Direct Detection with a Solitary Electron

Harikrishnan Ramani Stanford University

2208.o6519: X. Fan, G. Gabrielse, P. Graham, R. Harnik, T. Myers, Harikrishnan Ramani, B. Sukra, S. S. Y. Wong and Y. Xiao Electron Traps for dark photon

PRX Quantum(2022): D. Budker, P. W .Graham, Harikrishnan Ramani, F. Schmidt-Kaler, C. Smorra Ion Traps for millicharge particles

Direct Detection with a Solitary Electron

Harikrishnan Ramani Stanford University

2208.o6519: X. Fan, G. Gabrielse, P. Graham, R. Harnik, T. Myers, Harikrishnan Ramani, B. Sukra, S. S. Y. Wong and Y. Xiao Electron Traps for dark photon

PRX Quantum(2022): D. Budker, P. W .Graham, Harikrishnan Ramani, F. Schmidt-Kaler, C. Smorra Ion Traps for millicharge particles

Direct Detection with a Solitary Electron

Harikrishnan Ramani Stanford University

2208.o6519: X. Fan, G. Gabrielse, P. Graham, R. Harnik, T. Myers, Harikrishnan Ramani, B. Sukra, S. S. Y. Wong and Y. Xiao Electron Traps for dark photon

PRX Quantum(2022): D. Budker, P. W .Graham, Harikrishnan Ramani, F. Schmidt-Kaler, C. Smorra Ion Traps for millicharge particles

Contents

- Dark Photon Dark Matter
- Electron Traps
- Cavities as Electric Field Concentrators
- Millicharge Relics
- Ion Traps

Contents

- Dark Photon Dark Matter
- Electron Traps
- Cavities as Electric Field Concentrators
- Millicharge Relics
- Ion Traps

Dark Photon Dark Matter

- Simple model: $\mathscr{L} \supset-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+\frac{\epsilon}{2} F^{\mu \nu} F_{\mu \nu}^{\prime}+\frac{1}{2} m_{A^{\prime}}^{2} A_{\mu}^{\prime} A^{\prime \mu}$.
- If $m_{A^{\prime}} \lesssim 2 m_{e}$, decay too slow: stability
- Several Production mechanisms
P. W. Graham, J. Mardon, and S. Rajendran, Phys. Rev. D 93, 103520 (2016)
J. A. Dror, K. Harigaya, and V. Narayan, Phys. Rev. D 99, 035036 (2019).
P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi, and F. Takahashi, Phys. Lett. B 801, 135136 (2020). E. W. Kolb and A. J. Long, Journal of High Energy Physics 2021, 283 (2021)
R.Co, A. Pierce, Z. Zhang, Y. Zhao Phys.Rev.D 99 (2019) 7, 075002
R. Co, K. Harigaya, A. Pierce JHEP 12 (2021) 099

Detection Strategy

- Kinetic mixing: $\frac{\epsilon}{2} F^{\mu \nu} F_{\mu \nu}^{\prime}$
- Produce E\&M fields suppressed by ϵ
- Oscillating at frequency $\omega \approx m_{A^{\prime}}$
- How to detect?
- Devices sensitive to tiny E\&B fields at appropriate frequency

Blind Spot

A two level system@100 GHz

$$
\frac{q B}{m_{e}} \approx 150 \mathrm{GHz} \frac{B}{5 \mathrm{~T}} \frac{511 \mathrm{keV}}{m_{e}}
$$

1) Electrons trapped in a strong magnetic field, exhibit cyclotron orbits - Quantized.
2) A resonant detector for a dark photon?
3) Dial magnetic field to scan resonant frequency
4) Possible to detect a single jump?

Contents

- Dark Photon Dark Matter
- Electron Traps
- Cavities as Electric Field Concentrators
- Millicharge Relics
- Ion Traps

Electron in a Penning Trap

- Local Minimum \& trapping from Quadrupole Electric and axial Magnetic fields
- Three Harmonic oscillators for cyclotron/magnetron/axial modes
- Can trap electrons for years - used in metrology and quantum computing

E field causes transition

- Only $\Delta n=1$ transitions allowed (Selection rules)
- Selects very narrow frequency band
- Sensitivity to tiny electric fields

$$
\Gamma=\frac{\pi e^{2}}{2 m_{e} \omega} S_{E}(\omega)
$$

$S_{E} \quad$ Power Spectral Density - The amount of power @ frequency ω

Power Spectral Density

$$
\begin{aligned}
& S_{E} \\
& S_{E}=\epsilon^{2} \frac{\rho_{\mathrm{DM}}}{v^{2} m_{A^{\prime}}} \\
& \Gamma \approx \frac{\pi e^{2}}{2 m_{e} \omega} \frac{\rho_{\mathrm{DM}}}{10^{-6} \omega} \\
& \approx \frac{5}{10 \sec }\left(\frac{\epsilon}{10^{-8}}\right)^{2}\left(\frac{2 \pi \times 100 \mathrm{GHz}}{\omega}\right)^{2} \\
& \text { Promising! }
\end{aligned}
$$

