

BNL-INT Joint Workshop: Bridging Theory and Experiment at the Electron-Ion Collider June 2, 2025 - June 6, 2025

ORGANIZERS

Alessandro Bacchetta Università di Pavia alessandro.bacchetta@unipv.it

Wim Cosyn Florida International University wcosyn@fiu.edu

Felix Ringer Stony Brook University felix.ringer@stonybrook.edu

Anna Stasto Penn State University ams52@psu.edu

PROGRAM COORDINATOR

Paris Nguyen Institute for Nuclear Theory paris90@uw.edu

1

Image: Courtesy of Brookhaven National Lab

Recent updates on (polarized) TMD extractions

The application deadline for this event has passed.

Processes with factorization

For $e+e- \rightarrow h+X$ formula more complicated; need to include info on thrust axis Boglione & Simonelli, JHEP 02 (21) 076; 02 (22) 013; 09 (23) 006

Processes with factorization

Boglione & Simonelli, JHEP 02 (21) 076; 02 (22) 013; 09 (23) 006

Phase space for processes with factorization

Evolution of TMDs

Collins - Soper - Sterman (CSS) scheme

Collins, "Foundations of Perturbative QCD" (11)

Evolution of TMDs

Collins - Soper - Sterman (CSS) scheme

Collins, "Foundations of Perturbative QCD" (11)

Evolution of TMDs

Collins - Soper - Sterman (CSS) scheme

Collins, "Foundations of Perturbative QCD" (11)

$$\begin{split} \tilde{f}_{1}^{q}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) &= & \text{Evo}\left[(\mu_{f}, \zeta_{f}) \leftarrow (\mu_{i}, \zeta_{i})\right] \times \tilde{f}_{1}^{q}(x, b_{T}^{2}; \mu_{i}, \zeta_{i}) \times \\ & \text{Small br} & \text{large br} \\ \sum_{i} \begin{bmatrix} OPE & \\ C_{qi}(x, b_{T}; \mu_{i}, \zeta_{i}) \otimes f_{1}^{i}(x, \mu_{i}) \end{bmatrix} \\ PDF & \text{preduction in } \zeta_{i} \\ & \text{portupative of the second states} \\ \hline \frac{Final \ formula}{\tilde{f}_{1}^{q}(x, b_{T}^{2}; \mu_{f}, \zeta_{f})} &= \exp\left[\int_{\mu_{b_{u}}}^{\mu_{f}} \frac{d\mu}{\mu} \left(\gamma_{F} - \gamma_{K} \log \frac{\sqrt{\zeta_{f}}}{\mu}\right)\right] \exp\left[K(b_{*}, \mu_{b}) \log \frac{\sqrt{\zeta_{f}}}{\mu_{b}}\right] \\ & \times \sum_{i} \begin{bmatrix} C_{qi}(x, b_{*}; \mu_{b}, \mu_{b}^{2}) \otimes f_{1}^{i}(x, \mu_{b}) \\ x \exp\left[g_{K}(b_{T}) \log \frac{\sqrt{\zeta_{f}}}{Q_{0}}\right] f_{NP}(x, b_{T}) \\ & \text{similar formula for } D^{q \rightarrow h} \\ & \text{similar formula for } X^{2} \end{split}$$

Logarithmic counting

$$\frac{d\sigma}{dxdzdq_TdQ} \sim \mathscr{H}^{\text{SIDIS}}(Q^2) \frac{1}{2\pi} \int_0^\infty db_T b_T J_0(b_T, q_T) \quad \tilde{f}_1^q(x, b_T^2; Q, Q^2) \quad \tilde{D}_1^{q \to h}(z, b_T^2; Q, Q^2)$$
$$\tilde{f}_1^q(x, b_T^2; \mu_f, \zeta_f) = \exp\left[\int_{\mu_{b*}}^{\mu_f} \frac{d\mu}{\mu} \left(\gamma_F - \gamma_K \log \frac{\sqrt{\zeta_f}}{\mu}\right)\right] \exp\left[K(b_*, \mu_b) \log \frac{\sqrt{\zeta_f}}{\mu_b}\right] \\ \times \exp\left[g_K(b_T) \log \frac{\sqrt{\zeta_f}}{Q_0}\right] f_{\text{NP}}(x, b_T)$$
$$\times \sum_i \left[C_{qi}(x, b_*; \mu_b, \mu_b^2) \otimes f_1^i(x, \mu_b)\right] \qquad \text{similar formula for } \tilde{D}_1^{q \to h}$$

perturbative accurac		${\mathscr H}$ and ${\mathcal C}$	K and γ_F	Y K	PDF and a s	FF
	LL	0	-	1		-
~S	NLL	0	1	2	LO	LO
	NLL'	1	1	2	NLO	NLO
	NNLL	1	2	3	NLO	NLO
	NNLL'	2	2	3	NNLO	NNLO
	N ³ LL(-)	2	3	4	NNLO	NLO
	N ³ LL	2	3	4	NNLO	NNLO
	N ³ LL'	3	34	5	N ³ LO	N ³ LO
	N ⁴ LL(-)	3	34	5	N³LO	NNLO
	N ⁴ LL	3	34	5	N ³ LO	N ³ LO

