological predictions

The signal was 
clearly coming from 
inside the cavity

This signal sure looked like 
an axion.  But before we 
began ramping the magnet 
down to be sure, we wanted 
to try looking at it from 
another mode.

25Rybka - August 2022



Axions Couple to TM010 modes, not TM011

Overlap of axion field (black) 
and E&M mode field (red)

This signal appeared in both modes, 
and was thus clearly not an axion.
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ADMX 2021 Exclusion

As we found no axion signals, we can 
exclude an even wider mass range.
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ADMX 2021 Exclusion – KSVZ Dark Matter Density

One can also assume an axion 
model (KSVZ in this case) and 
ask what local dark matter 
density we can exclude
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ADMX 2021 Exclusion - Context
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Run 1C Upgrades to improve Tsys

30

JPA

μ-metal shield c
irc
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- Aluminium 𝐻𝑐 ∼ 0.01T
- squid possibly traps flux quantum

carbon fiber

stainless steel

previous

now

𝑇hotload > 500 → 100mK

Hot load (for calib.)

Attenuator (dictate JPA noise)

Temp Sensor

Cooler Cavity Ensure Quantum Device Performance Improved Calibration System

Heat flow: 70 ->12μW
Temp: 150 -> 100 mK (exp.)

Add temperature sensor

Slide from Tatsumi Nitta
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ADMX Status Right Now

• Taking data summer 2022 to exercise cryogenic upgrades and bring 
limit down to DFSZ coupling with standard axion density/lineshape

• We plan to move to frequencies above 1030 MHz at the end of the 
year
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Taking Data Here Right Now
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ADMX-Extended Frequency Range

• The next step requires a larger volume, higher field magnet: ADMX-
EFR

• We are finalizing the design process and positioning ourselves to 
smoothly transition from running in Seattle to running at Fermilab
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ADMX-EFR – Design Overview 

35

∼ 5 × scan speed of current ADMX

Electronics dil.
fridge Resonator dil.

fridge

Resonator 
array

Low noise 
amplifiers

25mK
0.01 Gauss

100mK
9.4T

Site: Fermilab
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ADMX-EFR: A New Magnet

36

𝐵 ≈ 9.4 T

MRI magnet
University of Illinois Chicago (UIC)

∼ 80 cm warm bore

Manufactured by GE Healthcare in 2003
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ADMX-EFR: More Cavities

18 cavity
array

scan speed ∝ 𝐶2𝑉2𝐺

Simulations:

𝑄0 ∼ 60,000 (predicted, cryogenic)

First Prototypes:

Actuators:
investigating feasibility 

different companies
(Attocube, JPE, PI, …)

𝑉 ∼ 250 ℓ

mode crossings 
(orthogonal between cavities)
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ADMX-EFR: Readout

38

18 JPAs

∼ 5m signal transmission cavity → JPA

require: loss: 𝒪(0.5dB) candidate: air cell cable [Kurpiers et al. EPJ QT. 4, 8 (2017)]

Digital Coherent Power Combining (FPGA based)

Prototype from Wash U.
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R&D Travelling Wave Parametric Amplifiers
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Slide – C. Bartram
See: arXiv: 2110.10262



R&D Ideas 20 GHz and beyond
• Ideas and prototypes ADMX members are involved in

BREAD – folding an axion dish antenna to fit in a solenoid.  
240 GHz+.   Liu et al. Phys. Rev. Lett. 128 (2022) 131801

Orpheus – A tunable dielectric loaded resonator.  First hidden 
photon results at 18 GHz – Cervantes et al arXiv:2112.04542

ADMX Sidecar – demonstration of a TWPA 
wideband quantum amplifier in an axion 
search around 5 GHz (TWPAs have been 
built up to 26 GHz+)
Bartram et al. arXiv:2110.10262
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Snowmass US Axion Program Overview
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We are producing another whitepaper aimed at non-axion community audience.
These feed into the “Cosmic Frontier” Snowmass whitepaper, and then the final Snowmass Report end of this summer.
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Conclusion

• In the past few years, Axion experiments have transition from an 
“instrument development” phase to a “discovery phase”.

• ADMX is leading the way exploring some of the best-motivated 
couplings and masses.

• We have a well-planned upgrade (ADMX-EFR) to continue the search 
at higher masses.

• The axion community has many ideas that can lead to a 
comprehensive exploration of axion parameter space in the next 
decades.
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