Stellar Sources and Chemical Evolution of the Early Universe

Yong-Zhong Qian

School of Physics and Astronomy University of Minnesota

INT Program on Astrophysical Neutrinos and the Origin of the Elements July 20, 2023

Another SN Ia Scenario: White Dwarf Mergers

Life Cycle of Interstellar Medium

Cosmic Abundances

Simplifications for the early chemical evolution Fe from SNe la & s-process elements from AGB stars negligible during the first ~I Gyr Focus on massive stars & related sources: **SNe II & NS mergers** SNe II produced $\sim \frac{1}{3} \left(\frac{\text{Fe}}{\text{H}}\right)_{\odot}$ over $\sim 10 \text{ Gyr}$

 $\sim \frac{1}{30} \left(\frac{\text{Fe}}{\text{H}}\right)_{\odot}$ produced over $\sim 1 \text{ Gyr}$

Stars formed during the first ~I Gyr have $[Fe/H] = \log (Fe/H) - \log (Fe/H)_{\odot} \lesssim -1.5$

Supernova as a neutrino phenomenon

 $R_{core} \sim 1000 \text{ km}$

$$e^+ + e^- \to \nu + \bar{\nu}$$

$$N + N \to N + N + \nu + \bar{\nu}$$

 $\frac{GM^2}{R_{\rm NS}} \sim 3 \times 10^{53} \ {\rm erg}$

$$\Rightarrow \nu_e, \ \bar{\nu}_e, \ \nu_\mu, \ \bar{\nu}_\mu, \ \nu_\tau, \ \bar{\nu}_\tau$$

Light Curve of SN 1987a

Log₁₀ Luminosity (erg s⁻¹)

Neutrino Emission from a Low-Mass SN

Neutrino Opacities!

Martinez-Pinedo et al. 2012; Roberts & Reddy 2012

r–Process in Neutrino–driven Wind (e.g., Woosley & Baron 1992; Meyer et al. 1992; Woosley et al. 1994)

Rapid Neutron Capture: the r-Process

RIKEN Nishina Center for Accelerator-Based Science

Wanajo et al. 2004

The vp-process in p-rich v-driven winds (Frohlich et al. 2006a,b; Pruet et al. 2005,2006) $(p, \gamma) \rightleftharpoons (\gamma, p)$ equilibrium \Rightarrow waiting point break through waiting-point nuclei with slow beta decay:

 $\bar{\nu}_e + p \to n + e^+, \ (Z, A) + n \to p + (Z - 1, A)$

Jets driven by rotation, magnetohydrodynamics, etc.

3D Collapse of Fast Rotator with Strong Magnetic Fields: 15 M_{sol} progenitor (Heger Woosley 2002), shellular rotation with period of 2s at 1000km, magnetic field in z-direction of 5 x10¹² Gauss, *results in 10¹⁵ Gauss neutron star*

3D simulations by C. Winteler, R. Käppeli, M. Liebendörfer et al. 2012 Eichler et al. 2013

(also Symbalisty + 1985; Nishimura + 2006; Fujimoto + 2007)

Mass Loss Phases During NS-NS and NS-BH Merging

decompression of cold neutron star matter

(Goriely, Bauswein, & Janka 2011, 2013) also Lattimer + 1977; Meyer 1989; Freiburghaus+1999; Korobkin + 2012; Mendoza-Temis + 2014; Eichler + 2014

Diversity of La/Eu: more than one n-capture source

Simplifications for the early chemical evolution Fe from SNe la & s-process elements from AGB stars negligible during the first ~I Gyr Focus on massive stars & related sources: **SNe II & NS mergers** SNe II produced $\sim \frac{1}{3} \left(\frac{\text{Fe}}{\text{H}}\right)_{\odot}$ over $\sim 10 \text{ Gyr}$

 $\sim \frac{1}{30} \left(\frac{\text{Fe}}{\text{H}}\right)_{\odot}$ produced over $\sim 1 \text{ Gyr}$

Stars formed during the first ~I Gyr have $[Fe/H] = \log (Fe/H) - \log (Fe/H)_{\odot} \lesssim -1.5$

Ubiquity of Sr and Ba (Roederer 2013)

Summary

Early chemical evolution during the first ~1 Gyr dominated by SNe II & NS mergers

Low-mass stars formed during the first ~I Gyr have $\rm [Fe/H] \lesssim -1.5$ & survive until the present

Neutron-capture elements Sr & Ba are ubiquitous in such metal-poor stars

The neutron-capture patterns vary greatly among such stars, reflecting mixtures of distinct sources