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Motivation

Heavy ion collisions at high 
energy produce a huge 
amount of particles 
characterized by hydrodynamic 
quantities like flux distributions, 
etc

Pictures taken from Giuliano’s talk … 



  

Motivation

Pictures taken from Giuliano’s talk … 

Density follows the nuclear mean field 
potential. Woods-Saxon parametrization 

For spherical Pb only one parameter is 
required to characterize the density

Deformed systems



  

Motivation

Pictures taken from Giuliano’s talk … 

With this generalization is possible to reproduce with 
high accuracy experimental data not only for spherical 
208Pb (LHC) but also for deformed and 129Xe (LHC) 
and  197Au, 238U, 96Ru and 96Zr (RHIC).  

Nuclear intrinsic deformations involve not only axial 
quadrupole deformation, but also triaxial deformation 
(129Xe), hexadecapole (238U) and octupole (96Zr)



  

Motivation

Pictures taken from Giuliano’s talk … 

2021 data on isobar collisions  depart from the 
expected relationships for isobars 

Deviations seem to imply that 
96Ru is more strongly 
quadrupole deformed than 96Zr

96Zr is octupole deformed while 
96Ru is not

Conclusion: Low energy nuclear structure data can be extracted from 
heavy-ion collisions

Caveat: Intrinsic shapes and the deformation parameters 
characterizing them are not physical observables 



  

Symmetries in QM

In the first week of the program Witek gave a nice introduction to intrinsic deformations 
from a physics oriented point of view. Here, I will describe the problem from a different 
perspective

Quick reminder:

● A physical system posses a given symmetry if its Hamiltonian commutes with all the 
operators of the underlying symmetry group

● Parity

● Rotational invariance

If the symmetry group is continuous the Hamiltonian also commute with the generators 
of the symmetry (elements of the group’s algebra). 

● The consequence is the quantum numbers of the eigenstates of H (physical states !) 
can contain the quantum numbers of the generators or the group elements
● Reflection symmetry: Parity good quantum number
● Rotational invariance: J ( SU(2) Casimir) and M are good quantum numbers

Caveats:
● Only valid for stationary states eigenstates of H
● If the eigenstate is degenerate there can be other choices 

(electric dipole moment hidrogen atom and hibridation in atoms)



  

Deformation and intrinsic frame

● The mean field concept is a fruitful one in nuclear physics as it allows to explain 
naturally magic numbers

● The underlying mean field grasps most of the dynamic correlations present in the 
nucleus

● The mean field can be obtained by means of the Hartree-Fock or HFB variational 
approximations to the full many body problem

● As an approximation to the full problem, the mean field does not necessarily preserve 
the symmetries of the full Hamiltonian. In this case we say the mean field approximation 
spontaneously breaks the symmetries of the Hamiltonian

● Same mechanism as unrestricted Hartree Fock in atoms and molecules

● By breaking symmetries in the approximate solution many correlations are 
incorporated into the simple mean field picture (that incorporates the symmetrization 
principle in an straightforward way)

● The mean field symmetry breaking solutions live in the intrinsic frame and are denoted 
as intrinsic wave functions

● As already pointed out by Wigner, linear combinations of rotated deformed intrinsic 
wave functions can restore the angular momentum quantum numbers of the state



  

Intrinsic and Laboratory frame connection

The eigenstates of the Hamiltonian have the quantum numbers of the symmetries, and 
therefore, to improve the symmetry breaking mean field approximate solution one has to 
restore the broken symmetries (i.e. go from the intrinsic to the Lab frame). 

Symmetry restoration is a well defined procedure rooted on group theory grounds

The projectors are linear combinations with the appropriate weights, tailored to the 
quantum numbers to be restored, of the symmetry group elements (see below)

Physical observables have to be computed with the symmetry restored wave 
functions as well as transition probabilities

Please note that in the successful shell model approach, where the problem is solved 
from the beginning in the Lab frame, and the exact solutions within the given 
configuration space are obtained, there is no need to define an intrinsic frame    



  

From the intrinsic to the Lab frame

In Bohr and Mottelson’s rotational model the passage from the intrinsic to the Lab frame 
was based on the introduction of “orientation wave functions” (Wigner functions) times 
intrinsic deformed ones. 

