Distinguishing Cold, Warm, and Self-Interacting Dark Matter Based on FIRE Simulations

Yong-Zhong Qian University of Minnesota

INT Program on Dark Matter in Compact Objects, Stars, and in Low Energy Experiments

August 24, 2022

hierarchical evolution of DM halos

Barkana & Loeb 2001

inefficient star formation

Bullock & Boylan-Kolchin 2017

abundance matching by Behroozi (Bullock & Boylan-Kolchin 2017)

missing satellites? (Bullock & Boylan-Kolchin 2017)

warm DM suppress structure formation on small scales

to account for observed number of satellites: $m_p\gtrsim 2~{
m keV}$

resonant production of non-thermal sterile neutrinos

Shi & Fuller 1999; Abazajian 2014

but star formation in UFDs suppressed due to reionization, etc.

mass distribution: core vs. cusp Bullock & Boylan-Kolchin 2017

response of DM to sudden change of potential by gas removal

shallower potential results in wider radial range of orbits

relaxation to cored density profile Li et al. 2022

FIRE: Feedback In Realistic Environments (Hopkins et al.)

SN la

NS merger

baryonic feedback in CDM halos of $M_{\rm vir} \approx 10^{10} \, M_{\odot}$ Fitts et al. 2016

baryonic feedback becomes ineffective for $M_* \leq 10^6 M_{\odot}$

(effectiveness also depends on star formation history)

too big to fail?

Bullock & Boylan-Kolchin 2017

distinguishing CDM, WDM, & SIDM based on FIRE simulations Fitts et al. 2019

summary

galaxies form stars with varying efficiency, perhaps stochastically at & below dwarf mass scales

baryonic feedback for $M^* > 10^6 M_{sun}$ important, especially for CDM

signature for WDM: UFDs with young stars only problem for WDM: UFDs with old stars (formed at z > 7) only elemental abundances are important observables

signature for SIDM: cored UFDs with M* << 10⁶ M_{sun} other effects: gravothermal core collapse?