Measurement of beta-neutrino correlation coefficient in neutron and nuclear decay.

Hitesh Rahangdale University of Tennessee Nab Collaboration

The work presented is in part supported by U.S. D.O.E award number DE-FG02-03ER41258

Beta Decay

5/11/23

Efforts, Worldwide

				Coefficient	Precision goal	Experiment (Laboratory)	Comments		
				τ _n	1.0 s; 0.1 s [210] 1.0 s; 0.3 s [214] 0.2 s [215] 0.3 s [201] 0.1 s [222] $\lesssim 0.1 s [223]$ 0.5 s [225] 1.0 s; 0.2 s [188]	BL2, BL3 (NIST) [210] LiNA (J-PARC) [211,214] Gravitrap (ILL) [203,215] Ezhov (ILL) [201] PENeLOPE (Munich) [222] UCNτ (LANL) [188,189,223,224] HOPE (ILL) [188,225,226] τ SPECT (Mainz) [188,227]	In preparation; two phases In preparation; two phases Apparatus being upgraded Under construction Being developed Ongoing Proof of principle Ref. [226] Taking data; two phases		
-	a _F		0.1% [306]		TRINAT (TRIUMF) [30	06,310]	Planned (³⁸ K)		
			0.1% [343]		TAMUTRAP (TA&M)	[343]	Superallowed βp emitters		
			0.1% [79]		WISArD (ISOLDE) [79	9,177]	In preparation (³² Ar β p decay)		
	а	Atom Trap	not stated		Ne-MOT (SARAF) [31	1,312]	In preparation (¹⁸ Ne, ¹⁹ Ne, ²³ Ne)		
	a_{GT}	-	$\mathcal{O}(0.1)\%$ [3	15]	⁶ He-MOT (Seattle) [3	13,315]	Ongoing (⁶ He)		
	Ion Trap not stated		not stated		EIBT (Weizmann Inst.	.)[316–318]	In preparation (⁶ He)		
	0.5% [182]			LPCTrap (GANIL) [182	2,321,323,324]	Analysis ongoing (⁶ He, ³⁵ Ar)			
	<i>a_{mirror}</i>		0.5% [273]		NSL-Trap (Notre Dam	ne) [273,344,345]	Planned (¹¹ C, ¹³ N, ¹⁵ O, ¹⁷ F)		
	\tilde{a}_n		1.0% [350]		aCORN (NIST) [350,3	52–354]	Data taking ongoing		
	a_n		1.0 - 1.5%	[351]	aSPECT (ILL) [228,229	9,351]	Analysis being finalized		
		Beam	0.15% [188,	,358]	Nab (LANL) [188,289	,357,358]	In preparation		
-				\tilde{a}_n a_n	1.0% [350] 1.0 — 1.5% [351] 0.15% [188,358]	aCORN (NIST) [350,352–354] aSPECT (ILL) [228,229,351] Nab (LANL) [188,289,357,358]	Data taking ongoing Analysis being finalized In preparation		
				Ã _n	0.14% [391] 0.18% [295]	UCNA (LANL) [390] PERKEO III (ILL) [295]	Data taking planned Analysis ongoing		
M Gon	zález-A	lonso et al / Prog	ress in Particle	<i>Ã</i> _{mirror}	O(0.1)% [78]	TRINAT (TRIUMF) [78]	Planned		
and Nuc	clear Ph	vsics 104 (2019) 1	165–223		0.01% [397] UCNB (LANL) [397]		Planned		
		, () -		\tilde{A} (q \tilde{R})	0.05% [201]	DERC (Munich) [201 202]	In preparation		

Nab @SNS

Neutron Beta Decay

5/11/23

 $a_{\beta\nu}$ measurement in Nab

Momentum conservation kinematics for beta decay,

$$\overrightarrow{p_p} + \overrightarrow{p_e} + \overrightarrow{p_{\overline{\nu}_e}} = 0 \qquad p_p^2 = p_p^2 + p_{\overline{\nu}_e}^2 + 2p_e p_{\overline{\nu}_e} \cos\theta_{e\nu}$$

