Searching for Moliere scattering with

jet substructure observables

Raymond Ehlers¹

18 October 2023

¹Lawrence Berkeley National Lab/UC Berkeley raymond.ehlers@cern.ch

Resolving medium scales

- What are the relevant length scales in the medium?
- Which substructure observables sensitive to which medium properties?

Emergent structure, such as quasi-particles?

What can the medium resolve?

Moliere scattering and the quark-gluon plasma

Cartoon: R. Cruz-Torres, J. Norman

- Search for emergent medium structure via point-like single hard scattering
- Concept: Rutherford-like scattering exp.
 - Broadening \sim Gaussian
 - Single hard scattering: power law tail $(\sim 1/k_T^4)$
- Goal: unambiguous experimental signal
- In practice, models needed to interpret fully

F. D'Eramo et al, JHEP 05 (2013) 031, JHEP 01 (2019) 172, etc

Raymond Ehlers (LBNL/UCB) - 18 October 2023

Caucal, Mehtar-Tani, PRD.106 (2022) 5, L051501, JHEP 09 (2022) 023, ...

Searching via jet deflection

- Traditional approach: jet acoplanarity
- Search for excess yield at large deflection
- Can replace trigger with y, Z

Experimental searches via jet deflection

Traditional approach: jet acoplanarity

No evidence for point-like scattering

Recent progress on jet deflection

Alternative: searches via jet substructure

- Complementary search possible via subjet deflection
- Open questions:
 - Ideal observables?
 - Can be identified...?
- For today:
- 1. Optimal way to find the relevant splittings?
- Search for high k_T emissions via groomed substructure as signature of point-like scattering
- 3. **Next generation** of groomed substructure measurements: *y*-tagged *R*_g

Identifying hard splittings: Soft Drop

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- · Iteratively follow splitting tree

Soft Drop

Larkoski et al., JHEP 05 (2014) 146

$$\frac{\min(p_{\mathrm{T},1},p_{\mathrm{T},2})}{p_{\mathrm{T},1}+p_{\mathrm{T},2}} > \mathbf{z}_{\mathrm{cut}}(\frac{\Delta R}{R})^{\beta}$$

•
$$\beta = 0$$

Identifying hard splittings: Soft Drop

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Soft Drop

Larkoski et al., JHEP 05 (2014) 146

$$\frac{\min(p_{\mathrm{T},1},p_{\mathrm{T},2})}{p_{\mathrm{T},1}+p_{\mathrm{T},2}}>z_{\mathrm{cut}}(\frac{\Delta R}{R})^{\beta}$$

•
$$\beta = 0$$

Identifying hard splittings: Soft Drop

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Soft Drop

Larkoski et al., JHEP 05 (2014) 146

$$\frac{\min(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}} > z_{\rm cut} (\frac{\Delta R}{R})^{\ell}$$

- z_{cut} = **0.2**, **0.4**
- $\beta = 0$
- z_{cut} = 0.4 trades phase space to focus on angular dependence

DyG 1.0 DyG 0.5 $\ln k_{T^{\uparrow}}$ • $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$ Iteratively follow splitting tree kт **Dynamical Grooming** Mehtar-Tani et al., PRD.101.034004 $\kappa^{a} \propto \max_{i \in C/A} [z_{i}(1-z_{i})p_{Ti}(\Delta R_{i}/R)^{a}]$ • *a* = 0.5: "core" - more sym., narrow • $\boldsymbol{a} = \mathbf{1}$: " $\boldsymbol{k}_{\mathrm{T}}$ " - largest $k_{\mathrm{T}} \sim \kappa^{1} p_{\mathrm{T}}$ **1** k_⊺ $\ln R / \Delta R$ ΔR

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Dynamical Grooming

Mehtar-Tani et al., PRD.101.034004

- $\kappa^{a} \propto \max_{i \in \mathsf{C}/\mathsf{A}} [z_{i}(1-z_{i})p_{\mathsf{T}i}(\Delta R_{i}/R)^{a}]$
 - *a* = 0.5: "core" more sym., narrow
 - a = 1: " k_T " largest $k_T \sim \kappa^1 p_T$
 - a = 2: "time" shortest splitting time $t_f^{-1} \sim \kappa^2 p_{\rm T}$