The calculation of physical quantities was always carried out in the Lab frame, but within 
the realm of the model those quantities could be expressed in terms of the corresponding 
quantities in the intrinsic frame. For instance

Where              are the intrinsic deformation parameters. For K=0 bands and quadrupole 
transitions one obtains

In BM’s rotational model physical quantities can be obtained from intrinsic ones
The BM model can be justified microscopically (i.e. with projections) in the 
strong deformation limit, i.e. the intrinsic wave function is well deformed 

The passage from the LAB to the intrinsic frame requires a careful evaluation of 
the assumptions made in the strong deformation limit 



Some reflections

It would be very interesting to analyze the changes in the spatial matter 
distribution after symmetry restoration and configuration mixing

Not a common chore in standard nuclear structure calculations

Computationally intensive

Analyze the role of LAB density in the Glauber Montecarlo Model used 
to study the flux anisotropies 

Perhaps it could be the clue to solve the 96Zr puzzle

● HI analysis point to an octupole deformed nucleus
● Nuclear structure also point to strong octupole correlations
● Calculations point to dynamic instead of static octupole correlations



  

Motivation

Octupole deformation  is a relevant concept in nuclear structure of atomic nuclei

● Next multipole moment after quadrupole (L=3)

● Breaks reflection symmetry (parity). Pear shape 

● Parity doublets and alternating parity rotational bands

● Strong E3 electromagnetic transitions (E1 also but caution applies)

● Octupole ‘’magic’’ numbers: 34, 56, 88, 134 and 196  

and also in other fields of research

● Devise experiments looking for beyond the standard model of particle physics 
(electric dipole moment of elementary particles)

● Interpretation of heavy-ion collision results regarding the flow distribution in the 
transverse plane after quark-gluon plasma creation



  

Octupoles 0.0

The shape of many nuclei is deformed in the intrinsic (body fixed) frame (a mean field 
artifact). Wave function factorizes: deformed x orientation

Deformation described in terms of  multipole moments 

The restoration of  broken symmetries via orientation fluctuations (transformation to the 
LAB frame) generates a “band” for each intrinsic state. Band members labeled by the 
quantum numbers of the restored symmetry

Deformation L Symmetry Bands Transitions
Quadrupole 2 Rotational Rotational (J) E2
Octupole 3 Parity Parity doublets (π) E1,E3

AMEDEE web page @ CEA

Order parameters



  

Octupoles 1.0 (Octupole deformation)

● Octupole deformation shows up as minima of EHFB(Q30) (2MeV depth at most )
● The largest the depth of the octupole well the largest the def at the minimum  
● E(Q30)=E(-Q30) (Interaction invariant under parity)
● In the LAB frame: parity doublets in the limit when there is  no tunneling through the barrier
● Alternating parity rotational bands (def. nuclei)
● Strong E3 transition strengths 

Static
octupole
deformation

Dynamic
octupole 
deformation

Order parameter



  

Permanent octupole deformation

Octupole magic numbers

● 34 (g9/2-p3/2)
● 56 (h11/2-d5/2)
● 88 (i13/2-f7/2)        Δj=Δl=3   
● 134 (j15/2-g9/2)
● 196 (k17/2-h11/2)Gogny D1S HFB results

Y. Cao et al Phys Rev C102, 024311 (2020)

Static octupole correlations

LM Robledo and GF Bertsch, Phys. Rev. C 84, 054302

40 ?



  

Permanent octupole deformation

Octupole magic numbers

● 34 (g9/2-p3/2)
● 56 (h11/2-d5/2)
● 88 (i13/2-f7/2)
● 134 (j15/2-g9/2)
● 196 (k17/2-h11/2)Gogny D1S HFB results

Y. Cao et al Phys Rev C 102, 024311 (2020)                             HFB means non-relativistic with Skyrme interactions    

40 ?



