HEP BSM Searches: Inter-Frontier Connections

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

Science

Family

Friends

My pronouns: he/him/his # MeToo https://michaelramseymusolf.com

EW & BSM EIC Workshop Institute for Nuclear Theory February 15, 2024

T. D. Lee Institute / Shanghai Jiao Tong U.

MJRM: Scientist & "Ambassador"

- Global effort: ~ 20 researchers
 - Foster scientific connections
- Science First ! 科学 第一 !

Goals for this Talk: What I Won't Do

- Give a comprehensive survey of BSM searches at the high energy frontier
- Chase anomalies: M_W, (g-2)_μ, ...
- Make explicit reference to all previous BSM talks in this workshop

Goals for this Talk: What I'll Try to Do

- **Contextualize** the EIC electroweak and BSM program with respect to HEP BSM searches
- Illustrate inter-frontier connections between
 the HEP and NP programs
- Highlight developments, opportunities, and challenges in two areas: EW precision tests and searches for BSM lepton number violation
- Invite discussion, other ideas, and future explorations

Disclaimer

- Apologies for omissions of references to other important work
- Will not cover charged lepton flavor violation → see excellent talks this workshop

Outline

- I. Questions & Frontiers
- II. Electroweak precision tests: what are the possible BSM "footprints" and what is the relevant BSM mass scale ?
- *III.* What is the scale of lepton number violation ?
- IV. Outlook

Back up slides for another day...

- Where is the CP-violation needed to explain the matter-antimatter asymmetry ?
- Was there an electroweak phase transition ?

I. Questions & Frontiers

Fundamental Questions

Dark Matter Baryons **Dark Energy** ? fermion masses d⊷ s⊷ b∙ C • UH t• (large angle MSW) $v_1 \mapsto v_2 \bullet v_3$ μ• τ• e• μeV keV meV Mev GeV e۷ TeV

MUST answer

Origin of m_{ν}

SHOULD answer

Experimental Probes: Energy Frontier

LHC

Future Circular e⁺e⁻ & pp

International Linear Collider

Future Circular e⁺e⁻ & pp

Future Colliders: CEPC

- □ The idea of CEPC was proposed in Sep. 2012, and quickly gained the momentum in IHEP and in the world.
- □ The CEPC aims to start operation in 2030's, as a Higgs (Z / W) factory in China.
- □ To run at $\sqrt{s} \sim 240$ GeV, above the ZH production threshold for ≥1 M Higgs; at the Z pole for ~Tera Z; at the W⁺W⁻ pair and then $t\bar{t}$ pair production thresholds.
- Higgs, EW, flavor physics & QCD, probes of physics BSM.
- Possible *pp* collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the far future.

Yuhui Li, CEPC 2023, Nanjing

Future Colliders: FCC

comprehensive long-term program maximizing physics opportunities

European Strategy for Particle Physics 2020

12

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option
- highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. modelindependent measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as "energy upgrade" of FCC-ee)
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

Frank Zimmermann, CEPC 2023, Nanjing

Future Colliders: ILC & CLIC

Linear Colliders

- Energy extendability to TeV scale lies in the heart of linear colliders: ILC focuses on √s from 250 GeV to 1 TeV; CLIC 380 GeV to 3 TeV; keeping options to run at Z-pole ("GigaZ")
- Complementary approaches: "Warm" & "Cold" accelerating technologies; 72MeV/m @ CLIC380; 31.5MeV/m @ ILC250
- · Polarized beams: both offering 80% for electron; 30% for positron in ILC default design

- MEXT (represents Japanese government) didn't approve the original Pre-Lab proposal [newsline]
- Not entirely negative: pointed out what directions to move forward ["hosting is not the problem", S.Asai]
- Support to carry out time-critical R&D that was in the Pre-Lab proposal
- A really encouraging sign from this April: a fact of 2 increase on KEK funding for ILC R&D by MEXT
- ILC Technology Network (ITN) is launched: memorandum between KEK & CERN signed
- Promotion under leadership by International Development Team (IDT), KEK and ILC-Japan

Junping Tian, CEPC 2023, Nanjing

Future Colliders: Specs

A New LHC Emphasis: Lifetime Frontier

A New HEP Emphasis: Lifetime Frontier

Why Should BSM LLP's Exist ?