The unpolarized quark TMD PDF

Mulders & Tangerman, N.P. **B461** (96) Boer & Mulders, P.R. D**57** (98)

Let's focus on the simplest unpolarized TMD PDF:

 f_1^q = probability density to find an unpolarized quark q with light-cone momentum fraction x and transverse momentum \mathbf{k}_{\perp} in an unpolarized hadron

	Accuracy	SIDIS	Drell-Yan	N of points	χ^2/N_{points}	Flavor dep.
PV 2017 arXiv:1703.10157	NLL	>	~	8059	1.5	×
SV 2017 arXiv:1706.01473	N ³ LL	×	(LHC)	309	1.23	×
BSV 2019 arXiv:1902.08474	N ³ LL	×	✔ (LHC)	457	1.17	×
SV 2019 arXiv:1912.06532	N ³ LL(-)	>	(LHC)	1039	1.06	×
PV 2019 arXiv:1912.07550	N ³ LL	×	(LHC)	353	1.07	×
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	>	(LHC)	2031	1.06	×
ART23 arXiv:2305.07473	N ⁴ LL(-)	×	✔ (LHC)	627	0.96	V
MAPTMD 2024 arXiv:2405.13833	N ³ LL	~	(LHC)	2031	1.08	V
MAPNN 2025 arXiv:2502.04166	N ³ LL	×	✔ (LHC)	482	0.97	×
ART25 arXiv:2503.11201	N ⁴ LL(-)	~	✓ (LHC)	1209	1.05	V

	Accuracy	SIDIS	Drell-Yan	N of points	χ^2/N_{points}	Flavor dep.
PV 2017 arXiv:1703.10157	NLL	~	~	8059	1.5	×
SV 2017 arXiv:1706.01473	N ³ LL	×	✔ (LHC)	309	1.23	×
BSV 2019 arXiv:1902.08474	N ³ LL	×	✔ (LHC)	457	1.17	×
SV 2019 arXiv:1912.06532	N ³ LL(-)	~	✔ (LHC)	1039	1.06	×
PV 2019 arXiv:1912.07550	N ³ LL	×	(LHC)	353	1.07	×
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	~	(LHC)	2031	1.06	×
ART23 arXiv:2305.07473	N ⁴ LL(-)	×	(LHC)	627	0.96	V
MAPTMD 2024 arXiv:2405.13833	N ³ LL	~	(LHC)	2031	1.08	V
MAPNN 2025 arXiv:2502.04166	N ³ LL	×	✔ (LHC)	482	0.97	×
ART25 arXiv:2503.11201	N ⁴ LL(-)	~	(LHC)	1209	1.05	~

increasing accuracy & precision

	Accuracy	SIDIS	Drell-Yan	N of points	χ^2/N_{points}	Flavor dep.
PV 2017 arXiv:1703.10157	NLL	~	~	8059	1.5	×
SV 2017 arXiv:1706.01473	N ³ LL	×	✔ (LHC)	309	1.23	×
BSV 2019 arXiv:1902.08474	N ³ LL	×	✔ (LHC)	457	1.17	×
SV 2019 arXiv:1912.06532	N ³ LL(-)	>	✔ (LHC)	1039	1.06	×
PV 2019 arXiv:1912.07550	N ³ LL	×	✔ (LHC)	353	1.07	×
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	2	✔ (LHC)	2031	1.06	×
ART23 arXiv:2305.07473	N ⁴ LL(-)	×	✔ (LHC)	627	0.96	>
MAPTMD 2024 arXiv:2405.13833	N ³ LL	~	(LHC)	2031	1.08	>
MAPNN 2025 arXiv:2502.04166	N ³ LL	×	✔ (LHC)	482	0.97	×
ART25 arXiv:2503.11201	N ⁴ LL(-)	7	✔ (LHC)	1209	1.05	V

global fits

first use of Neural Networks

More pheno studies on unpolarized TMD f_1

Boglione & Simonelli, JHEP **02** (21) 076; **02** (22) 013; **09** (23) 006

- pion TMDs

Cerutti et al. (MAP), P.R. D**107** (23) 014014 Vladimirov, JHEP **10** (19) 090 Barry et al. (JAM), P.R. D**108** (23) L091504

- hadron-in-jet production at colliders

D'Alesio et al., P.L. B**773** (17) 300 Kang et al., P.L. B**774** (17) 635 Arratia et al., P.R. D**102** (20) 074015

- Di-jet and heavy-meson production at colliders and in DIS Del

Del Castillo et al., JHEP 03 (22) 047 Gutierrez-Reyes et al., P.R.L. 121 (18) 162001

- parton-branching method Bermudez Martinez et al., P.R. D99 (19) 074008
- q_T-resummation based extractions

Camarda, Ferrera, Schott, E.P.J. C84 (24) 39

- gluon TMDs

(see talks by D. Boer, A. Mukherjee and C. Pisano) low-q_T spectrum of Higgs production in gluon fusion