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Dynamical Grooming

Mehtar-Tani et al., PRD.101.034004

- $\kappa^a \propto \max_{\substack{i \in C/A}} [z_i(1-z_i)p_{Ti}(\Delta R_i/R)^a]$
 - *a* = 0.5: "core" more sym., narrow
 - a = 1: " k_{T} " largest $k_{T} \sim \kappa^{1} p_{T}$
 - a = 2: "time" shortest splitting time $t_f^{-1} \sim \kappa^2 p_T$
 - In practice, need **min** *k***_T in Pb**-**Pb**

- $k_{\rm T} = p_{\rm T}^{\rm sublead} \sin \Delta R$
- Iteratively follow splitting tree

Dynamical Grooming

Mehtar-Tani et al., PRD.101.034004

- $\kappa^a \propto \max_{\substack{i \in C/A}} [z_i(1-z_i)p_{Ti}(\Delta R_i/R)^a]$
 - *a* = 0.5: "core" more sym., narrow
 - a = 1: " k_{T} " largest $k_{T} \sim \kappa^{1} p_{T}$
 - a = 2: "time" shortest splitting time $t_f^{-1} \sim \kappa^2 p_T$
 - In practice, need **min** *k***_T in Pb**-**Pb**
 - Alternatively, add *z* requirement (0.2)

- Consider $p_{T,\text{jet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_{\rm T} = 4.09 \, {\rm GeV}/c$
- 2. z = 0.2, $\Delta R = 0.3$, $k_{\rm T} = 2.93 \, {\rm GeV}/c$
- 3. z = 0.4, $\Delta R = 0.2$, $k_{\rm T} = 3.15 \, {\rm GeV}/c$
- 4. z = 0.1, $\Delta R = 0.1$, $k_{\rm T} = 0.24 \, {\rm GeV}/c$
- ightarrow Which method selects which splitting?

- Consider $p_{T,\text{jet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_T = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_T = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_T = 3.15 \text{ GeV}/c$
- 4. z = 0.1, $\Delta R = 0.1$, $k_{\rm T} = 0.24~{\rm GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**

- Consider $p_{T,\text{jet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_{\rm T} = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_{\rm T} = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_{\rm T} = 3.15 \text{ GeV}/c$ 4. z = 0.1, $\Delta R = 0.1$, $k_{\rm T} = 0.24 \text{ GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**
 - SD z_{cut} = 0.2: **#2**

- Consider $p_{T,\text{jet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_T = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_T = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_T = 3.15 \text{ GeV}/c$ 4. z = 0.1, $\Delta R = 0.1$, $k_T = 0.24 \text{ GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**
 - SD z_{cut} = 0.2: **#2**
 - DyG a = 1.0, z > 0.2: #3

- Consider $p_{T,\text{jet}}^{\text{ch}} = 60 \text{ GeV}/c R = 0.2 \text{ jet}$
- Decluster with C/A, select iterative splittings:
- 1. z = 0.175, $\Delta R = 0.4$, $k_T = 4.09 \text{ GeV}/c$ 2. z = 0.2, $\Delta R = 0.3$, $k_T = 2.93 \text{ GeV}/c$ 3. z = 0.4, $\Delta R = 0.2$, $k_T = 3.15 \text{ GeV}/c$ 4. z = 0.1, $\Delta R = 0.1$, $k_T = 0.24 \text{ GeV}/c$
- ightarrow Which method selects which splitting?
 - DyG *a* = 1.0: **#1**
 - SD z_{cut} = 0.2: **#2**
 - DyG *a* = 1.0, *z* > 0.2: **#3**
 - SD z_{cut} = 0.4: **#3**

Comparing grooming methods in pp

- Shape variations at low $k_{\rm T}$
- Grooming methods converge at high k_{T,g}
- z requirement dominates over grooming method
- PYTHIA in broad agreement with data
- Additional *R* + further models in backup

See also: $R_g + z_g$ with DyG: ALICE, JHEP 05 (2023) 244

Unfolding Dynamical Grooming in Pb-Pb

- Dynamical Grooming exhibits reduced subleading subjet purity in Pb-Pb
- Off-diagonal mismatched splittings are major component at low k_T
- → Problematic for unfolding
 - Caused by requirement to always select a splitting
 - Address by minimum measured k_T requirement
 - Trade **improved purity** for **reduced dynamic range** and kinematic efficiency
 - Minimum z has similar impact

Mulligan, Ploskon, PhysRevC.102.044913

Unfolding Dynamical Grooming in Pb-Pb

- Dynamical Grooming exhibits reduced subleading subjet purity in Pb-Pb
- Off-diagonal mismatched splittings are major component at low k_T
- → Problematic for unfolding
 - Caused by requirement to always select a splitting
 - Address by minimum measured k_T requirement
 - Trade **improved purity** for **reduced dynamic range** and kinematic efficiency
 - Minimum z has similar impact