Large scale hierarchies & broken symmetries

$$C au \leftrightarrow \left(\frac{M_X}{M_Y}\right) >> 1$$

$$C\tau \leftrightarrow \left(\frac{M_X}{\Delta M}\right) >> 1$$

 $(C\tau)^{-1} \iff g_X << 1$

 Heavy (off shell) mediator: Hidden valley

 Compressed spectrum : Stealth SUSY

- Broken symmetry: RPV SUSY
- Scale ratio: N_R , Z_D

A New HEP Emphasis: Lifetime Frontier

FASER

+ ATLAS, CMS, LHCb

SHiP (proposed)

MATHUSLA (proposed)

19

Energy Frontier: LHC

ATLAS: Heavy BSM (prompt)

CMS: Heavy BSM (prompt)

- Precision tests:
 muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

- Precision tests: muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

- Atomic, Molecular, Optical
- Condensed Matter

- Precision tests:
 muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

- Atomic, Molecular, Optical
- Condensed Matter

Intensity Frontier: BSM Footprints

New particle searches: does the observed BSM "species" fit the footprints ?

Fundamental symmetry & precsion tests: draw inferences about BSM scenarios from a variety of measurements

Precision ~ BSM Mass Scale

Precision ~ Mass Scale

$$\delta_{NEW} = \frac{\Delta O^{NEW}}{O^{SM}} \approx \frac{\alpha}{\pi} \left(\frac{M}{\tilde{M}}\right)^2 \qquad M = m_{\mu} \qquad \delta \sim 2 \times 10^{-9}$$
$$\delta^{exp} \sim 1 \times 10^{-9}$$
$$M = M_{W} \qquad \delta \sim 10^{-3}$$

Interpretability

- Precise, reliable SM predictions
- Comparison of a variety of observables
- Special cases: SM-forbidden or suppressed processes

$$\Lambda < 1 \ TeV (loop)$$
 Above example

 $\delta_{NEW} \sim C \ (M_W / \Lambda)^2$

 $\Lambda \sim 10$ TeV (tree)

Nuclear Physics Connections

More Matter than Antimatter ?

Paradigmatic inter-frontier challenge

Ingredients for Baryogenesis

• B violation (sphalerons)

- C & CP violation
- Out-of-equilibrium or
 CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Standard Model BSM

Fermion Masses & Baryon Asymmetry

Cosmic History

Historical artifact: US HEP vision → still useful mnemonic

- Atomic, Molecular, Optical
- Condensed Matter

31

II. Electroweak Precision Tests

2023 PDG

Quantity	Value	Standard Model	Pull
$m_t [\text{GeV}]$	172.83 ± 0.59	173.13 ± 0.56	0.5
M_H [GeV]	125.30 ± 0.13	125.30 ± 0.13	0.0
Γ_H [MeV]	$3.2^{+2.4}_{-1.7}$	4.12 ± 0.05	-0.4
M_W [GeV]	80.387 ± 0.016	80.360 ± 0.006	1.7
	80.376 ± 0.033		0.5
	80.366 ± 0.017		0.4
Γ_W [GeV]	2.046 ± 0.049	2.089 ± 0.001	-0.9
	2.195 ± 0.083		1.3
$\mathcal{B}(W \to \text{hadrons})$	0.6736 ± 0.0018	0.6751 ± 0.0001	-0.8
$g_V^{ u e}$	-0.040 ± 0.015	-0.0397 ± 0.0001	0.0
$g^{ u e}_A$	-0.507 ± 0.014	-0.5064	0.0
$Q_W(e)$	-0.0403 ± 0.0053	-0.0473 ± 0.0002	1.3
$Q_W(p)$	0.0719 ± 0.0045	0.0709 ± 0.0002	0.2
$Q_W(Cs)$	-72.82 ± 0.42	-73.24 ± 0.01	1.0
$Q_W(\mathrm{Tl})$	-116.4 ± 3.6	-116.90 ± 0.02	0.1
\widehat{s}_Z^2 (eDIS)	0.2299 ± 0.0043	0.23122 ± 0.00004	-0.3
τ_{τ} [fs]	290.75 ± 0.36	288.90 ± 2.24	0.8
$\frac{1}{2}(g_{\mu}-2-\frac{lpha}{\pi})$	$(4510.88\pm0.60)\times10^{-9}$	$(4508.61\pm0.03)\times10^{-9}$	3.8