Measuring quantum state

- QND measurement of the electron cyclotron state is possible
- 1 sec observation time
- At temperatures below 1 K , no first excitation observed

FIG. 2. Quantum jumps between the lowest states of the oneelectron cyclotron oscillator decrease in frequency as the cavity temperature is lowered.

Apparatus

Contents

- Dark Photon Dark Matter
- Electron Traps
- Cavities as Electric Field Concentrators
- Millicharge Relics
- Ion Traps

Effect of Cavity

- Work in Interaction Basis: $E^{\text {active }}$ that couples to SM and $E^{\text {dark }}$
- Metal boundaries destroy $E_{\|}^{\text {active }}$
- When $m R \ll 1$,
- $E_{\|}^{\text {dark }}$ oscillates back to $E_{\|}^{\text {active }} \Longrightarrow(m R)^{2}$ suppression
- For $m R \gg 1$ what happens?

Effect of a metal plate

$E_{1 \|}^{\mathrm{obs}}=\epsilon \sqrt{2 \rho_{\mathrm{DM}}} \cos \omega t$

$$
E_{2 \|}^{\mathrm{pw}}=-\epsilon \sqrt{2 \rho_{\mathrm{DM}}} \cos (\omega t \pm k x)
$$

Horns, Jaeckel, Lindner, Redondo 1212.2970 Consequence: Dish antenna focus!

Concentration

$$
\kappa(0)=1-J_{0}(0) / J_{0}(m R) \approx \sqrt{m R}
$$

$$
\kappa(0)=1-j_{0}(0) / j_{0}(m R) \approx m R
$$

- Focussing effect because of Boundary conditions
- Will be practically useful only if we build $m R \gg 1$

$$
\text { Currently } m R \approx 14
$$

Kappa Today

$\mathrm{R}=0.5 \mathrm{~cm}$

Data

line shape dark photon

measurement
(b)

(c)

run $\#$	time (date. hour:minute)	observation length (s)
1	$11.12: 46-13.13: 15$	148058
2	$14.18: 26-15.11: 33$	58162
3	$15.11: 50-17.17: 22$	179698
4	$17.18: 38-18.18: 40$	80640
5	$19.12: 15-21.15: 43$	172312
total	-	638870

TABLE I. Datasets for DPDM search in 2022 March. Each run consists of the repeated measurement cycle in fig. 3.

Current Data

- Non-observation in 177.5 hour data
- 2σ limits of $\Gamma_{+}<-\frac{1}{\zeta T_{\text {tot }}} \log (1-C L)=4.33 \times 10^{-6} \mathrm{~s}^{-1}$
- No scanning - width set by DM $\Delta \omega=10^{-6} \omega$
- Acts as proof of principle

ToDo

- Scanning $15 \mathrm{sec} /$ bin

4 Apr 2022 in Politics \& Policy
Helium is again in short supply
The war in Ukraine isn't much of a factor, yet.

David Kramer

The federally operated Cliffside Helium Plant in
<PREV
NEXT >

@ physicstoday.scitation.org

ToDo

- Scanning $15 \mathrm{sec} /$ bin
- Future:
A. Bigger Cavities
B. More electrons
C. Higher excited states

Summary

- Dark Photons hard to probe in the 0.1 meV to 1 meV range
- A single electron's cyclotron jump, picks out this frequency
- Pilot Run @ single frequency shows no background
- Scanning/Other improvements on the anvil

Contents

- Dark Photon Dark Matter
- Electron Traps
- Cavities as Electric Field Concentrators
- Millicharge Relics
- Ion Traps

Millicharge Particles

\checkmark Particles with tiny electric charges: ϵe
\checkmark Simple models to write (with or without a dark photon)
\checkmark Looked for in various experimental programs
\checkmark Recent resurgence due to EDGES anomaly

Existing Limits

*Additional Limits exist if DM component

An Irreducible mCP source

20ıo.iII90 HR, Roni Harnik, Ryan Plestid and Maxim Pospelov
Mesons produced in Cosmic ray collisions can decay into mCPs
\checkmark Contribution to irreducible density on Earth

Temporary accumulation

\uparrow High boost, hence penetrates deep

- Thermalized mCP, large x -section, (MFP~ micron)
\downarrow Evaporates for $\mathrm{m}_{\mathrm{Q}}<\mathrm{GeV}$, but very slowly.