Comparing grooming methods in Pb-Pb

- First DyG in Pb-Pb
- Similar trends in 0-10% and 30-50%
- Reduced SD $z_{cut} = 0.4$ yield due to **phase space**
- Consistent set of splittings from all DyG a = 1.0, SD $z_{cut} = 0.2$
- → Suggests few hard splits further into tree

Searching for modification

- No enhancement at high k_{T,g}
- Standard DyG shows little modification

Searching for modification

- No enhancement at high $k_{T,g}$
- Standard DyG shows little modification
- Modification in methods with z > 0.2
 - Larger modification in 0-10%
- Consistent with narrowing picture seen in many substructure analyses.
 - eg. *R*_g, jet axis difference, angularities, etc
- No clear evidence of Moliere scattering

Searching for modification

- No enhancement at high k_{T,g}
- Standard DyG shows little modification
- Modification in methods with *z* > 0.2
 - Larger modification in 0-10%
- **Consistent with narrowing picture** seen in many substructure analyses.
 - eg. *R*_g, jet axis difference, angularities, etc
- No clear evidence of Moliere scattering
- 0–10% data described by JETSCAPEv3.5 AA22¹ and Hybrid model² w/out Moliere
 - 1: JETSCAPE arXiv:2301.02485 2: D'Eramo et al. JHEP 01 (2019) 172, Hulcher et al. QM 22

Interpreting modification

- Possible competing effects: signal on top of energy loss
- JETSCAPE (inc. Moliere) and Hybrid w/o Moliere both describe data.
- Caveat: pp baseline
- Now what ...?
- Look to other substructure observables
 - 1: JETSCAPE arXiv:2301.02485
 - 2: D'Eramo et al. JHEP 01 (2019) 172, Hulcher et al. QM 22

Inclusive groomed jet radius, *R*_g

 Characterize QGP resolution scale via angular dependence of hard splittings

- Consistent picture for ALICE + ATLAS
- Promotes narrow or filters out wider subjets
- Incoherent energy loss effects may indicate medium resolving the splittings? Or changing q/g fraction? Or "survival bias"?

v-tagged angular substructure

- Disentangle via y-tagged substructure
- 1. Quark enhanced sample
- 2. Access initial hard scattering momentum (eg. \sim unquenched $p_{\text{T,iet}}$)
- CMS recently measured angular-dependent observables, CMS-PAS-HIN-23-001:
 - $R_{\rm q}$ with SD $z_{\rm cut} = 0.2$
 - Jet girth: $q = 1/p_{\text{T,iet}} \sum_{i} p_{\text{T}}^{i} \Delta R_{i\text{iet}}$
- $p_{\rm T}^{\gamma} > 100 \, {\rm GeV}/c, R = 0.2$
- Selection two regions in x_{iv} :
- 1. More quenched: $x_{iy} = p_{T,iet}^{-}/p_{Ty} > 0.4$
- 2. Less quenched: $x_{iv} > 0.8$

Studying less quenched jets

- Less quenched jets $(x_{j\gamma} > 0.8)$ show similar behavior as inclusive jets
- Suggests consistent selection bias in both measurements
- Mixed description by Hybrid model
- Moliere preferred for g, w/o preferred for Rg

And more quenched jets?

- More quenched jets $(x_{j\gamma} > 0.4)$: **no narrowing**
- w/ Moliere preferred
 - Tension at large g
- No sensitivity to wake
- Strongly suggests narrowing due to survival bias

Interpreting more quenched jets

• Disentangle energy loss and rare point-like scattering in *R*_g? Next to *k*_{T,g}?

Where are we and what's next?

• What can serve as an unambiguous signal?

- Preferred model between $k_{T,g}$ and γ -tagged R_g highlights difficulty
- Bayesian inference w/ Hybrid model?
 - Model dependence caveats, etc
- Overly simple mental model?
- Not sensitive enough? Wrong region of phase space?

Next steps

- Low p_T signal may be clearer. Mixed events? ML?
- *y*-tagged *k*_{T,g}?
- New unambiguous observables sensitive to Moliere?