2023 PDG

Quantity	Value	Standard Model	Pull
M_Z [GeV]	91.1876 ± 0.0021	91.1882 ± 0.0020	-0.3
Γ_Z [GeV]	2.4955 ± 0.0023	2.4941 ± 0.0009	0.6
$\sigma_{\rm had}$ [nb]	41.481 ± 0.033	41.482 ± 0.008	0.0
R_e	20.804 ± 0.050	20.736 ± 0.010	1.4
R_{μ}	20.784 ± 0.034	20.736 ± 0.010	1.4
R_{τ}	20.764 ± 0.045	20.781 ± 0.010	-0.4
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002	0.7
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01617 ± 0.00007	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0996 ± 0.0016	0.1029 ± 0.0002	-2.0
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0002	-0.4
$ar{s}_\ell^2$	0.2324 ± 0.0012	0.23155 ± 0.00004	0.7
	0.23148 ± 0.00033		-0.2
	0.23129 ± 0.00033		-0.8
A_e	0.15138 ± 0.00216	0.1468 ± 0.0003	2.1
	0.1544 ± 0.0060		1.3
	0.1498 ± 0.0049		0.6
A_{μ}	0.142 ± 0.015		-0.3
$A_{ au}$	0.136 ± 0.015		-0.7
	0.1439 ± 0.0043		-0.7
A_b	0.923 ± 0.020	0.9347	-0.6
A_c	0.670 ± 0.027	0.6677 ± 0.0001	0.1
A_s	0.895 ± 0.091	0.9356	-0.4
High Energy EW Precision

 v^2

 M^2

2023 PDG

LEP:	17 x 10 ⁶ Z	
SMEFT	$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}$	$\delta_{6,i}$ $\delta \sim d$
	Dimensions six	$m_h = 115$

Dimensions six		$m_h = 115 \mathrm{GeV}$			
		operators	$c_i = -1$	$c_i = +1$	
\mathcal{O}_{WB}	=	$(H^{\dagger}\tau^{a}H)W^{a}_{\mu\nu}B_{\mu\nu}$	9.7	10	-
\mathcal{O}_H	=	$ H^{\dagger}D_{\mu}H ^2$	4.6	5.6	
\mathcal{O}_{LL}	=	$\frac{1}{2}(\bar{L}\gamma_{\mu}\tau^{a}L)^{2}$	7.9	6.1	
\mathcal{O}_{HL}'	=	$i(H^{\dagger}D_{\mu}\tau^{a}H)(\bar{L}\gamma_{\mu}\tau^{a}L)$	8.4	8.8	
\mathcal{O}'_{HQ}	=	$i(H^{\dagger}D_{\mu}\tau^{a}H)(\bar{Q}\gamma_{\mu}\tau^{a}Q)$	6.6	6.8	
\mathcal{O}_{HL}	=	$i(H^{\dagger}D_{\mu}H)(\bar{L}\gamma_{\mu}L)$	7.3	9.2	
\mathcal{O}_{HQ}	=	$i(H^{\dagger}D_{\mu}H)(\bar{Q}\gamma_{\mu}Q)$	5.8	3.4	
\mathcal{O}_{HE}	=	$i(H^{\dagger}D_{\mu}H)(\bar{E}\gamma_{\mu}E)$	8.2	7.7	
\mathcal{O}_{HU}	=	$i(H^{\dagger}D_{\mu}H)(U\gamma_{\mu}U)$	2.4	3.3	
\mathcal{O}_{HD}	=	$i(H^{\dagger}D_{\mu}H)(\bar{D}\gamma_{\mu}D)$	2.1	2.5	
			•		