Gutierrez-Reyes et al., JHEP 11 (19) 121

	Accuracy	SIDIS	Drell-Yan	N of points	χ^2/N_{points}	Flavor dep.
PV 2017 arXiv:1703.10157	NLL	~	~	8059	1.5	×
SV 2017 arXiv:1706.01473	N ³ LL	×	✔ (LHC)	309	1.23	×
BSV 2019 arXiv:1902.08474	N ³ LL	×	✔ (LHC)	457	1.17	×
SV 2019 arXiv:1912.06532	N ³ LL(-)	>	(LHC)	1039	1.06	×
PV 2019 arXiv:1912.07550	N ³ LL	×	(LHC)	353	1.07	×
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	>	(LHC)	2031	1.06	×
ART23 arXiv:2305.07473	N ⁴ LL(-)	×	(LHC)	627	0.96	~
MAPTMD 2024 arXiv:2405.13833	N ³ LL	>	(LHC)	2031	1.08	~
MAPTMDNN 2025 arXiv:2502.04166	N ³ LL	×	🖌 (LHC)	482	0.97	×
ART25 arXiv:2503.11201	N ⁴ LL(-)	~	🖌 (LHC)	1209	1.05	~

MAPTMD24 settings (in one slide..)

Bacchetta et al. (MAP), JHEP 08 (24) 232

$$b_{*}(b_{T}) = b_{\max} \left(\frac{1 - e^{-b_{T}^{4}/b_{\max}^{4}}}{1 - e^{-b_{T}^{4}/b_{\min}^{4}}} \right)^{\frac{1}{4}} \quad b_{\max} = 2e^{-\gamma_{E}}/Q_{0} (=1)$$
$$b_{\min} = 2e^{-\gamma_{E}}/Q$$

non-pert. Collins-Soper kernel $g_{K}(b_{T}) = -g_{2}^{2}b_{T}^{2}/2$

same as MAPTMD22 Bacchetta et al. (MAP), JHEP **10** (22) 127

 $f_{NP}(x, b_T)$ Fourier Transf. of combination of 2 Gaussians + 1 weighted Gaussian, all with x-dependent widths

 $D_{\text{NP}}(z, b_T)$ Fourier Transf. of combination of 2 Gaussians with z-dep. widths

cuts
 N = 2031 pts.

$$\langle Q \rangle > 1.4 \text{ GeV}$$
 $0.2 < z < 0.7$
 $0.2 < z < 0.7$
 Drell-Yan $q_T < 0.2 Q$

 SIDIS
 $P_{hT} < \min \left[\min [0.2 Q, 0.5 Qz] + 0.3 \text{ GeV}, zQ \right]$

MAPTMD24 settings (in one slide..)

Bacchetta et al. (MAP), JHEP 08 (24) 232

 $b_{*}(b_{T}) = b_{\max} \left(\frac{1 - e^{-b_{T}^{4}/b_{\max}^{4}}}{1 - e^{-b_{T}^{4}/b_{\min}^{4}}} \right)^{\frac{1}{4}} \qquad b_{\max} = 2e^{-\gamma_{E}}/Q_{0} (=1)$ $b_{\min} = 2e^{-\gamma_{E}}/Q$

non-pert. Collins-Soper kernel $g_{K}(b_{T}) = -g_{2}^{2}b_{T}^{2}/2$

same as MAPTMD22 Bacchetta et al. (MAP), JHEP **10** (22) 127

 $f_{NP}(x, b_T)$ Fourier Transf. of combination of 2 Gaussians + 1 weighted Gaussian, all with x-dependent widths for u, d, \bar{u}, \bar{d} , sea

 $D_{\text{NP}}(z, b_T)$ Fourier Transf. of combination of 2 Gaussians with z-dep. widths for fav./unfav. $u \to \pi^+/d \to \pi^+$ and fav./unfav. $u \to K^+, \bar{s} \to K^+/d, s \to K^+$

NNPDF3.1 + MAPFF1.0 at NNLO N³LL perturbative accuracy

cuts $\langle Q \rangle > 1.4 \text{ GeV}$

0.2 < z < 0.7

```
Drell-Yan q_T < 0.2 Q
```

```
SIDIS
```

 $P_{hT} < \min\left[\min\left[0.2\,Q,\,0.5\,Qz\right] + 0.3\,\text{GeV},\,zQ\right]$