Neglecting proton recoil energy, $E_0 = E_{\overline{\nu}_e} + E_e$ $\cos\theta_{e\nu} = \frac{1}{2} \left(\frac{p_p^2 - (2E_e^2 + E_0^2 - eE_0E_e)}{E_e(E_0 - E_e)} \right)$

So, the neutron decay rate,

$$d\omega \propto 1 + a\beta \cos\theta_{e\nu}$$

$$1 + a\beta \frac{p_p^2 - (2E_e^2 + E_0^2 - eE_0E_e)}{2E_e(E_0 - E_e)}$$

$a_{\beta\nu}$ measurement in Nab

Nab Measurement Scheme

- Employ E x B field to guide, proton to the upper detector
- Measure Electron energy via upper & lower silicon detectors
- Measure proton momentum via Time-of-Flight in upper

5/11/23

INT, 2023

- 30 kV

TOF region

Nab Spectrometer

INT, 2023

General Idea: J.D. Bowman, Journ. Res. NIST 110, 40 (2005) Original configuration: D. Počanić et al., NIM A 611, 211 (2009) Asymmetric configuration: S. Baeßler et al., J. Phys. G 41, 114003 (2014)

Uncertainty Budget

Expect 1600 decay/s in decay Volume.

 $\circ \sim 200 \text{ proton/sec}$

- 3.8×10^8 events in 6 weeks ○ $\left(\frac{\Delta a}{a}\right)_{stat} \sim 2 \times 10^{-3}$
- Over two years dedicated • 4.4×10^9 protons(in det.) • $\left(\frac{\Delta a}{a}\right)_{stat} \sim 7 \times 10^{-4}$

Experimental parameter	Main specification	$(\Delta a/a)_{syst}$
Magnetic field		
curvature at pinch	$\Delta \gamma / \gamma = 2\%$ with $\gamma = d^2 B_z(z) / dz^2 / B_z(0)$	5.3 ·10 ⁻⁴
ratio $r_{\rm B} = B_{\rm TOF}/B_0$	$(\Delta r_B)/r_B = 1\%$	2.2.10-4
ratio $r_{\rm B,DV} = B_{\rm DV}/B_0$	$(\Delta r_{B,DV})/r_{B,DV} = 1\%$	1.8.10-4
Length of the TOF region		none
Electric potential inhomogeneity:		
in decay volume / filter region	$ U_F - U_{DV} < 10 \text{ mV}$	5.10-4
in TOF region	$ U_F - U_{TOF} < 200 \text{ mV}$	2.2.10-4
Neutron beam:		
position	$\Delta \overline{z_{DV}} < 2 \text{ mm}$	1.7.10-4
profile (including edge effect)	Slope at edges < 10%/cm	2.5.10-4
Doppler effect		small
Unwanted beam polarization	$ \overline{P_n} \ll 10^{-4}$	1.10-4
Adiabaticity of proton motion		1.10-4
Detector effects:		
Electron energy calibration	$\Delta E < 0.2 \text{ keV}$	2.10-4
Shape of electron energy response	fraction of events in tail to 1%	4.4 ·10 ⁻⁴
Proton trigger efficiency	$\epsilon_p < 100 ~ \mathrm{ppm/keV}$	3.4.10-4
TOF shift due to detector/electronics	$\Delta t_p < 0.3 \text{ ns}$	3.9.10-4
Electron TOF		small
Residual gas	$p < 2 \cdot 10^{-9}$ torr	3.8·10 ⁻⁴ (prelim.)
TOF in acceleration region	$\Delta r_{ground \ el.} < 0.5 \ \mathrm{mm}$	3·10 ⁻⁴ (prelim.)
Background / Accidental coincidences		small
Sum		1.2.10-3

Nab Spectrometer and Magnet

INT, 2023

Detector System

Detector

- 15 cm diameter, full thickness: 2mm
- 127 pixels, dead layer < 100nm
- Energy resolution ~ few keV, proton threshold: 10keV
- Detector testing at Manitoba and ORNL
- Detailed pulse shape analysis by L. Hayen arXiv:2212.03438v1

Detector Cooling

Detector Cooling

Use of Counterflow heat exchanger.