M_{MIN} : Barbieri & Strumia '00

uantity	Value	Standard Model	Pull
Z [GeV]	91.1876 ± 0.0021	91.1882 ± 0.0020	-0.3
Z [GeV]	2.4955 ± 0.0023	2.4941 ± 0.0009	0.6
had [nb]	41.481 ± 0.033	41.482 ± 0.008	0.0
e	20.804 ± 0.050	20.736 ± 0.010	1.4
ρ μ	20.784 ± 0.034	20.736 ± 0.010	1.4
$R_{ au}$	20.764 ± 0.045	20.781 ± 0.010	-0.4
b_b	0.21629 ± 0.00066	0.21582 ± 0.00002	0.7
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01617 ± 0.00007	-0.7
$^{(0,\mu)}_{FB}$	0.0169 ± 0.0013		0.6
	0.0188 ± 0.0017		1.5
5	0.0996 ± 0.0016	0.1029 ± 0.0002	-2.0
2	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8
$_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0002	-0.4
2	0.2324 ± 0.0012	0.23155 ± 0.00004	0.7
	0.23148 ± 0.00033		-0.2
1	0.23129 ± 0.00033		-0.8
+	0.15138 ± 0.00216	0.1468 ± 0.0003	2.1
	0.1544 ± 0.0060		1.3
	0.1498 ± 0.0049		0.6
	0.142 ± 0.015		-0.3
	0.136 ± 0.015		-0.7

→ "Little Hierarchy Problem"

BSM physics @ M ~ 10 TeV ?

37

0.1-0.4____

High Energy EW Precision

2023 PDG

Quantity	Value	Standard Model	Pull
M_Z [GeV]	91.1876 ± 0.0021	91.1882 ± 0.0020	-0.3
$\Gamma_Z \; [\text{GeV}]$	2.4955 ± 0.0023	2.4941 ± 0.0009	0.6
$\sigma_{\rm had} \ [{\rm nb}]$	41.481 ± 0.033	41.482 ± 0.008	0.0
R_e	20.804 ± 0.050	20.736 ± 0.010	1.4
R_{μ}	20.784 ± 0.034	20.736 ± 0.010	1.4
$R_{ au}$	20.764 ± 0.045	20.781 ± 0.010	-0.4
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002	0.7
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01617 ± 0.00007	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0996 ± 0.0016	0.1029 ± 0.0002	-2.0
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0002	-0.4
\bar{s}_{ℓ}^2	0.2324 ± 0.0012	0.23155 ± 0.00004	0.7
	0.23148 ± 0.00033		-0.2
	0.23129 ± 0.00033		-0.8
A_e	0.15138 ± 0.00216	0.1468 ± 0.0003	2.1
	0.1544 ± 0.0060		1.3
	0.1498 ± 0.0049		0.6
A_{μ}	0.142 ± 0.015		-0.3
$A_{ au}$	0.136 ± 0.015		-0.7
	0.1439 ± 0.0043		-0.7
A_b	0.923 ± 0.020	0.9347	-0.6
A_c	0.670 ± 0.027	0.6677 ± 0.0001	0.1
A_s	0.895 ± 0.091	0.9356	-0.4

Low Energy: PV Electron Scattering

Continuous interplay between probing hadron structure and electroweak physics

4 Decades of Progress

Parity-violating electron scattering has become a precision tool

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, radiation hard detectors

PVeS Experiment Summary

Pioneering electron-quark PV DIS experiment SLAC E122

State-of-the-art:

- sub-part per billion statistical reach and systematic control
- sub-1% normalization control

Physics Topics

- Strange Quark Form Factors
 Neutron skin of a heavy nucleus
- Indirect Searches for New Interactions
- Novel Probes of Nucleon Structure
- Electroweak Structure Functions at the EIC
- Charge Lepton Flavor Violation at the EIC

39

K. Kumar

L'abdress Process Considera 90 mini-

Low Energy: PV Electron Scattering

Continuous interplay between probing hadron structure and electroweak physics

4 Decades of Progress

Parity-violating electron scattering has become a precision tool

photocathodes, polarimetry, high power cryotargets, nanometer beam stability, precision beam diagnostics, low noise electronics, radiation hard detectors

PVeS Experiment Summary

Pioneering electron-quark PV DIS experiment SLAC E122

State-of-the-art:

- sub-part per billion statistical reach and systematic control
- sub-1% normalization control

