Overview: Numerical Methods for Neutrino Quantum Kinetics

Sherwood Richers, University of Tennessee Knoxville

The Problem

- <u>Neutrino transport is the dominant cost</u> of state-of-the-art simulations of core-collapse supernovae and neutron star mergers
- <u>Neutrino flavor transformation</u> modifies amount of heating, amount of mass ejection, and composition of ejecta
- Neutrino flavor transformation occurs on <u>smaller length/time</u> <u>scales</u> than transport

The results are sensitive to resolution

0.6

0.4

0.2

- High-resolution 3D NSM simulations: **12.5 meters**
- High-resolution 2D flavor transformation: **3 m** Nagakura (2023)
- Estimated required resolution:
 0.0003 m

Duan et al. (2006)

One does not simply resolve the FFI.

How hard could it be?

Theory of Neutrino Quantum Kinetics

$$\frac{\partial f_{ab}}{\partial t} + c \mathbf{\Omega} \cdot \nabla f_{ab} = \mathcal{C}_{ab} - \begin{bmatrix} i \\ \hbar [\mathcal{H}, f]_{ab} \end{bmatrix} \text{Vlasenko+ (2014)} \\ \text{Volpe (2015)} \\ \text{Blaschke \& Cirigliano (2016)} \end{bmatrix}$$

$$\frac{\partial f_{ab}}{\partial t} + c \mathbf{\Omega} \cdot \nabla f_{ab} = \begin{bmatrix} \mathcal{C}_{ab} \\ -\frac{i}{\hbar} \begin{bmatrix} \mathcal{H}, f \end{bmatrix}_{ab} \end{bmatrix}$$

$$V \text{lasenko+ (2014)}$$

$$V \text{olpe (2015)}$$

$$B \text{laschke \& Cirigliano (2016)}$$

$$The Supernova Problem''$$

<u>Neutrino Transport Reviews</u> Bruenn (1985) Burrows, Reddy, Thompson (2007) Mezzacappa (2022) Combining with one-loop effects Cherry (2012) Vlasenko (2017) Vlasenko & McLaughlin (2018) SR et al. (2019) Shalgar & Tamborra (2020, 2022) Johns (2021) Martin et al. (2021) Sasaki et al. (2021)

Nagakura (2022) Hansen et al. (2022) Johns & Xiong (2022) Kato & Nagakura (2022) Padilla-Gay et al. (2022) Kato, Nagakura, & Zaizen (2023) Lin & Duan (2023) Xiong et al. (2023)

Oscillations and collisions are not generally separable

Multiple collision processes matter

Simulation of Neutrino Quantum Kinetics

Bulb Model (Dirichlet boundary conditions)

 \rightarrow Numerical demonstrations of collective oscillations, MNR, Halo effect

(see also Galais+2012, Malkus+2012, Tian+2017, many more)

Evolve U instead of f (unitary operator)

Evolve OUTWARD \rightarrow 1+0 dimensional

(Single-angle approximation) 15

Bulb Model (Halo Effect)

General Features of the FFI

1. Exponential growth of perturbations

Sawyer (2005), Dasgupta, Sen, Mirizzi, Morinaga, Padilla-Gay, Abbar, Xiong, Wu, Bhattacharyya, Zaizen, George, Duan, Sigl, Capozzi, Shalgar, Raffelt, Chakraborty, Kato ... [many contributions]

- Complete mixing within "ELN Crossing", incomplete elsewhere to preserve lepton # Bhattacharyya & Dasgupta (2021)
- 3. Modes spreading to exponential distribution. SR et al. (2021)
- 4. Coherent post-saturation flavor wave Duan et al. (2021)
- 5. Non-trivial interplay with collisions Padilla-Gay, Shalgar, Johns, Xiong, Sasaki, Sigl, Tamborra, Hansen, Martin, SR

Multiple dimensions allow broken symmetries

Local FFI in 3D is similar to well-constructed 1D model

19

Reduced coupling enables global analysis

 \rightarrow FFI can modify CCSN and NSM outcomes

20

Moments are <u>fast</u>, but face difficulties

Post-processing simulations without flavor transformation

The FFI can! (Nagakura 2023)

Tamborra+(2017) Wu+(2017) George+(2020) Abbar+(2020, 2021) Morinaga+(2020) Azari+(2019,2020) Nagakura & Johns (2021) Capozzi+(2021)

We can quickly detect instability in NSMs and CCSNe

23

Ehring+2023: [Density cutoff] FFI can help (low-mass) or hinder (high-mass) CCSN explosion

effective models

Bhattacharyya & Dasgupta (2022)

Zaizen & Nagakura (2023)

Expect FFI to have a moderate impact on outflows

Replacing Simulation with Machine Learning

Invariance

- Rotation (Lorentz)
- $v_i \leftrightarrow v_j$
- $v_i \leftrightarrow \bar{v}_i$

Conservation

- $\sum_i F_{\nu_i}^{\alpha}$ and $\sum_i F_{\overline{\nu}_i}^{\alpha}$
- $\sum_{i} (F_{\nu_i}^t F_{\overline{\nu}_i}^t)$

Other

- Do <u>exactly nothing</u> when stable
- \tilde{F} must be stable
- Flux factor <1
- Positive density

Replacing Simulation with Machine Learning

Invariance

- Rotation (Lorentz)
- $v_i \leftrightarrow v_j$
- $v_i \leftrightarrow \bar{v}_i$

Conservation

- $\sum_{i} F_{\nu_i}^{\alpha}$ and $\sum_{i} F_{\overline{\nu}_i}^{\alpha}$
- $\sum_i (F_{\nu_i}^t F_{\overline{\nu}_i}^t)$

Other

- Flux factor <1
- Positive density

Replacing Simulation with Machine Learning

A Warning about Parameter Space

Results generalize poorly outside the training data

The Future