Total 96 parameters

N = 2031 pts. $\chi^2/N = 1.08$

> correlation matrix

"Normalized" MAPTMD24 TMD PDFs

 $\frac{f_1(x, \, k_T; \, Q)}{f_1(x, \, 0; \, Q)}$

th. error band = 68% of all replicas

- very different k_T behavior
- it changes with *x*

same settings as MAPTMD22 & MAPTMD24 but limited to Drell-Yan data

 $f_{\text{NP}}(x, b_T) = \frac{\mathbb{NN}(x, b_T)}{\mathbb{NN}(x, 0)}$

NN architecture

N³LL perturbative accuracy Total 41+1 parameters N = 482 pts. $\chi^2/N = 0.97$

same settings as MAPTMD22 & MAPTMD24 but limited to Drell-Yan data

 $f_{\text{NP}}(x, b_T) = \frac{\mathbb{NN}(x, b_T)}{\mathbb{NN}(x, 0)}$

NN architecture

N³LL perturbative accuracy Total 41+1 parameters N = 482 pts. $\chi^2/N = 0.97$

Neural Networks perform better than MAPTMD22 limited to Drell-Yan (MAP22DY), particularly on the most precise ATLAS data: $\chi^2 = 3.51 \rightarrow 1.38$

same settings as MAPTMD22 & MAPTMD24 but limited to Drell-Yan data

 $f_{\text{NP}}(x, b_T) = \frac{\mathbb{NN}(x, b_T)}{\mathbb{NN}(x, 0)}$

NN architecture

N³LL perturbative accuracy Total 41+1 parameters N = 482 pts. $\chi^2/N = 0.97$

Neural Networks perform better than MAPTMD22 limited to Drell-Yan (**MAP22DY**), particularly on the most precise ATLAS data: $\chi^2 = 3.51 \rightarrow 1.38$

same settings as MAPTMD22 & MAPTMD24 but limited to Drell-Yan data

 $f_{\text{NP}}(x, b_T) = \frac{\mathbb{NN}(x, b_T)}{\mathbb{NN}(x, 0)}$

NN architecture

N³LL perturbative accuracy Total 41+1 parameters N = 482 pts. $\chi^2/N = 0.97$

Neural Networks perform better than MAPTMD22 limited to Drell-Yan (**MAP22DY**), particularly on the most precise ATLAS data: $\chi^2 = 3.51 \rightarrow 1.38$

 closure test - level 0
 generate pseudodata with known DWS model and real-data uncertainties
 Davies et al., N.P. B256 (85)
 reproduce result with NN

[2, 10, 1]

same settings as MAPTMD22 & MAPTMD24 but limited to Drell-Yan data

 $f_{\text{NP}}(x, b_T) = \frac{\mathbb{NN}(x, b_T)}{\mathbb{NN}(x, 0)}$

NN architecture

N³LL perturbative accuracy

Total 41+1 parameters N = 482 pts. $\chi^2/N = 0.97$

NN PDFs \rightarrow NN TMDs !

Bacchetta et al. (MAP), arXiv:2502.04166

Neural Networks perform better than MAPTMD22 limited to Drell-Yan (**MAP22DY**), particularly on the most precise ATLAS data: $\chi^2 = 3.51 \rightarrow 1.38$

closure test - level 0

 generate pseudodata with known DWS model and real-data uncertainties Davies et al., N.P. B256 (85)

- reproduce result with NN

TMD PDFs at Q=10 GeV

ART23 — MAPNN

2.5

3.0

ART25 📥 MAP24

ART23 — MAPNN

ART23 — MAPNN

U

3.5

d

3.5

 \bar{u}

Moos et al., arXiv:2503.11201

MAPTMD22: validity of TMD region ?

validity of TMD factorization seems to extend well beyond $P_{hT}/z \ll Q!$

Collins-Soper evolution kernel

(see talk by P. Shanahan

and S.Mukherjee)

Lattice

Bollweg et al., arXiv:2403.00664 DWF24

LPC23 Chu et al. (LPC), arXiv:2306.06488

ASWZ24 Avkhadiev et al., arXiv:2402.06725

Pheno

IFY23 (ResBos) Isaacson et al., arXiv:2311.09916 EEC24 Kang et al., arXiv:2410.21435 PB24 Martinez et al., arXiv:2412.21116 + MAPTMD-22, -24, -NN + ART-23, -25

pQCD

N³ Vladimirov, arXiv:1610.05791 N³LO Li&Zhu, arXiv:1604.01404

Ratio of different flavors from lattice

 $\frac{f_1^{u_v}(x, b_T; \mu, \zeta)}{f_1^{d_v}(x, b_T; \mu, \zeta)}$

 $\mu = \sqrt{\zeta} = 1.62 \text{ GeV}$

Bollweg et al., arXiv:2505.18430

(see talk by S.Mukherjee)

Ratio of different flavors from lattice

Bollweg et al., arXiv:2505.18430

Phase space for processes with factorization

The EIC impact at x=0.01

The EIC impact at x=0.001

TMDq	- <tm[< th=""><th></th><th>n</th></tm[<>		n
<t.< th=""><th>MD9></th><th> X=0.0</th><th>υ</th></t.<>	MD9>	X=0.0	υ
APTMD24 41 x100 x275 simulation c only 1	2031 # pts. 1273 1611 1648 campaigr π+ prod	lumi [fb-1] 2.85 51.3 10 n of May 2024 uction)	ŀ
/			
sea	MAPTMI MAPTMI	024 024 + EIC	
0.2	minar		