Separate cryocooler for each detector.

Projected $T_{det.} = 120-130 \text{ K}$

courtesy: Love Christie

DAQ

- Can identify signals at a rate of 50kHz
- 2. Parse through triggers to identify coincident protons and electrons
- 3. Data is replayed and compressed into HDF5
- 4. Exported to RAID and offline servers
 - 1. LTO tapes for archival

Expect, post compression, around 50 MB/s or ~25 TB/week in total!

courtesy: David Mathews

Neutron beam polarization

$$\frac{dw}{dE_e d\Omega_e d\Omega_\nu} \propto p_e E_e (E_0 - E_e)^2 \left[1 + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + \cdots \right) \right]$$

For Unpolarized Target

$$d\Gamma^3 \propto 1 + a \cdot \frac{|\overrightarrow{p_e}||\overrightarrow{p_\nu}|}{E_e E_\nu} \cos(\theta_{e\nu}) + b \cdot \frac{m_e}{E_e}$$

If net polarization in the beam

$$|\langle \sigma_n \rangle | (A \cdot \beta_e \langle \cos \theta_e \rangle + B \langle \cos \theta_e \rangle \cdot \cos \theta_{e\nu})$$
$$\frac{\Delta a}{a} \sim 10^{-4} \qquad |\langle \sigma_n \rangle| < 2 \times 10^{-5}$$

To reach Nab goal

• Completely unpolarized beam

• Flip the neutron spin and average over time

Neutron Polarization: Measurement

The capture Cross section for reaction :

 $^{3}\text{He} + n \rightarrow p + ^{3}\text{H}$ highly spin dependent.

Downstream

neutron

monitor

It is minimum when the spins are aligned and maximum with spins anti-aligned.

For unpolarized He cell.

$$T_0 = Ne^{-\kappa} \quad \kappa = nl\sigma_0 \frac{\lambda}{\lambda_0}$$

For polarized cell. aligned spin

 $T_{up} = N(1 - P_n \tanh(\kappa P_{He}))e^{-\kappa} \cosh(\kappa P_{He})$

For polarized cell. anti-aligned spin

 $T_{up} = N(1 + P_n \tanh(\kappa P_{He}))e^{-\kappa} \cosh(\kappa P_{He})$

$$P_{n} = \frac{R_{dn} - R_{up}}{\sqrt{(R_{up} + R_{dn})^{2} - 4}} \qquad R_{up} = \frac{T_{up}}{T_{0}}, R_{dn} = \frac{T_{dn}}{T_{0}}$$

Neutron Polarization: Measurement

• First measurements last year.

- Used ³He cell upstream.
- Neutron spin flipper not used.
- Flipped He spin via AFP
- Flux measurement upstream & downstream.
- Measurements
 - \circ ~3 days of data
 - He cell lifetime: $81.6 \pm 2.1 hrs$
 - AFP efficiency: 99.93%
 - Data taken with and without choppers.
 - Holding field gradient: $\sim 10^{-6}$ (sim)
 - \circ npol 0 ± 0.01 *preliminary*

• Problems

- Nab magnet was off
- Det. Efficiency drift by 20%

³He cell is placed in Merritt coils

Chelsea Hendrus, Sepehr Samiei, S.Baeßler, Jason Pioquinto

INT, 2023

Neutron Polarization: Spin Flipper

- \circ Why we need spin flipper:
 - $\Delta p_n \sim 10^{-5}$ measurement is long shot.
 - Alternating n-flip will average out the net flip
- Adiabatic Fast Passage Spin Flipper
 - RF Solenoid
 - Static Gradient Field
- Characterization
 - Field Measurements.
 - Testing at HFIR

Magnet

Magnet stopped cooling in July 2022

Repair Started Early this year

Current Status and Outlook

- Magnet:
 - \circ Successful cooldown two weeks ago.
 - Successfully energized to specifications
- Electrodes:
 - o Installed
- Detectors:
 - Getting ready to install.
 - Currently cooling in test stand and debugging.
- Detector Cooling:
 - \circ Separate cryocooler for both the detectors
- DAQ:
 - Ability to simultaneously read data from two DAQs
- Polarization:
 - Spin flipper out of beamline.
 - Planned tests at HFIR
 - Neutron monitor efficiency measurements at HFIR