Earth E-field

Lightning discharge

Permanent Accumulation

\downarrow If pure Milli-charge, it feels earth electric field
\uparrow Evaporation turned off for large positive mCP

Existing Limits

1408.4396 D.C. Moore, A.D. Rider, G. Gratta
2012.08169 G. Afek, F. Monteiro, J. Wang, B. Siegel, S. Ghosh, D.C. Moore

FIG. 1. SiO_{2} spheres are levitated in high vacuum between a pair of parallel electrodes to search for a violation of charge neutrality by, e.g., a mCP electrostatically bound to a Si or O nucleus in the sphere.

-Crucial assumption: Negative mCPs bind with Silicon nuclei
$\checkmark 10^{24}$ Nucleons cm^{-3} translates to $10^{7} \mathrm{mCPs} \mathrm{cm}^{-3}$

Energy Thresholds

Large Charge

DM Mass > MeV

1 keV

Energy Threshold

Xenon e
SENSEI
Super-CDMS

LZ

Xenon 1T n Panda-X

Detection Nightmare

- Despite large number density \& cross-section
- Small energy deposit: 300 Kelvin $\approx 26 \mathrm{meV}$

- Low threshold detectors have low temperature walls to reduce background
- Small MFP~ micron, rapidly thermalize with walls
- Electron trap $500 \mu \mathrm{eV}$ threshold, $10 \mu \mathrm{eV}$ walls.

Ion Traps to the rescue!

$$
\frac{q B}{m_{p}} \approx 60 \mathrm{neV} \frac{B}{1 \mathrm{~T}} \frac{1 \mathrm{GeV}}{m_{p}}
$$

Dont we have to cool to $T_{\text {wall }} \ll \mathrm{mK}$?

Selection Rules

- Approximate Harmonic Oscillator

Blackbody radiation : Selection rules for photon absorption, $\Delta n= \pm 1$
\checkmark Number of photons with energy $\omega_{\text {ion }} \ll T_{\text {wall }}$ is negligible, not supported

Selection Rules

- Scattering breaks selection rules
- Momentum transfer > Energy Transfer

Heating Rate in Ions

${ }^{40} \mathrm{Ca} / 9 \mathrm{Be} / \mathrm{p}$ ions used
$\nu_{+}, \nu_{-}, \nu_{z} \approx \mathrm{MHz} \approx 4 \mathrm{neV}$
$\approx 50 \mu \mathrm{~K}$
$\uparrow \frac{d n}{d t} \approx \frac{1}{\sec }$
\checkmark Heating Rate: $\frac{\mathrm{neV}}{\mathrm{sec}}$

Results

Projections

Outlook

\star Implementing single event rates
\checkmark Excitations in Ion lattices
\uparrow Accumulating mCPs in an electric field bottle

BACKUP

WHAT ABOUT SM IONS

- Mechanical \& Ion Pumping to low pressure $\lesssim 10^{-12}$ bar
\downarrow Cryopumping (cold surfaces trap SM particles) to pressures $<3 \times 10^{-21}$ bar
- Work Function of metals prevents electron evaporation
- WF ~ few eV

ث $\Longrightarrow \epsilon \leq \frac{T_{\text {wall }}}{\text { WF }}$ does not feel the effect of the Work function
\rightarrow Provides a natural sieve for mCPs
\rightarrow Effects of the trapping potential can also be important

DATA

$\rightarrow{ }^{40} \mathrm{Ca} /{ }^{9} \mathrm{Be}$ ions used
$\uparrow \nu_{+}, \nu_{-}, \nu_{z} \approx \mathrm{MHz} \approx 4 \mathrm{neV} \approx 50 \mu \mathrm{~K}$
$+\frac{d n}{d t} \approx \frac{1}{\sec }$
${ }^{4}$ Heating Rate: $\frac{\mathrm{neV}}{\mathrm{sec}}$

1409.6572 M. Brownnutt, M. Kumph, P. Rabl \& R. Blatt

DATA

- Anti-protons: BASE experiment, CERN
$+\frac{d n_{+}}{d t} \approx \frac{6}{\text { hour }}$
+ Lowest measured: $\Delta \omega \approx 10^{-10} \mathrm{eV} \mathrm{s}^{-1}$
+ BBR estimate: $\Delta \omega \approx 10^{-12} \mathrm{eVs}^{-1}$
- Background gas estimate:
$\Delta \omega \approx 10^{-16} \mathrm{eVs}^{-1}$