L. Rossi, Ph.D. Thesis

Early Science Conditions

ep Luminosity for Phase-1

High Divergence	Lumi per Fill (5 h)	Lumi per Year	Low Divergence	Lumi per Fill (5 h)	Lumi per Year
5 GeV e x 250 GeV p	9.26 pb ⁻¹	6.48 fb ⁻¹	5 GeV e x 250 GeV p	6.81 pb ⁻¹	4.78 fb ⁻¹
10 GeV e x 250 GeV p	13.12 pb ⁻¹	9.18 fb ⁻¹	10 GeV e x 250 GeV p	8.8 pb ⁻¹	6.19 fb ⁻¹
5 GeV e x 130 GeV p	6.3 pb ⁻¹	4.36 fb-1	5 GeV e x 130 GeV p	5.8 pb ⁻¹	4.1 fb ⁻¹
10 GeV e x 130 GeV p	7.6 pb ⁻¹	5.33 fb ⁻¹	10 GeV e x 130 GeV p	7.1 pb ⁻¹	4.95 fb ⁻¹

Compare to HERA integrated luminosity 1992 – 2007: 0.6 fb⁻¹

Remember:

high divergence: higher lumi, but reduced acceptance for low forward particle p_T^{min} low divergence: lower lumi, but increased acceptance for low forward particle p_T^{min} \rightarrow important for exclusive processes

Electron-Ion Collider ePIC Collaboration Meeting, January 2025

E.C. Aschenauer & R. Ent

Early Science Conditions

ep Luminosity for Phase-1

High Divergence	Lumi per Fill (5 h)	Lumi per Year	Low Divergence	Lumi per Fill (5 h)	Lumi per Year
5 GeV e x 250 GeV p	9.26 pb ⁻¹	6.48 fb ⁻¹	5 GeV e x 250 GeV p	6.81 pb ⁻¹	4.78 fb ⁻¹
10 GeV e x 250 GeV p	13.12 pb ⁻¹	9.18 fb ⁻¹	10 GeV e x 250 GeV p	8.8 pb ⁻¹	6.19 fb ⁻¹
5 GeV e x 130 GeV p	6.3 pb ⁻¹	4.36 fb-1	5 GeV e x 130 GeV p	5.8 pb ⁻¹	4.1 fb ⁻¹
10 GeV e x 130 GeV p	7.6 pb⁻¹	5.33 fb ⁻¹	10 GeV e x 130 GeV p	7.1 pb ⁻¹	4.95 fb ⁻¹

Compare to HERA integrated luminosity 1992 – 2007: 0.6 fb⁻¹

Remember:

high divergence: higher lumi, but reduced acceptance for low forward particle p_T^{min} low divergence: lower lumi, but increased acceptance for low forward particle p_T^{min} \rightarrow important for exclusive processes

Electron-Ion Collider ePIC Collaboration Meeting, January 2025

E.C. Aschenauer & R. Ent

EIC impact in Early Science Conditions

For each (x,Q^2) bin:

) from MAPTMD24, max. uncertainty of $f_1^q(x,k_T;Q)$ over all k_T and all flavors q

) including EIC pseudodata, color code indicates the flavor with max. reduction in uncertainty over all k_T

EIC impact in Early Science Conditions

For each (x, Q^2) bin:

) from MAPTMD24, max. uncertainty of $f_1^q(x,k_T;Q)$ over all k_T and all flavors q

) including EIC pseudodata, color code indicates the flavor with max. reduction in uncertainty over all k_T

The EIC impact with 10x130 at x=0.16

Helicity TMD PDF

- How polarization of quarks distorts their k_T ?
- Do quarks with spin parallel to proton spin have larger / smaller k_T than those with spin antiparallel ?

Double Spin Asymmetry

$$A_{1}(x, z, |\mathbf{P}_{hT}|, Q) = \frac{d\sigma^{\rightarrow \leftarrow} - d\sigma^{\rightarrow \rightarrow} + d\sigma^{\leftarrow \rightarrow} - d\sigma^{\leftarrow \leftarrow}}{d\sigma^{\rightarrow \leftarrow} + d\sigma^{\rightarrow \rightarrow} + d\sigma^{\leftarrow \rightarrow} + d\sigma^{\leftarrow \leftarrow}}$$
$$= \frac{\sum_{i=q,\bar{q}} e_{i}^{2} \int_{0}^{\infty} db_{T}^{2} J_{0} \left(b_{T} |\mathbf{P}_{hT}| / z\right) \tilde{g}_{1}^{i}(x, b_{T}^{2}; Q) \tilde{D}_{1}^{i \rightarrow h}(z, b_{T}^{2}; Q)}{\sum_{i=q,\bar{q}} e_{i}^{2} \int_{0}^{\infty} db_{T}^{2} J_{0} \left(b_{T} |\mathbf{P}_{hT}| / z\right) \tilde{f}_{1}^{i}(x, b_{T}^{2}; Q) \tilde{D}_{1}^{i \rightarrow h}(z, b_{T}^{2}; Q)} \sum_{\text{consistency}} \frac{1}{2} \sum_{i=q,\bar{q}} e_{i}^{2} \int_{0}^{\infty} db_{T}^{2} J_{0} \left(b_{T} |\mathbf{P}_{hT}| / z\right) \tilde{f}_{1}^{i}(x, b_{T}^{2}; Q) \tilde{D}_{1}^{i \rightarrow h}(z, b_{T}^{2}; Q)}$$