Physics Topics

- Strange Quark Form Factors
 Neutron skin of a heavy nucleus
- Indirect Searches for New Interactions
- Novel Probes of Nucleon Structure
- Electroweak Structure Functions at the EIC
- Charge Lepton Flavor Violation at the EIC

40

K. Kumar

And the Office of the second second second for the second se

High Energy – Low Energy Interplay

Deviations: BSM "Footprints"

Two-Loop EW Radiative Corrections

Closed fermion loops: gauge invariant

Closed Fermion Loops

 Yong Du[®],^{1,*} Ayres Freitas,^{2,†} Hiren H. Patel,^{3,‡} and Michael J. Ramsey-Musolf^{4,1,5,§}
 ¹Amherst Center for Fundamental Interactions, Physics Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003 USA
 ²Pittsburgh Particle Physics Astrophysics and Cosmology Center (PIT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
 ³Department of Physics and Santa Cruz, Institute for Particle Physics, University of California, Santa Cruz, California 95064, USA
 ⁴Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
 ⁵Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 USA

(Received 17 January 2020; revised 22 July 2020; accepted 23 February 2021; published 29 March 2021)

Two-Loop EW Radiative Corrections

 $\delta(Q^{e_{w}}) = \pm 2.1 \% (stat.) \pm 1.1 \% (syst.)$

Exp't precision (goal)

Quantity	Contribution $(\times 10^{-3})$	% shift *	
$1-4\sin^2\theta_W$	+74.4		
$\Delta Q^{e}_{W(1,1)}$	-29.0	- 39%	
$\Delta Q^{e}_{W(1,0)}$	+ 3.1	+ 4%	
$\Delta Q^e_{W(2,2)}$	$-2.12^{+0.014}_{-0.024}$	- 4.4%	Must
$\Delta Q^e_{W(2,1)}$	$+ 1.65^{+0.010}_{-0.007}$	+ 3.4%	wust:
$\Delta Q^e_{W(2,0)}$	\pm 0.18 (estimate)	+/- 0.4%	Safe !
	* Relative to p	preceding order	

Du, Freitas, Patel, MJRM PRL 126 (2021) 131801 [1912.08220]

Loop order

fermion loops

PV Moller Scattering

Search for additional neutral weak force that is inaccessible to the Large Hadron Collider

High Energy – Low Energy Interplay

The Competition : "Short Term"

Ultra-Precise Weak Mixing Angle

- Make a "cut" on measurements with uncertainty ~ 0.0003X or better
- CMS is getting ready to release their 13 TeV data
 - Expected uncertainty: 0.00024
 - This would be an extraordinary achievement!

Exp.	$\sin^2 \theta_{eff}^{lept}$	Ref.	
$LEP+SLD:A_{FB}^B$	0.23221 ± 0.00029		b-quarks
$SLD:A_i$	$0.23098 {\pm} 0.00026$		light-quarks
*Tevatron	$0.23148 {\pm} 0.00033$	PRD 2016	light-quarks
ATLAS 8 TeV	$0.23140 {\pm} 0.00036$	unpublished	light-quarks
$20.2 {\rm ~fb^{-1}}$	ATL-CONF-2018-037		$\ell^+\ell^-$

Special thanks to Arie Bodek

Ultimate sensitivity at LHC

theory $\sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} = 0.23122(4)$ expt. $\sin^2 \theta_W(m_Z)_{\overline{\text{MS}}} = 0.23116(13)$

• There are plans to improve on the above by a factor of 2, but only after the HL-LHC upgrade

• Window for MOLLER and P2 to contribute!

- Combined would be 0.00020, but must achieve the final result by 2030...
- Must try to get to design goals!