SNS FY 2023 Q4 Unofficial (03-09-23)															
Jun-2023			Jul-2023				Aug-2023			Sep-2023		23			
1				1	0.0	20		1	7.00	9 20	20	1	00	20	
2				2				2				2			
3				3				3				3			
4				4				4				4			
5				5				5				5			
6				6				6				6			
7				7				7				7			
8				8				8				8			
9				9				9				9			
10				10				10				10			
11				11				11				11			
12				12				12				12			
13				13				13				13			
14				14				14				14			
15				15				15				15			
16				16				16				16			
17				17				17				17			
18				18				18				18			
19				19				19				19			
20				20				20				20			
21				21				21				21			
22				22				22				22			
23				23				23				23			
24				24				24				24			
25				25				25				25			
26				26				26				26			
27				27				27				27			
28				28				28				28			
29				29				29				29			
30				30				30				30			
				31				31							
	Jun-2023		23	Jul-2023			Aug-2023				Sep-2023				

The Nab Collaboration

NC STATE UNIVERSITY

R

WKU_®

Universität Karlsruhe (TH)

Forschungsuniversität • gegründet 1825

NIVERSITY

IRGINIA

Office of Science

INT, 2023

UNIVERSITY OF South Carolina

Nuclear Beta Decay

$$H_{int} = (\bar{\psi}_{p}\psi_{n})(C_{S}\bar{\psi}_{e}\psi_{\nu} + C_{S}'\bar{\psi}_{e}\gamma_{5}\psi_{\nu}) + (\bar{\psi}_{p}\gamma_{\mu}\psi_{n})(C_{V}\bar{\psi}_{e}\gamma_{\mu}\psi_{\nu} + C_{V}'\bar{\psi}_{e}\gamma_{\mu}\gamma_{5}\psi_{\nu}) + \frac{1}{2}(\bar{\psi}_{p}\sigma_{\lambda\mu}\psi_{n})(C_{T}\bar{\psi}_{e}\sigma_{\lambda\mu}\psi_{\nu} + C_{T}'\bar{\psi}_{e}\sigma_{\lambda\mu}\gamma_{5}\psi_{\nu}) - (\bar{\psi}_{p}\gamma_{\mu}\gamma_{5}\psi_{n})(C_{A}\bar{\psi}_{e}\gamma_{\mu}\gamma_{5}\psi_{\nu} + C_{A}'\bar{\psi}_{e}\gamma_{\mu}\psi_{\nu}) + (\bar{\psi}_{p}\gamma_{5}\psi_{n})(C_{P}\bar{\psi}_{e}\gamma_{5}\psi_{\nu} + C_{P}'\bar{\psi}_{e}\psi_{\nu})$$
(1)

Beta decay rate for polarized target:

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} \propto \xi \left\{ 1 + \frac{a_{\beta v}}{E_{e}E_{v}} + \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + \frac{m_{e}}{E_{e}} + \frac{\langle \vec{I} \rangle}{I} \cdot \left[A_{\beta} \frac{\vec{p}_{e}}{E_{e}} + B_{v} \frac{\vec{p}_{v}}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}} \right] \right\}$$

d

$a_{\beta\nu}$ in nuclear decays When using unpolarized $\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} \propto \xi \left\{ 1 + \frac{a_{\beta v}}{E_{e}E_{v}} + \frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + \frac{\vec{p}_{e}}{E_{e}} + \frac{\vec{p}_{e}}{I} \cdot \begin{bmatrix} A_{\beta} \frac{\vec{p}_{e}}{E_{e}} + B_{v} \frac{\vec{p}_{e}}{E_{v}} + D \frac{\vec{p}_{e} \times \vec{p}_{v}}{E_{e}E_{v}} \end{bmatrix} \right\}$ target. The Beta Nu correlation coefficient: $\boldsymbol{\alpha}_{\boldsymbol{\beta}\boldsymbol{\nu}} \propto \left| M_{F} \right|^{2} \left(\left| C_{V} \right|^{2} + \left| C_{V} \right|^{2} - \left| C_{S} \right|^{2} - \left| C_{S} \right|^{2} \right) - \frac{1}{3} \left| M_{GT} \right|^{2} \left(\left| C_{A} \right|^{2} + \left| C_{A} \right|^{2} - \left| C_{T} \right|^{2} - \left| C_{T} \right|^{2} \right)$ 0.2