	Accuracy	SIDIS	Drell-Yan	N of points	χ²/N	Flavor dep.
MAPTMD22pol Bacchetta et al. (MAP) P.R.L. 134 (25) 121901	NNLL	>	×	291	1.09	*
YLSZM Yang et al. (TNT) P.R.L. 134 (25) 121902	NNLL	>	×	253	0.74	*

The MAPTMD22pol fit (in one slide)

TMD f₁ & D₁ from MAPTMD22

Bacchetta et al. (MAP) P.R.L. 134 (25) 121901

$$\tilde{g}_{1}^{q}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = \operatorname{Evo}\left[(\mu_{f}, \zeta_{f}) \leftarrow (\mu_{i}, \zeta_{i})\right] \exp\left[g_{K}(b_{T}) \log\left(\sqrt{\zeta_{f}}/Q_{0}\right)\right] g_{\mathrm{NP}}(x, b_{T}) \\ \times \sum_{i} \left[C_{qi}^{g}(x, b_{T}; \mu_{i}, \zeta_{i}) \otimes g_{1}^{i}(x, \mu_{i})\right]$$

same **Evo** and g_{K} from MAPTMD22; **C**^g up to **NLO** \rightarrow **NNLL** max. pert. accuracy $g_1(x,\mu_i)$ from NNPDFpol1.1 at **NLO** $g_1(x,\mu_i)$ from NNPDFpol1.1 at **NLO** Gutierrez-Reyes et al., P.L. B769 (17) 84

YLSZM fit modifies $g_1(x,\mu_i) \rightarrow$ breaking OPE formula!

$$\rightarrow \int d\mathbf{k}_T g_1(x, \mathbf{k}_T) \neq g_1(x)$$
 even at NLL!

The MAPTMD22pol fit (in one slide)

TMD f₁ & D₁ from MAPTMD22

Bacchetta et al. (MAP) P.R.L. 134 (25) 121901

$$\tilde{g}_{1}^{q}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = \operatorname{Evo}\left[(\mu_{f}, \zeta_{f}) \leftarrow (\mu_{i}, \zeta_{i})\right] \exp\left[g_{K}(b_{T}) \log\left(\sqrt{\zeta_{f}}/Q_{0}\right)\right] g_{\mathrm{NP}}(x, b_{T}) \\ \times \sum_{i} \left[C_{qi}^{g}(x, b_{T}; \mu_{i}, \zeta_{i}) \otimes g_{1}^{i}(x, \mu_{i})\right]$$

same **Evo** and g_{K} from MAPTMD22; **C**^g up to **NLO** \rightarrow **NNLL** max. pert. accuracy $g_1(x,\mu_i)$ from NNPDFpol1.1 at **NLO** $g_1(x,\mu_i)$ from NNPDFpol1.1 at **NLO** Gutierrez-Reyes et al., P.L. B769 (17) 84

$$g_{\rm NP}(x, k_T^2) = f_{\rm NP}^{\rm MAP22}(x, k_T^2) \frac{e^{-k_T^2/w_1(x)}}{k_{\rm norm}(x)}$$
 such that $\int d\mathbf{k}_T g_{\rm NP} = 1$

x-dep. width $w_1(x)$ such that always $|g_1| \le f_1$ ensure positivity (not granted in YLSZM fit)

At Q₀
$$\frac{|g_1(x, \mathbf{k}_T^2; Q_0)|}{f_1(x, \mathbf{k}_T^2; Q_0)} = \frac{|g_1(x; Q_0)|}{f_1(x; Q_0)} \frac{e^{-k_T^2/w_1(x)}}{k_{\text{norm}}(x)} \le 1$$

The MAPTMD22pol fit (in one slide)

TMD f₁ & D₁ from MAPTMD22

Bacchetta et al. (MAP) P.R.L. 134 (25) 121901

$$\tilde{g}_{1}^{q}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = \operatorname{Evo}\left[(\mu_{f}, \zeta_{f}) \leftarrow (\mu_{i}, \zeta_{i})\right] \exp\left[g_{K}(b_{T}) \log\left(\sqrt{\zeta_{f}}/Q_{0}\right)\right] g_{\mathrm{NP}}(x, b_{T}) \\ \times \sum_{i} \left[C_{qi}^{g}(x, b_{T}; \mu_{i}, \zeta_{i}) \otimes g_{1}^{i}(x, \mu_{i})\right]$$

same **Evo** and g_{K} from MAPTMD22; **C**^g up to **NLO** \rightarrow **NNLL** max. pert. accuracy $g_1(x,\mu_i)$ from NNPDFpol1.1 at **NLO** Gutierrez-Reyes et al., P.L. **B769** (17) 84

$$g_{\rm NP}(x, k_T^2) = f_{\rm NP}^{\rm MAP22}(x, k_T^2) \frac{e^{-k_T^2/w_1(x)}}{k_{\rm norm}(x)}$$
 such that $\int d\mathbf{k}_T g_{\rm NP} = 1$