K. Kumar, this meeting

The Competition : Longer Term

2023 PDG

LEP: 17 x 10 ⁶ Z	
Future e ⁺ e ⁻ : few x 10 ¹² Z	
Caxeat:	5/

~ 300 x better

stat precision

Quantity	Value	Standard Model	Pull
M_Z [GeV]	91.1876 ± 0.0021	91.1882 ± 0.0020	-0.3
Γ_Z [GeV]	2.4955 ± 0.0023	2.4941 ± 0.0009	0.6
$\sigma_{\rm had}$ [nb]	41.481 ± 0.033	41.482 ± 0.008	0.0
R_e	20.804 ± 0.050	20.736 ± 0.010	1.4
R_{μ}	20.784 ± 0.034	20.736 ± 0.010	1.4
R_{τ}	20.764 ± 0.045	20.781 ± 0.010	-0.4
R_b	0.21629 ± 0.00066	0.21582 ± 0.00002	0.7
R_c	0.1721 ± 0.0030	0.17221 ± 0.00003	0.0
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01617 ± 0.00007	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.6
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0996 ± 0.0016	0.1029 ± 0.0002	-2.0
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0735 ± 0.0002	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1030 ± 0.0002	-0.4
$ar{s}_\ell^2$	0.2324 ± 0.0012	0.23155 ± 0.00004	0.7
	0.23148 ± 0.00033		-0.2
	0.23129 ± 0.00033		-0.8
A_e	0.15138 ± 0.00216	0.1468 ± 0.0003	2.1
	0.1544 ± 0.0060		1.3
	0.1498 ± 0.0049		0.6
A_{μ}	0.142 ± 0.015		-0.3
$A_{ au}$	0.136 ± 0.015		-0.7
Dru .	0.1439 ± 0.0043		-0.7
Aby Cha	0.923 ± 0.020	0.9347	-0.6
Ac CUS	0.670 ± 0.027	0.6677 ± 0.0001	0.1
A_s	0.95 ± 0.091	0.9356	-0.4

The Competition : Longer Term

Shao-Feng Ge, MJRM, Zhuo-Ni Qian, Jia Zhou 2024.NNNN [hep-ph]

III. What is the LN Violation Mass Scale ?

SM: B+L Not Conserved

B+L Anomaly

SM B+L Violation & Sphalerons

B+L Anomaly

52

SM B+L Violation & Sphalerons

Additional LN Violation: Questions

- Are there additional sources of LN violation at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

LNV Physics: Where Does it Live ?

Is the BSM LNV scale (associated with m_v) far above E_{WS} ? Near E_{WS} ? Well below E_{WS} ?

Lepton Number: v Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \underbrace{\overset{y}{\bigwedge} \bar{L}^c H H^T L}_{Majorana} + \text{h.c.}$$

Impact of observation

- Total lepton number not
 conserved at classical level
- New mass scale in nature A
- Key ingredient for standard baryogenesis via leptogenesis

NLDBD Experimental Horizons

- Global effort to deply "ton scale" expt's
 → 100 x better lifetime sensitivity
- Top priority for U.S. nuclear science

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

Impact of observation

- Total lepton number not
 conserved at classical level
- New mass scale in nature, A
- Key ingredient for standard baryogenesis via leptogenesis

LNV Mass Scale & *0vββ*-Decay

How can we determine the underlying LNV physics?

LNV Mass Scale & *0vββ*-Decay

The "Standard Mechanism"

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Majorana

"Standard" Mechanism

- Light Majorana mass generated at the conventional see-saw scale: Λ ~ 10¹² – 10¹⁵ GeV
- 3 light Majorana neutrinos mediate decay process

Ονββ-Decay: "Standard" Mechanism

Three active light neutrinos

Neutrinos and the Origin of Matter

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

 $\Gamma(N \to \ell H) \neq \Gamma(N \to \bar{\ell} H^*)$

• Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

LNV Mass Scale & *0vββ*-Decay

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but *0vββ*-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

Low Scale LNV & Leptogenesis

Leptogenesis & TeV Scale LNV: Example

The "O2 Model": similar ingredients as in scotogenic neutrino mass models (but no Z_2 symmetry)

$$\mathcal{L}_{\mathrm{INT}} = g_1 \bar{Q}_i^{\alpha} d^{\alpha} S_i + g_2 \epsilon^{ij} \bar{L}_i F S_j^* + \mathrm{H.c.}$$

Y_{B-L} survives

J. Harz, MJRM, T. Shen, S. Urrutia-Quiroga '21

Low Scale LNV Probes

- New scalars (type II see saw)
- New LNV interactions (hadron collider)
- Heavy neutral leptons (sterile v...)

