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How does one interpret the relativistic invariance of the QC?

Quantization condition operates with the on-shell amplitudes → three-dimensional
scattering equations should be used

A finite box breaks Lorentz/rotational invariance → only infinite volume

Scalar particles, S-wave:

Particle-dimer amplitude : M (P, p;Q, q) = M (P ′, p′;Q ′, q′)

Three-particle amplitude : T (p1, p2, p3; p1, q2, q3) = T (p′
1, p

′
2, p

′
3; p

′
1, q

′
2, q

′
3)

Enables to describe the data taken in different moving frames by using the
relativistic-invariant three-body force → less independent fitting parameters

The way out: write down the scattering equations in the manifestly
Lorentz-invariant form
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RFT: modifying the propagator (same in FVU or NREFT)

Three-particle scattering amplitude, infinite volume (ignoring cutoff):

iT = (1− iK2(iF + iG))−1iK2

iGpℓ′m′;kℓm =
1

2wk
Yℓ′m′(k∗2,p)iS

0
3 (p, k)Y

∗
ℓm(p

∗
2,k)

iFpℓ′m′;kℓm = (2π)3δ3(p− k)
1

2

∫
d3a

(2π)32wa
Yℓ′m′(a∗2,k)iS

iε
3 (p, k)Y ∗

ℓm(a
∗
2,k)

Modification of the three-dimensional propagator (p̃, q̃ are on-shell momenta):

iS iε
3 (p, k) =

1

2w(K− p− q)(w(p) + w(q) + w(K− p− q)− K 0)

− 1

2w(K− p− q)(w(p) + w(q)− w(K− p− q)− K 0)︸ ︷︷ ︸
low-energy polynomial

=
1

m2 − (p̃ + q̃ − K)2

4 / 19



What can go wrong?

Conjecture: low-energy polynomial can be removed by renormalization

The kernel G is singular at high momenta, breaks unitarity already at threshold

w(p) + w(q)− w(K− p− q)− K 0 = 0 for K 0 − 3m ≪ m

. . . has the solution with p,q ∼ m

Possible solution: low cutoff excludes the singularities
↪→ Cutoff should be chosen of order of the particle mass m, cutoff dependence of
the solution cannot be investigated for the whole range of cutoffs
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An alternative formalism (lowest-order only)
(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158, JHEP 02 (2023) 214)

Choose “quantization axis” in direction of an arbitrary unit vector vµ, v2 = 1

The Lagrangian:

L = ϕ†(i(v∂)− wv )(2wv )ϕ+ σT †T +
f0
2
(T †ϕϕ+ h.c.) + h0T

†Tϕ†ϕ

Here, wv =
√
m2 + ∂2 − (v∂)2

The propagator:

⟨0|Tϕ(x)ϕ†(x)|0⟩ =
∫

d4k

(2π)4
e−ik(x−y)

2wv (k)(wv (k)− (vk)− iε)

Matching: f0 → scattering length, h0 → three-body amplitude
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Two-particle sector

Dimer: an alternative description of an infinite bubble sum; dummy field in the
path integral
Mathematically equivalent to the standard treatment – not an approximation

+ + · · · →dimer :

Threshold expansion:

1

2wv (k)(wv (k)− vk)
=

1

m2 − k2
− 1

2wv (k)(wv (k) + vk)︸ ︷︷ ︸
low-energy polynomial

The loop is v -independent!

loop: I (s) = const +
σ

16π2
ln

σ − 1

σ + 1
, σ =

(
1− 4m2

s + iε

)1/2

7 / 19



Relativistic invariant scattering equation

= + + +

Bethe-Salpeter equation

M (p, q) = Z (p, q) + 8π

∫
d3k⊥

(2π)32wv (k)
θ(Λ2 +m2 − (vk)2)Z (p, k)τ(K − k)M (k, q)

τ(P) =
2
√
P2

k∗ cot δ(k∗)− ik∗ k∗ =

√
P2

4
−m2

Z (p, q) =
1

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− (vK )− iε)
+ H̃0 + · · ·
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Relativistic invariance

The two-body propagator τ(K − k) does not depend on vµ

The solution of the scattering amplitude is relativistic invariant:

M (p, q;K ; v) = M (p′, q′;K ′; v ′)

Relativistic invariance is achieved by expressing vµ in terms of the external
momenta

a natural choice: vµ =
Kµ

√
K 2

Three-body amplitude expressed through particle-dimer amplitude
→ relativistic-invariant
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Crucial issues

NREFT + threshold expansion guarantee a manifest Lorentz-invariance of the
two-body amplitude and elastic unitarity; high-energy input is hidden in the EFT
couplings
Beware of the spurious subthreshold poles at the hard scale:

Ebert, Hammer and AR, EPJA 57 (2021) 12, 332

Pang, Ebert, Hammer, Müller, AR and Wu, JHEP 07 (2022) 019

The v -independence of the two-body input is crucial in the proof of relativistic
invariance in the 3-body sector

The three-body force is parameterized by a low-energy polynomial, no singularities
in the complex plane

Explicitly fulfills two- and three-body unitarity; no contradiction with the
decoupling theorem

Relativistic invariance and unitarity are maintained for all values of the cutoff
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Higher partial waves, derivative couplings

The dimer field with an arbitrary (integer) spin

Tℓm =
∑
µi ,νi

(c−1)ℓmµ1···µℓ
Λµ1
ν1 · · ·Λµℓ

νℓ
T ν1···νℓ , Λµ

νv
ν = vµ0 = (1, 0)

(Symmetric) dimer field obeys the constraints

vµiT
µ1···µℓ = 0, Tµ1···µi ···µℓ

µi
= 0

Interaction of a dimer with two particles

L2 =
∑
ℓm

σℓT
†
ℓmTℓm +

∑
ℓm

(T †ℓmOℓm + h.c.)
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Two-particle vertices

Generalization of the on-shell three-momentum to moving frames:

w̄µ
⊥ = w̄µ − vµ(vw̄) , w̄µ = Λµ

νw
ν , wµ = vµwv + i(∂µ − vµ(v∂))

The boost Λ renders the total momentum of the pair Pµ parallel to vµ

Λµ
ν (v , u)u

µ = vµ , uµ =
Pµ

√
P2

, Pµ = p̃µ1 + p̃µ2 (on-shell)

The vertices:

O =
f
(0)
0

2
ϕ2 +

f
(2)
0

4
(ϕw̄µ

⊥w̄⊥µϕ− w̄µ
⊥ϕw̄⊥µϕ) + · · ·

Oµν =
f 02
2

(
3(ϕw̄µ

⊥w̄
µ
⊥ϕ− w̄µ

⊥ϕw̄
ν
⊥ϕ)− (gµν − vµvν)(ϕw̄λ

⊥w̄⊥λϕ− w̄λ
⊥ϕw̄⊥λϕ)

)
+ · · ·

. . . and so on
12 / 19



Three-particle force

L3 =
∑

ℓm,ℓ′m′

∑
LL′JM

T †ℓ′m′
(
Y JM
L′ℓ′ (w ,m′)ϕ†

)
T ℓ′ℓ
JL′L(∆,

→
∆T ,

←
∆T )

((
Y JM
Lℓ (w ,m)

)∗
ϕ
)
Tℓm

Y JM
Lℓ (k,m) = ⟨L(M −m), ℓm|JM⟩YL(M−m)(k) , wµ = Λµ

νw
ν

The three-body force is parameterized by effective couplings

T ℓ′ℓ
JL′L(∆,

→
∆T ,

←
∆T ) = h0 + h1∆+ h2(

→
∆T +

←
∆T ) + · · ·

∆ = K 2 − (3m)2︸ ︷︷ ︸
3-body system

, ∆T = P2 − (2m)2︸ ︷︷ ︸
2-body subsystem

Number of independent couplings depends on the detailed dynamics of the system!
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The Bethe-Salpeter equation

Mℓ′m′,ℓm = Zℓ′m′,ℓm +
∑
ℓ′′

Zℓ′m′,ℓ′′m′′Sℓ′′Mℓ′′m′′,ℓm

The two-body propagator

Sℓ(s) = − 1

σℓ − f 2ℓ (s)
1
2 p

2ℓ(s)I (s)