SM predictions:

 $\alpha_{\beta\nu} = 1$ for pure Fermi Transition $= -\frac{1}{3}$ for pure GT or combination for mixed transition

Soreq Applied Research Accelerator Facility

5/11/23

INT, 2023

$a_{\beta\nu}$ measurement in ²³Ne Roadmap

Produce ²³Ne by n,p reaction

- Measure Branching Ratio, (to reduce unc in $a_{\beta\nu}$ meas.)
- Trap in MOT, to precisely measure recoil ion energy distribution
- Compute recoil energy dist. for each transition, for various a_{βν} and compare to exp.

Branching Ratio and Reanalysis:

First Measurement of $a_{\beta\nu}$ in ²³Ne was done by Carlson in 1960 at Oak Ridge National Lab reactor

Contribution	Δa	$\Delta a/a$
Branching ratio to first excited state	0.03	9.0%
Counting Statistics	0.005	1.5%
End-point energy	0.004	1.2%
Treatment of second excited state	0.003	0.90%
Pressure effects	0.003	0.90%

Carlson, Physical Review, 132(5):2239, 1963. Penning, Physical Review, 105:647–651,1957.

Mishnayot, Glick-Magid, HR, et al., arXiv:2107.14355

5/11/23

Neutral Atom Trapping

At Rest

•~~

 $\Delta E = h/\lambda$

Emission

In Motion $\Delta E = h/\lambda'$

Red/Blue Doppler shift

🔊 🗤

 $\Delta \vec{p} = N\hbar k \hat{z}$

Absorption

Cooling Force.

$$\begin{split} \mathbf{F} &= \hbar \mathbf{k} \frac{\Gamma}{2} \frac{s}{1 + s + (2\delta/\Gamma)^2} \\ s &= \frac{I}{I_o} \text{saturation parameter} \\ \delta &= \omega - \omega_o - \text{detuning}, \Gamma - \text{Linewidth} \end{split}$$

Neutral Atom Trapping

- Doppler cooling alone cannot do the trapping
- For that we need position dependent force.
- Inhomogeneous magnetic field
 & circularly polarized beams
- $\succ \Delta \mathbf{E} = -\vec{\mu} \cdot \vec{B} = \mu_B B g m_i$
- $\succ \sigma \pm derives \, \delta M_j = \pm$
- For 3D trap we need 6 such beams

Magneto Optical Trap

MOT

Detector for recoils:

(Magneto-optical-trap with High energy Velocity Map Imaging)

- Trigger on Shakeoff-e
- Direct detection of recoil ion energy (100% collection)

Parameter	Effect on $a_{eta u}$ (%)
Shift along detection axis(0.2mm)	< 0.3
Trap Radial shift(0.2mm)	< 0.1
Trap volume(x 1.5)	< 0.1
Lens Voltage(0.1%)	<0.2
Lens Diameter(0.4mm)	0.4

BO, HR et. al.: Phys. Rev. C 101, 035501 (2020)

Conclusions:

• Made the MOT.

- Loaded ²⁰Ne, ²²Ne stable isotopes.
- \circ Successfully produced ~10⁸ ²³Ne.(More in SARAF Phase II)
- \circ Measured branching Ratio for ²³Ne.
- Reanalysis of Carlson data allows for 1.02% measurement of $a_{\beta\nu}$

²³Ne Collaboration:

Hebrew University of Jerusalem Israel

Prof. Guy Ron(PI) Ben Ohayon Vishal Srivastava Doron Gazit Ayala Glick-Magid

Soreq

Tsviki Hirsh Sergey Vaintraub

LLNL Jason Burke Nick Scielzo Aaron Gallant Yonatan Mishnayot

Weizmann Institute Oded Heber

The Nab Collaboration

NC STATE UNIVERSITY

R

WKU_®

Universität Karlsruhe (TH)

