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Introduction
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Higher partial waves: Thomas-Wigner rotation
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Conclusions, outlook
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How does one interpret the relativistic invariance of the QC?

@ Quantization condition operates with the on-shell amplitudes — three-dimensional
scattering equations should be used

@ A finite box breaks Lorentz/rotational invariance — only infinite volume
@ Scalar particles, S-wave:

Particle-dimer amplitude : .Z(P,p;@,q) = .#(P',p’;Q',q")
Three-particle amplitude T (p1, p2, p3; p1, G2, G3) = T(p1, P2, P3; P1, G2, G5)

@ Enables to describe the data taken in different moving frames by using the
relativistic-invariant three-body force — less independent fitting parameters

@ The way out: write down the scattering equations in the manifestly
Lorentz-invariant form
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RFT: modifying the propagator (same in FVU or NREFT)

@ Three-particle scattering amplitude, infinite volume (ignoring cutoff):

iT = (1-iKo(iF +iG)) " iKa
. 1 * . * *
IGpE’m/;klm = TVV/( %/m’(k2,p)’5§(pa k)%m(plk)
: 3¢3 1 d3a * .cie * *
iFpermtikem = (2m)*6°(p — k)§ /W %’m/(a2,k)’53 (p, k)%m(a2,k)

e Modification of the three-dimensional propagator (p, § are on-shell momenta):

1

2w(K —p —q)(w(p) + w(a) + w(K - p — q) — K°)
1 1

2w(K —p—q)(w(p) + w(q) —w(K—p—q)—K®)  m>—(5+§—K)?

low-energy polynomial

is¥(p,k) =
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What can go wrong?

@ Conjecture: low-energy polynomial can be removed by renormalization

@ The kernel G is singular at high momenta, breaks unitarity already at threshold
wp)+w(q) —wK-—p—q)—K°=0 for K°—3m< m

... has the solution with p,q ~ m

@ Possible solution: low cutoff excludes the singularities
— Cutoff should be chosen of order of the particle mass m, cutoff dependence of
the solution cannot be investigated for the whole range of cutoffs
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An alternative formalism (lowest-order only)
(F. Miiller, J-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158, JHEP 02 (2023) 214)

e Choose “quantization axis” in direction of an arbitrary unit vector v#, v =1
@ The Lagrangian:

£ = ¢i(i(vo) - Wv)(2wv)¢_|-gTTT_|_g(TT¢¢+h_C.)+hOTTT¢T¢

Here, w, = /m? + 02 — (v0)?
The propagator:

d*k e—ik(x=y)
OTHII0 = [ o Bt )

Matching: fy — scattering length, hg — three-body amplitude
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Two-particle sector

@ Dimer: an alternative description of an infinite bubble sum; dummy field in the
path integral
@ Mathematically equivalent to the standard treatment — not an approximation

dimer : >O<+>OO< +o = >=<

@ Threshold expansion:
1 1 1

2w, (k) (wy (k) — vk) — m2 — k2 2w, (k)(w, (k) + vk)

low-energy polynomial
@ The loop is v-independent!

loop: I(s) = const + 7 mnZ= - 1 4m? \ 12
. = n —F In ——— g = —
P 1672  o+1’ s+ ie
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Relativistic invariant scattering equation

EORRNAVARN RN

Bethe-Salpeter equation

3
M(p.a) = Z(p.a) + 87 [ s 0N+ — () Z(p. K)(K — k). (k. )
2V P2 . P2
(P) = k* cot 6(k*) — ik* K= 4 m

1

Z(p.q) = 2wy (K = p— q)(wy(p) + wv(q) + wy(K — p — q) — (VK) — ie)
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Relativistic invariance

@ The two-body propagator 7(K — k) does not depend on v#
@ The solution of the scattering amplitude is relativistic invariant:
M(p,q; K;v) =4, q K V)
@ Relativistic invariance is achieved by expressing v* in terms of the external
momenta
| choi H KE
a natural choice: v/ = ——
VK2

@ Three-body amplitude expressed through particle-dimer amplitude

— relativistic-invariant
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Crucial issues

@ NREFT + threshold expansion guarantee a manifest Lorentz-invariance of the
two-body amplitude and elastic unitarity; high-energy input is hidden in the EFT
couplings
Beware of the spurious subthreshold poles at the hard scale:

Ebert, Hammer and AR, EPJA 57 (2021) 12, 332
Pang, Ebert, Hammer, Miiller, AR and Wu, JHEP 07 (2022) 019

@ The v-independence of the two-body input is crucial in the proof of relativistic
invariance in the 3-body sector

@ The three-body force is parameterized by a low-energy polynomial, no singularities
in the complex plane

e Explicitly fulfills two- and three-body unitarity; no contradiction with the
decoupling theorem

@ Relativistic invariance and unitarity are maintained for all values of the cutoff
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Higher partial waves, derivative couplings

@ The dimer field with an arbitrary (integer) spin

Tom= Y _(cTNm N AT NV = vl = (1,0)