The driving term

Zℓ′m′,ℓ′′m′′(p, q) =
4π (Yℓ′m′(p̃))∗ fℓ′(sp) fℓ(sq)Yℓm(q̃)

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− vK − iε)

+ 4π
∑
LL′

∑
JM

Y L′ℓ′
JM (p,m′)T ℓ′ℓ

JL′L(∆,∆p,∆q)
(
Y Lℓ

JM (q,m)
)∗
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Relativistic invariance of the framework

Two types of momenta: p̃ = Λ(v)Λ(v , u)p and p = Λ(v)p

Wigner-Thomas rotation

Λ(vΩ) = RΛ(v)Ω−1 , R = R(Ω, v)

Lorentz-transformation of the momenta

p → Λ(vΩ)pΩ = RΛ(v)Ω−1Ωp = Rp , p̃ → Rp̃

Lorentz-transformation of the kernel

Zℓ′m′,ℓm(Ωp,Ωq,ΩK ) =
∑

m′′′m′′

D
(ℓ′)
m′m′′′(R)Zℓ′m′′′,ℓm′′(p, q,K )

(
D

(ℓ)
m′′m(R)

)∗
→ Mℓ′m′,ℓm(Ωp,Ωq,ΩK ) =

∑
m′′′m′′

D
(ℓ′)
m′m′′′(R)Mℓ′m′′′,ℓm′′(p, q,K )

(
D

(ℓ)
m′′m(R)

)∗ ✓
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Relativistic invariant three-body QC

det (A ) = 0

Aℓ′m′,ℓm(p, q) = 2w(p)δpq
(
SL
ℓ′m′,ℓm(K − p)

)−1 − 1

L3
Zℓ′m′,ℓm(p, q)

Even in a finite volume, dimer propagator SL does not depend on vµ

Projection on the irreps of the cubic group and its subgroups can be done in a
standard manner

Meaning of the relativistic invariance in a finite volume: Parameterizing the
three-body force in a Lorentz-invariant manner and fitting it to data in different
frames, the finite-volume corrections to the extracted effective couplings will be
exponentially suppressed.
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Three-particle decays
(F. Müller and AR, JHEP 03 (2021) 152, F. Müller, J.-Y. Pang, AR and J.-J.Wu, JHEP 02 (2023) 214)

a) Decays through the weak or electromagnetic interactions; isospin-breaking decays:
pole on the real axis

Example: K → 3π

b) Decays through strong interactions, the pole moves into the complex plane
Example: N(1440) → ππN

Final-state interactions lead to the irregular volume-dependence in the matrix
element

π
+ · · ·

K π

π
π +

K π

π

+
K

π

π

π

An analog of the LL formula in the three-particle sector?
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The Lagrangian describing decays, and the LL formula

The Lagrangian

LK = K †(i(v∂)− wK
v )(2wK

v )K

+
√
4π

∑
ℓm

(−1)ℓ√
2ℓ+ 1

(
K †Gℓ(∆T )

(
(Yℓ,−m(w))∗ϕ

)
Tℓm + h.c.

)
The effective couplings

Gℓ(∆T ) = G
(0)
ℓ + G

(1)
ℓ ∆T + · · ·

The LL formula relates matrix elements in a finite and infinite volume

L3/2α ⟨n|J†K (0)|0⟩ =
∑
ℓ,i

a
(i)
ℓ (Kα, Lα)G

(i)
ℓ

⟨π(k1)π(k2)π(k3)|J†K (0)|0⟩ =
∑
ℓ,i

A
(i)
ℓ (K )G

(i)
ℓ
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Conclusions, outlook

Quantization condition contains on-shell quantities and thus defines an inherently
three-dimensional formalism

A global fit to the lattice data in different moving frames requires manifestly
Lorentz-invariant framework. How to reconcile these two properties?

Relativistic invariant quantization condition is defined by a consistent
relativistic-invariant decoupling of high and low-energy scales in the
three-dimensional formalism, which does not break unitarity, etc

This can be achieved by quantizing the system in an arbitrary moving frame and
fixing its velocity in terms of the external momenta at the end

The Lorentz-invariant parameterization of the three-body force should be used.
The number of independent couplings at a given order is determined by dynamics

Can be implemented in RFT and FVU as well
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