Summary

- Comprehensive studies searching for Moliere scattering via jet substructure
- 1. Modification of $k_{T,n}$, similar to narrowing seen in other substructure observables
- 2. No clear evidence of Moliere scattering in inclusive jets
- 3. Narrowing disappears for y-tagged jets
 - Suggests survival bias in inclusive jets case leads to narrowing
- 4. Model dependent Moliere signal in y-tagged R_{a}
 - Not unambiguous + tension with k_{T.g}

Careful choice of next steps is critical

ALICE Preliminary

Anti- \dot{k}_{T} ch-particle iets

 $R = 0.2, |\eta_{\rm iet}| < 0.7$

pp, Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

 $10^{(}$

Summary

- Comprehensive studies searching for Moliere scattering via jet substructure
- 1. Modification of $k_{T,q}$, similar to narrowing seen in other substructure observables
- 2. No clear evidence of Moliere scattering in inclusive jets
- 3. Narrowing disappears for y-tagged jets
 - Suggests survival bias in inclusive jets case leads to narrowing
- 4. Model dependent Moliere signal in v-tagged R_n
 - Not unambiguous + tension with k_{T.g}

Careful choice of next steps is critical

<u>Ч</u> Ч Ч Ч

CMSPreliminary

Soft Drop $z_{out} = 0.2, \beta = 0$

14 Centrality: 0-30%

PbPb 1.7 nb⁻¹, pp 301 pb⁻¹ (5.02 TeV)

- PbPb

 $p_{-}^{\gamma} > 100 \text{ GeV}$

 $|\eta| < 1.44$, |r

0 15 Groomed jet radius R

02

Backup

Experimentally accessing jets in heavy-ion collisions

- Jets are experimentally challenging due to large uncorrelated background from underlying event
 - Fluctuations can be $\sim
 ho_{
 m T,jet}$
- Substructure especially susceptible
- → Careful bkg subtraction is critical!
 - Exp. approaches (not exclusive):
 - Subtract event-by-event bkg, unfold
 - Bkg fluc. limits accessible kinematics
 - Jet grooming aims to removes uncorrelated bkg (contamination?)
 - Reduce bkg sensitivity or size
 - Rethink problem: statistical + correlation methods remove bkg on ensemble level

Experimentally accessing jets in heavy-ion collisions

- Jets are experimentally challenging due to large uncorrelated background from underlying event
 - Fluctuations can be $\sim
 ho_{
 m T,jet}$
- Substructure especially susceptible
- → Careful bkg subtraction is critical!
 - Exp. approaches (not exclusive):
 - Subtract event-by-event bkg, unfold
 - Bkg fluc. limits accessible kinematics
 - Jet grooming aims to removes uncorrelated bkg (contamination?)
 - Reduce bkg sensitivity or size
 - Rethink problem: statistical + correlation
 methods remove bkg on ensemble level

NOTE: Selections are a bit different, unfolded vs smeared

ALICE jet deflection R = 0.4

Dynamical Grooming: Lund Planes

Mehtar-Tani et al., PhysRevD.101.034004

Comparing grooming methods in pp: mixed methods, *R* = 0.4

Dynamical Grooming: analytical calculations pp

Raymond Ehlers (LBNL/UCB) - 18 October 2023

¹Mehtar-Tani et al., Phys. Rev. D 101, 034004 ²Caucal et al., JHEP 07 (2021) 020

Dynamical Grooming in Pb-Pb

- First measurements of Dynamical Grooming in Pb–Pb
- Grooming methods converge at high k_{T,g}
- Smaller bkg extends
 *k*_{T,g} range in semi-central

How do models fare?

SD 0.2

IETSCAPEv3.5 AA22 tune

JETSCAPE arXiv:2301.02485

- MATTER+LBT
- Describes data well

Hybrid model

D'Éramo et al. JHEP 01 (2019) 172 Hulcher et al. QM 22

- With, w/out Moliere
- w/out Moliere describe
 0-10% data better

Caveat: pp baseline

Angle between jet axes

- Jet quenching disrupts transverse jet structure
- → Weight contributions to resolve angular scales, inc. effect of soft radiation
 - Narrower jets found in Pb–Pb relative to pp
 - Jet axis insensitive to grooming
 - Qualitatively describe by most models
- Similar conclusion as R_g Raymond Ehlers (LBNL/UCB) - 18 October 2023

Angle between jet axes

- Jet quenching disrupts transverse jet structure
- Weight contributions to resolve angular scales, inc. effect of soft radiation
 - Narrower jets found in Pb–Pb relative to pp
 - Jet axis insensitive to grooming
 - Qualitatively describe by most models
- Similar conclusion as R_g Raymond Ehlers (LBNL/UCB) - 18 October 2023