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

LNV: Scalar Fields & m_v

 $\partial \nu \beta \beta$ Decay, PV e⁻e⁻ \rightarrow e⁻e⁻, e⁺e⁻ \rightarrow e⁺e⁻ & pp collisions

BSM LNV: *0vββ*-Decay & pp Colliders

Numerous studies: another talk...

TeV-Scale LNV: lepto, *0νββ***-Decay & Colliders**

The "O2 Model": similar ingredients as in scotogenic neutrino mass models (but no Z_2 symmetry)

$$\mathcal{L}_{\rm INT} = g_1 \bar{Q}_i^{\alpha} d^{\alpha} S_i + g_2 \epsilon^{ij} \bar{L}_i F S_j^* + \text{H.c.}$$

Majorana

Comparing *0vββ*-decay, collider, & cosmo Collider – *0vββ* – overlap: < TeV scale LNV "smoking gun"

Y_{B-L} survives

J. Harz, MJRM, T. Shen, S. Urrutia-Quiroga '21

LLP Searches for LNV

Y_{B-L} survives

LHC long-lived particle searches

G. Li, MJRM, S. Su, J.C. Vasquez '22

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

Σm_{v} from Cosmo: $\partial v \beta \beta$ -Decay Implications

Minimal LR Symmetric Model: 0vββ-Decay

Long range chiral enhancement

Thanks! Juan Carlos Vasquez

Minimal LR Symmetric Model: 0vββ-Decay

Long range chiral enhancement

Thanks! Juan Carlos Vasquez

TeV-Scale LNV: $0\nu\beta\beta$ -Decay & Σm_{ν}

TeV-Scale LNV: $0\nu\beta\beta$ -Decay & Σm_{ν}

TeV-Scale LNV: $0\nu\beta\beta$ -Decay & Σm_{ν}

More Than 3 Light Neutrinos: MeV-GeV

mLRSM

Simplified Model

Current Σm_v exclusion

J. De Vries, G. Li, MJRM, J. C. Vasquez '22 G. Li, MJRM, J. C. Vasquez '21 TeV LNV: LLP & Σm_{ν}

Improvement in efficiency → extend beyond current DBD reach

G. Li, MJRM, J.C. Vasquez, '22

Light v: Lepton Collider Probes

 $e^+ e^- \rightarrow Z^0 \rightarrow N N$ vs $e^+ e^- \rightarrow Z^0 \rightarrow N \overline{N}$

Lepton FB Asymmetry

A_{FB} : vanish for Majorana N

M. Drewes 2210.17110 (mini-review) Blondel, de Gouvea, Kayser 2105.06576

N Polarization

Light v: Lepton Collider Probes

 $e^+ e^- \rightarrow Z^0 \rightarrow N N$ vs $e^+ e^- \rightarrow Z^0 \rightarrow N N$

Displaced decays (LLPs)

W Pair Production

LNV + CPV

$$\mathcal{A}_{CP} = \frac{Br(\ell^+\ell^- \to \mu^+\mu^+4j) - Br(\ell^+\ell^- \to \mu^-\mu^-4j)}{Br(\ell^+\ell^- \to \mu^+\mu^+4j) + Br(\ell^+\ell^- \to \mu^-\mu^-4j)}$$

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

Spontaneous LNV: Higgs, GW, Collider

Gravitational Waves

LNV Scalar Field & GW

Phase transition associated with spontaneous LNV → non-astrophysical GW source

LNV Scalar Field & GW

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

IV. Outlook - A

- There exists a rich complementarity involving the intensity, high energy, lifetime, and cosmic frontiers
- For EW precision BSM probes, it's all about the error bars → challenge for EIC
- NP fundamental symmetry tests poised to discover BSM footprints, while BSM searches at the high energy, lifetime, and cosmic frontiers could discover the underlying dynamics (LNV as a "poster child")

IV. Outlook - B

What are the EIC implications ?

• EIC EW precision tests as a BSM probe: may have limited impact

 EIC fundamental symmetry tests: competition for lepton number, baryon number, CP is tough but charged lepton flavor violation is a unique opportunity

- Gonderinger, MJRM, JHEP 11 (2010) 045
- Cirigliano, Fuyuto, Lee, Mereghetti, Yan, JHEP 03 (2021) 256
- Talks in this workshop