Measurement of Ultralow Heating Rates of a Single Antiproton in a Cryogenic Penning Trap
M. J. Borchert, ${ }^{1,2, *}$ P.E. Blessing, ${ }^{1,3}$ J. A. Devlin, ${ }^{1}$ J. A. Harrington, ${ }^{1,4}$ T. Higuchi, ${ }^{1,5}$ J. Morgner, ${ }^{1,2}$ C. Smorra, ${ }^{1}$ E. Wursten, ${ }^{1,7}$ M. Bohman, ${ }^{1,4}$ M. Wiesinger, ${ }^{1,4}$ A. Mooser, ${ }^{1}$ K. Blaum, ${ }^{4}$ Y. Matsuda, ${ }^{5}$ C. Ospelkaus, ${ }^{2,8}$ W. Quint, ${ }^{3,9}$ J. Walz, ${ }^{6,10}$ Y. Yamazaki, ${ }^{11}$ and S. Ulmer ${ }^{1}$

- Expected to be from Electrode noise

DATA SUMMARY

Experiment	Type	Ion	V_{z}	$T_{\text {wall }}$	$\omega_{p}[\mathrm{neV}]$	$T_{\mathrm{ion}}[\mathrm{neV}]$	Heating Rate (neV/s)
Hite et al, 2012 [40]	Paul	${ }^{9} \mathrm{Be}^{+}$	0.1 V	300 K	$\omega_{z}=14.8$	14.8	640
Goodwin et al, 2016 [43]	Penning	${ }^{40} \mathrm{Ca}^{+}$	175 V	300 K	$\omega_{z}=1.24$	1.24	0.37
Borchert et al, 2019 [44]	Penning	\bar{p}	0.633 V	5.6 K	$\omega_{+}=77.4$	7240	0.13
					$\omega_{-}=0.050$		

No reach for $\epsilon \gtrsim \frac{T_{\text {wall }}}{V_{z}}$

CAPABILITIES

- Low exposure (Single ion x few hours)
\rightarrow neV direct detection.
- Ultra-low heating rate
- Tiny momentum transfer $q \approx \sqrt{2 \mathrm{neV} \times m_{T}} \approx \mathrm{eV}$
- Still scatter with ion: Enormous Rutherford x-sections for small q
- Perfect for Traffic Jam: Large number densities and cross-
sections, KE~26 meV

heating rate

$$
\frac{d E_{\mathrm{dep}}}{d t}=\int E_{\mathrm{dep}}\left(q^{2}\right) \frac{4 \pi \alpha^{2} \epsilon^{2}}{v^{2} q^{4}} d q^{2} \approx 10^{-6} \frac{\mathrm{eV}}{\mathrm{sec}} \epsilon^{2} \frac{n_{\mathrm{lab}}}{1 / \mathrm{cm}^{3}} \frac{\mathrm{GeV}}{m_{\mathrm{ion}}} \ldots \gtrsim 10^{-10} \frac{\mathrm{eV}}{\mathrm{sec}}
$$

TERRESTRIAL POPULATION CONSTRAINTS

$$
m_{Q}^{\min }=\frac{E_{\min }^{2} m_{T}}{16 \mathrm{~T}_{\text {trap }} T_{\text {wall }}}
$$

$$
m_{Q}^{\max }=\frac{16 m_{T} T_{\text {trap }} T_{\mathrm{wall}}}{E_{\mathrm{min}}^{2}}
$$

Forthcoming HR with
D. Budker,
P.Graham,
F.Schmidt-Kaler

TERRESTRIAL POPULATION CONSTRAINTS

PROJECTIONS

TRAFFIC JAM DENSITIES

from: 2012.03957 HR M.Pospelov

LIMITS ON DARK MATTER

1908.06986 Liu et al

TWO KINDS OF MCPs

\downarrow Dark Photon mediated
\downarrow Effectively milli-charged at energies $\gg \mathrm{m}_{A^{\prime}}$
$\rightarrow \mathrm{m}_{A^{\prime}}$ sets the range of interactions with the SM
\rightarrow For large enough $\mathrm{m}_{\mathcal{A}}$, we can ignore long range effects like
o SN shocks, galactic magnetic fields, solar winds,
o Electric field due to the ionosphere
\rightarrow Pure Milli-charge or tiny Dark Photon mass, these effects important: see for e.g. A.Stebbins \& G. Krnjaic 1908.05275

ANNIHILATIONS IN SUPER-K