Forschungsuniversität • gegründet 1825

NIVERSITY

IRGINIA

Office of Science

INT, 2023

UNIVERSITY OF South Carolina

Beam Flux measurement

Upstream Monitor

- Counting type detector with ${}^{14}N + CF_4$ gas mixture
- Able to detect individual neutrons.
- Used with preamp to get single neutron event.
- Produces narrow signals. ~500ns width

Downstream Monitor:

- Thick Monitor filled with ³He.
- Does not detect individual neutrons and needs high flux.
- Produces current proportional to neutron flux.

DAQ:

- Our DAQ contains voltage ADC, with 48 channels.
- It works in triggered mode
- Triggered by signal form SNS at 60Hz.
- For each trigger, data is sampled at 400us, for ~16ms, i.e, 40 time bins

Beam Flux Measurement

Can't directly incorporate, current upstream monitor in DAQ

- dynamic range
- Large integration time

Outlook - proposed pNab

- Place polarizer and SF in the Nab setup to measure the beta asymmetry A to better than $\Delta A/A = 10^{-3}$, competitive with other experiments
- Synergistic with Nab, in that the systematic uncertainty requirements in the detector characterization in Nab are sufficient for pNab.
- Different set of systematic errors! Well motivated by the CKM picture at the moment

45/47

Beam Flux Measurement

INT, 2023

Electrode System:

Neon scheme & isotopes

Nuclide ^[2] [n 1]	Z	N	Isotopic mass (Da) ^[3] [n 2][n 3]	Half-life [resonance width]	Decay mode [n 4]	Daughter isotope [n 5]	Spin and parity [n 6]	
			17.0177140(4)		β ⁺ , p (96.0%)	¹⁶ O	1/2-	
¹⁷ Ne ^[n 7]	10	7		109.2(6) ms	β+, α (2.7%)	¹³ N		
					β ⁺ (1.3%)	¹⁷ F		
¹⁸ Ne	10	8	18.0057087(4)	1.66420(47) s	β+	¹⁸ F	0+	
¹⁹ Ne	10	9	19.00188090(17)	17.274(10) s	β+	¹⁹ F	1/2+	
²⁰ Ne	Ne 10 10 19.9924401762(17)			0+				
²¹ Ne	10	11	20.99384669(4)		Stable		3/2+	
²² Ne	10	12	21.991385110(19)			0+		
²³ Ne	10	13	22.99446690(11)	37.140(28) s	β-	²³ Na	5/2+	
²⁴ Ne	10	14	23.9936106(6)	3.38(2) min	β-	²⁴ Na	0+	
²⁵ Ne	10	15	24.997810(30)	602(8) ms	β-	²⁵ Na	1/2+	
26	10	10	00.000546(00)	107(2) ma	β ⁻ (99.87%)	²⁶ Na		
INE	10	16	26.000516(20)	197(2) ms	β ⁻ , <mark>n (</mark> 0.13%)	²⁵ Na	Ut vs	

Detection System:

 hollow cavity of 10mm Neon diameter, 6 mm height Thick • 75 micron Be for β Cell: Scintillator transmission Scintillator • Thin and Thick scintillation Electron detectors Shielding Neon Cel make electron telescope to **Detection:** for beta identify β . • Gammas are detected with Gamma highly pure Germanium Detector **Detection:** • p-Type 40% HPGE • Preamplifiers + CAEN N6780 digital MCA module. Data Data collection in list mode we Acquisition searched for triple coincidence event. INT, 2023

Data Analysis/Preliminary

Background Correction- Geant4 Simulation

- > Neon 23 is flowing Through pipes/ Turbo etc.
- > Possibility of lots of β background
- > Thick Ta Foils Between β detector & cell during expt.(no. β expected in detector)
- > Still β events observed.
- \succ Could be β from background/bremsstrahlung
- Using G4 to discriminate between background/Bremsstrahlung.

Preliminary