x-dep. width $(w_1(x))$ such that always $|g_1| \le f_1$ ensure positivity

0.1

0.0

0.2

Total 3 parameters

same kin. cuts as MAPTMD22: only Hermes A₁ data survive, exclude CLAS6 & Compass

N = 291 pts. $\chi^2/N = 1.09$

Airapetian et al. (Hermes), P.R. D99 (19) 112001

0.3

0.4

0.5

0.6

YLSZM

Yang et al., P.R.L. **134** (25) 121902

input from lattice

$$\frac{g_{1L}^{\Delta u_+ - \Delta d_+}(x, b_T; \mu, \zeta)}{g_A f_1^{u_\nu - d_\nu}(x, b_T; \mu, \zeta)}$$

$$u = \sqrt{\zeta} = 1.62 \text{ GeV}$$

(see talk by S.Mukherjee

Bollweg et al., arXiv:2505.18430

input from lattice

$$\frac{g_{1L}^{\Delta u_{+}-\Delta d_{+}}(x,b_{T};\mu,\zeta)}{g_{A}f_{1}^{u_{v}-d_{v}}(x,b_{T};\mu,\zeta)}$$

$$\zeta = 1.62 \text{ GeV}$$

(see talk by S.Mukherjee)

Bollweg et al., arXiv:2505.18430

compatibility for x=0.2, 0.6 partial " for x=0.3, 0.4

 $\mu = \sqrt{}$

input from lattice

$$\frac{g_{1L}^{\Delta u_+ - \Delta d_+}(x, b_T; \mu, \zeta)}{g_A f_1^{u_\nu - d_\nu}(x, b_T; \mu, \zeta)}$$

$$\mu = \sqrt{\zeta} = 1.62 \text{ GeV}$$
(see talk by S.Mukherjee)

compatibility for x=0.2, 0.6 partial " for x=0.3, 0.4

The Sivers TMD PDF

Sivers effect: how the momentum distribution of quarks is distorted by the transverse polarization of parent nucleon ("spin-orbit" correlation) Sivers $f_{1T}^{\perp} \rightarrow$ indirect access to quark orbital angular momentum Back

Burkardt, P.R. D66 (2002) 114005; N.P. A735 (2004) 185 Bacchetta & Radici, P.R.L. 107 (2011) 212001 Ji et al., N.P. B652 (2003) 383

Most recent Sivers extractions

	Framework	SIDIS	DY	W/Z production	forward EM jet	N. of points	χ²/N	
JAM 2020 arXiv:2002.08384	generalized parton model	~	~	~	×	517	1.04	
PV 2020 arXiv:2004.14278	LO+NLL	>	~	~	×	125	1.08	
EKT 2020 arXiv:2009.10710	NLO+N ² LL	~	~	~	×	226/452	0.99 /1.45	SIDIS / +STAR
BPV 2020 arXiv:2012.05135 arXiv:2103.03270	ζ prescription	>	~	~	×	76	0.88	
TO-CA 2021 arXiv:2101.03955	generalized parton model	5	×	×	~	238	$1.05^{+0.03}_{-0.01}$	SIDIS + reweighting
JAM 2022 arXiv:2205.00999	generalized parton model	~	~	~	×	255	1.10	+ A _N π data
Fernando-Keller arXiv:2304.14328	generalized parton model	~	~	×	×	732	1.66	

lower accuracy and less data w.r.t. unpolarized TMD

Most recent Sivers extractions

	Framework	SIDIS	DY	W/Z production	forward EM jet	N. of points	χ²/N	
JAM 2020 arXiv:2002.08384	generalized parton model	~	~	~	×	517	1.04	
PV 2020 arXiv:2004.14278	LO+NLL	~	~	~	×	125	1.08	
EKT 2020 arXiv:2009.10710	NLO+N ² LL	~	~	~	×	226/452	0.99 /1.45	SIDIS / +STAR
BPV 2020 arXiv:2012.05135 arXiv:2103.03270	ζ prescription	~	~	~	×	76	0.88	
TO-CA 2021 arXiv:2101.03955	generalized parton model	~	×	×	~	238	$1.05^{+0.03}_{-0.01}$	SIDIS + reweighting
JAM 2022 arXiv:2205.00999	generalized parton model	~	~	~	×	255	1.10	+ A _N π data
Fernando-Keller arXiv:2304.14328	generalized parton model	~	~	×	×	732	1.66	

first using Neural Networks, but limited analysis:

- parton model => no TMD evolution
- no consistent knowledge of unpolarized TMD in denominator of spin asymmetry

Most recent Sivers extractions

all parametrizations are in fair agreement for x-dependence of valence flavors

k_T-dependence is still much unconstrained

sea-quarks ~ O(10-3) smaller, large errors
=> impact of EIC

Bacchetta et al., P.L. B827 (22) 136961 arXiv:2004.14278

Sign change puzzle

Transversity

- transversity is the prototype of chiral-odd structures
- the only chiral-odd structure that survives in collinear kinematics
- only way to determine the tensor charge $\delta^q(Q^2) = \int_0^1 dx h_1^{q-\bar{q}}(x,Q^2)$

