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INT 20R-2b: Beyond the Standard Model Physics with

Nucleons and Nuclei

+ Electromagnetic corrections to g, at the % level
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+ What would happen in few-body systems?
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Radiative Corrections in Nuclear Physics

Beta Decay
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Beta Decay
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Radiative Corrections in Nuclear Physics
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Radiative Corrections in Nuclear Physics
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Effective Field Theory Tower

Goal: Low energy, high precision, universal

Effective field theories should... dov

1. Have all particles that are near the mass-shell

2. Have a homogeneous power counting

governed by a single ratio of scales

GeV

3. Be renormalization group invariance up to

the order we are working

4. Preserve relevant symmetries (gauge,

1/a

discrete, internal)

5. Make life easier



Nonrelativistic EFT with Virtual Photons

» Energy and momenta are different but correlated scales

v~p/M=+/E/M

potential region : (E,p) ~ (Mv?, Mv)

»  But our prototype diagram doesn’t scale with a single power of v?

Caswell, Lepage, Labelle, Luke, Manohar,
Rothstein, Savage, GrieBhammer, Grinstein,
Stewart, Hoang, Pineda, Soto, Brambilla, Vairo



Nucleons vs. 1t
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Nonrelativistic EFT with Virtual Photons

Y

A

myv

+ Energy and momenta are i
different but correlated scales //

v~p/M=+E/M p

+ Homogeneous power counting
requires mode separation

potential ~ (Muv?, Mv) : N,
soft ~ (Muv, Mv) : A,
ultrasoft ~ (Mv?, Mv?) : A mv°

A
Y

Caswell, Lepage, Labelle, Luke, Manohar,
Rothstein, Savage, GrieBhammer, Grinstein,
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Velocity EFT Lagrangian
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Neutron-Proton Potential
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Proton-proton potential
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“Matching” to AV18

+ The LECs need to be matched at y = m_ at O(a")

4ma

C(S) match — Mg ) = -

0 (Mmatch ) M
: 27Ta§7°8 Ta’r
Cé )(,umatch = mw) = M CziS) (,umatch = mﬂ') = ]\ZSNS

+ Use Argonne v18 with a = 0 as proxy for lattice QCD—*"integrate out
the pion”

ag = —23.084 fm g — 2. (03 I App = —17.164Im
a; = 5.402fm rn = L o ini oy = 2509 1

+ Next: Run g from m_ — p at O(a) and calculate matrix elements

14 Wirigna et al. PRC 51



Summing LLogs in Bound States

L ~log(mp/mpy)

1. Obtain anomalous dimensions for
the couplings in perturbation
theory

2. Integrate the RG equations from
matching scale to typical bound
state velocity

3. Calculate bound state matrix

elements Cohen arXiv:1903.03622
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Loop Corrections and the Velocity Renormalization
Group

+ Perturbation theory generates two (possibly) large logarithms

p?Cy | Ag log = 4 Myglog &
D E

+ Introduce two correlated scales 1n dimensional regularization

ps = Myv pu = Myv®
+ Run 1n v—sum soft and ultrasoft logarithms simultaneously
aVv 49 aVv %
V—— = e =
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e Luke et al. PRD 61



Velocity RG Solution

>< S
-0 (5) - (5) cvos (s

i) = Cu (37 ) +4<Af:> e (i)




Neutron-proton potential
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Deuteron Binding Energy
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Electroweak Matrix Elements: A Case Study in Proton-
Proton Fusion

+ Typical proton momentum in the sun p ~ 2.5 MeV, E, ~ 1 MeV

—1
B o OB <,
+ Coulomb interaction 1s nonperturbative for v ~ a
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+» Want to recover from an EFT perspective—expand in p/4/2M B, and resum what has to be
resummed

20 Kong and Ravndal PRC 64, NPA 656



Matching

+ Treat deuteron like a fundamental particle

= Wilson coefficient given by hard part (k, ~ v, kK ~ y,) of
pionless result— perturbative in a and to all orders in C(gpp )

LD %geﬂ?Li d' (pazp)
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Cépp ) Anomalous Dimension
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2. Anomalous Dimension
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EFT Amplitude
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RG Improving the Amplitude
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Uncertainty Estimate

+ Matching < 0.5 %

Ong goes in the matching i
Combes et al. PRC 110 0.05
o 0.04 -
% Ultrasoft < 0.1 %
N—% 0.03
=
E 0.02
+ Soft = Fermi function -
and other 0.5 %
Hill and Plestid PRL 133, PRD 109 0.001 .
1 2 3 4 5
p

» Scale variation ~ 30 %
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Summary

+ Nucleons + photons = heavy quarkonium + gluons

+ LL_, improved two nucleon interaction—few percent effect from QED logs in
deuteron binding

+ 30% uncertainty in pp fusion—improve with NLL ? Power suppressed potentials?

+ Embed correlated running in the superallowed framework—are intranuclear

- ?
corrections understood Cirigliano ot al, PRL 133

+ Revisit corrections in trittum—KATRIN, Project 8

27