H1--pp—r1
iy Vi

@ (Symmetric) dimer field obeys the constraints
V,LL' TMI"'/'LZ — 0’ Tll;l it e — 0

@ Interaction of a dimer with two particles

L= 0T Tom+ > (T),0m +h.c.)
Im m
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Two-particle vertices

@ Generalization of the on-shell three-momentum to moving frames:
v = wh — vi(vw), wht = Now" | wh = viw, + (0" — v#(v0))
@ The boost A renders the total momentum of the pair P* parallel to v#

pr
Ne(v, u)ut = v# | ut=——, P =p'+ py (on-shell)

VP2’

@ The vertices:

f-(O) ) f(2>
0o = 07 o+ OT (oWh' Wi — Wi pwi ) + - -
fO
o = L (3(¢Wﬁ|7vi¢> — WLOW ) — (8" — VIV ) (ORI Wine — Wiquw)) T
..and so on
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Three-particle force

= S S T (@ w M) TR, AT AT) (e (w, m)) ) Tem
Iml'm’ LL' IM

DM (k, m) = (L(M — m), tm|IM)D (1 my (K), W = Niw

@ The three-body force is parameterized by effective couplings
00 — — — «—
T (A AT, AT) = ho+ A+ h(AT + AT) +

A=K?>-(3m)*, Ar=P>—(2m)?

3-body system 2-body subsystem

@ Number of independent couplings depends on the detailed dynamics of the system!
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The Bethe-Salpeter equation

%glmlygm = ZZ’m’,Zm + Z Zzlml7€//ml/SZ//%E!lmII7£m
o

@ The two-body propagator

1
S(s) = —
Ay BT

@ The driving term

A (Y (B))” fur (5p) 12 (59)Zim(@)
2wy (K — p— q)(wv(p) + wi(q) + wo(K — p — q) — vK —ie)

+an S (o m) I, By, ) (#is(a, m))
Le M

Zzlmlyzl/m// (p, q)
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Relativistic invariance of the framework

@ Two types of momenta: p = A(v)A(v,u)p and p = A(v)p
o Wigner-Thomas rotation

ANva) = RA(VQY, R=R(Q,v)
@ Lorentz-transformation of the momenta
p— Mva)pa = RA(V)Q'Qp=Rp,  p—Rp
@ Lorentz-transformation of the kernel

Zg/m/7gm(Qp,Qq,QK) Z m m’” ZE’m’”,Zm”(pa a, K)(gfsf/)/m(R))*

mlll m/l

S M il P.20,9K) = D D (R) Mo (p. 0, K) (257, (R))

m
m//l m//



Relativistic invariant three-body QC

det (/) =0

-1 1
%’m’,ém(Pv q) = 2W(p)5pq (SEL’m’,Zm(K - P)) - ﬁ Zglmggm(p, q)

@ Even in a finite volume, dimer propagator St does not depend on v*
@ Projection on the irreps of the cubic group and its subgroups can be done in a
standard manner

@ Meaning of the relativistic invariance in a finite volume: Parameterizing the
three-body force in a Lorentz-invariant manner and fitting it to data in different
frames, the finite-volume corrections to the extracted effective couplings will be

exponentially suppressed.
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Three-particle decays
(F. Miiller and AR, JHEP 03 (2021) 152, F. Miiller, J.-Y. Pang, AR and J.-J.Wu, JHEP 02 (2023) 214)

a) Decays through the weak or electromagnetic interactions; isospin-breaking decays:
pole on the real axis
Example: K — 37

b) Decays through strong interactions, the pole moves into the complex plane
Example: N(1440) — n7N

@ Final-state interactions lead to the irregular volume-dependence in the matrix

element
K vs
Shia= e S8

An analog of the LL formula in the three-particle sector?‘
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The Lagrangian describing decays, and the LL formula

@ The Lagrangian
Lk = T('(va)— K)(2WK)K

+ fZ (KTGo(AT)((Z—m(w))*®) Tem + hoc.)

\/T
@ The effective couplmgs

G(AT) =GV +cMar+ -
@ The LL formula relates matrix elements in a finite and infinite volume

L2l @)0) = Y &l (Ka, La)G.

(n(k)m(k)m (k)L O)10) = S AP (k)G
£,i
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Conclusions, outlook

@ Quantization condition contains on-shell quantities and thus defines an inherently
three-dimensional formalism

@ A global fit to the lattice data in different moving frames requires manifestly
Lorentz-invariant framework. How to reconcile these two properties?

@ Relativistic invariant quantization condition is defined by a consistent
relativistic-invariant decoupling of high and low-energy scales in the
three-dimensional formalism, which does not break unitarity, etc

@ This can be achieved by quantizing the system in an arbitrary moving frame and
fixing its velocity in terms of the external momenta at the end

@ The Lorentz-invariant parameterization of the three-body force should be used.
The number of independent couplings at a given order is determined by dynamics

@ Can be implemented in RFT and FVU as well
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