  



  

Symmetry restoration and dynamic octupole correlations

Parity symmetry is broken when β3≠0

Taking the appropriate linear combination of the  two shapes the symmetry is restored

The application of the symmetry 
operator to the intrinsic wave function 
changes the orientation

The procedure works because of the special properties (group theory) of the 
symmetry operator 

Parity restoration is so simple because it is a discrete symmetry.  The symmetry 
group is made of two elements: identity and parity and it is Abelian (1D irreps). Life 
gets a bit more involved for continuous symmetries … 
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Both states have the same intrinsic energy



First step beyond the mean field: Parity projection

Excitation energy of K=0- band

Ground state correlation energy: non zero for reflection symmetric mean field 
ground states. Dynamic correlations imply non-zero intrinsic octupole moment even 
in 208Pb !  

Dynamic octupole correlation energies                        Static correlations

Static versus dynamic



Second step beyond mean field: configuration mixing

Flat energy surfaces imply configuration mixing can lower the ground state energy

Generator Coordinate Method (GCM) ansatz

The amplitude                  has good parity under the exchange 

Parity projection recovered with 

Energies and amplitudes solution of the Hill-Wheeler equation

Collective wave functions

Under some conditions in the norm the complicated HW equation reduces to a 
collective Schrodinger-like equation where Q30 is the coordinate



Second step beyond mean field: configuration mixing

Collective wave functions



  

Static and dynamic octupole correlations

Static octupole correlations are only present in a 
very restricted set of nuclei

Dynamic octupole correlations associated to 
symmetry restoration (parity) are present 
everywhere ( represent around 0.8 MeV)

Dynamic octupole correlations associated to 
fluctuations in the octupole degree of freedom are 
present everywhere ( around 1 MeV extra)

 Beyond mean field effects are relevant for binding 
energies

Calculations were restricted to a limited set of 
around 800 even-even nuclei not too far from the 
stability line. Exploratory calculations in very 
neutron rich nuclei indicate the same trend.
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Some reflections

It would be very interesting to analyze the changes in the spatial matter 
distribution after symmetry restoration and configuration mixing

Not a common chore in standard nuclear structure calculations

Computationally intensive

Analyze the role of LAB density in the Glauber Montecarlo Model used 
to study the flux anisotropies 

Perhaps it could be the clue to solve the 96Zr puzzle

● HI analysis point to an octupole deformed nucleus
● Nuclear structure also point to strong octupole correlations
● Calculations point to dynamic instead of static octupole correlations



  

Quadrupole-Octupole coupling: 96Zr and 96Ru

Zr puzzle: 96Zr, lowest 3- energy in the N=56 isotonic chain and largest B(E3) 
96Ru is spherical (but 098Zr deformed)





Angular momentum projection in 34Si



Symmetry restoration in 58Ni



  

State of the art microscopic description

Our goal is to describe octupole correlations in an unified framework to treat in the 
same footing vibrations, octupole deformed states and any intermediate situation

● The use of an “universal” interaction (EDF) is required for predictability

● Based on  Hartree Fock Bogoliubov (HFB)  intrinsic states. Must be flexible 
enough to accommodate many physical situations like quadrupole and 
octupole coupling

● Symmetry restoration:

➢ Angular momentum projection 
➢ Particle Number projection
➢ Parity projection

● Configuration mixing

Can be avoided if the nucleus is strongly 
deformed (Rotational model) 



  

144Ba

● Weakly deformed nucleus (both quadrupole and 
octupole) with strong Q2-Q3 coupling

● Good agreement for the 1- excitation energy
● Wrong moments of inertia for rotational bands 

(understood: missing cranking-like states (*))
● Good transition strengths E2 and E3

Recent experimental data from B. Bucher et al PRL 116, 112503 (2016)

(*) PRC62, 054319; PLB746, 341



  

Thank you for your attention !
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