Most recent extractions

Collins effect	Framework	e+e-	SIDIS	Drell-Yan A _N	Lattice
Anselmino 2015 P.R. D 92 (15) 114023	parton model	~	~	×	×
Kang et al. 2016 P.R. D 93 (16) 014009	TMD / CSS	>	~	×	×
Lin et al. 2018 P.R.L. 120 (18) 152502	parton model	×	~	×	✔ g⊤
D'Alesio et al. 2020 (CA) P.L. B803 (20) 135347	parton model	>	~	×	×
JAM3D-20 P.R. D 102 (20) 054002	parton model	>	>	>	×
JAM3D-22 P.R. D 106 (22) 034014	parton model	~	~	~	 ✓ g⊤
Boglione et al. 2024 (TO) P.L. B854 (24) 138712	parton model	~	~	✓ reweighting	×

Dihadron mechanism	e+e- unpol. do ⁰	e+e- asymmetry	SIDIS	p-p collisions	Lattice
Radici & Bacchetta 2018 P.R.L. 120 (18) 192001	PYTHIA (separately)	 (separately) 	~	~	×
Benel et al. 2020 E.P.J. C80 (20) 5	PYTHIA (separately)	 (separately) 	~	×	×
JAMDIFF 2024 P.R.L. 132 (24) 091901	~	~	~	~	🖌 δu, δd

Transversity

consistency of phenomenological extractions from a variety of exp. data with different approaches (provided that no LQCD points are included in the fit)

Pheno - lattice : tensor charge

adapted from C. Alexandrou, QCD Evolution 24

Pheno - lattice : tensor charge

green $N_f=2+1+1$

open symbols = no continuum extrapolation

yellow N_f=2+1

tension between pheno and lattice ?

Including lattice data, JAM finds **compatibility**, **still under discussion...**

		$\chi^2_{ m red}$	
Experiment	$N_{\rm dat}$	With LQCD	No LQCD
Belle (cross section) [63]	1094	1.01	1.01
Belle (Artru-Collins) [92]	183	0.74	0.73
HERMES [94]	12	1.13	1.10
COMPASS (p) [95]	26	1.24	0.75
COMPASS (D) [95]	26	0.78	0.76
STAR (2015) [96]	24	1.47	1.67
STAR (2018) [64]	106	1.20	1.04
ETMC δu [28]	1	0.71	
ETMC δd [28]	1	1.02	
PNDME δu [25]	1	8.68	
PNDME δd [25]	1	0.04	
Total $\chi^2_{\rm red}$ (N _{dat})		1.01 (1475)	0.98 (1471)

adapted from D. Pitonyak, QCD Evolution 24

Pheno - lattice : tensor charge

green N_f=2+1+1

open symbols = no continuum extrapolation

yellow $N_f=2+1$

tension between pheno and lattice ?

Including lattice data, JAM finds **compatibility**, **still under discussion**...

		χ^{z}_{red}	
Experiment	$N_{\rm dat}$	With LQCD	No LQCD
Belle (cross section) [63] Belle (Artru-Collins) [92]	1094 183	1.01 0.74	1.01 0.73
HERMES [94] COMPASS (<i>p</i>) [95] COMPASS (<i>D</i>) [95]	12 26 26	1.13 1.24 0.78	1.10 0.75 0.76
STAR (2015) [96] STAR (2018) [64]	24 106	1.47 1.20	1.67 1.04
ETMC δu [28] ETMC δd [28] PNDME δu [25]	1 1 1	0.71	···· ···
PNDME δd [25] Total χ^2_{red} (N_{dat})	1	0.04	0.98 (1471)

adapted from D. Pitonyak, QCD Evolution 24

List of latest extractions

	Boer-Mulders	arXiv:2004.02117, arXiv:2407.06277
	Worm-gear g1T	arXiv:2110.10253, arXiv:2210.07268
(Kotzinian-Mulders)	Worm-gear h1L	
	Pretzelosity	<u>arXiv:1411.0580</u>

courtesy A. Bacchetta

not mentioned pion TMDs, TMD fragmentation functions, nuclear TMDs

Summary

- very good knowledge of x-dependence of f_1 and g_1
- good knowledge of k_T -dependence of f_1
- fair knowledge of x-dependence of h_1 and k_T-moments of f_{1T}^{\perp}
- some hints about all others

for discussion

- what is the meaning of $f_1(x, b_T=0) = 0$?

- is positivity ensured if $D_1(z, b_T) < 0$?

- ratios $f_1(u)/f_1(d)$ and g_1/f_1 at $b_T=0$ should reproduce the ratio of corresponding collinear PDFs...
- what are the limits of TMD factorization ?
- has the tension between phenomenology and lattice tensor charge been really solved ?

- Badici, Bacchetta (2018)

0.02 < x < 0.030.3 < z < 0.4

x = 0.1 Q = 10GeV u-quark ART25 \longrightarrow MAP24

shouldn't we look at TMDs in k_T space ??

