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IMAGES ARE IMPORTANT

https://eventhorizontelescope.org/

Observation and visualization

Images are great tools for science, they

convey important concepts, and they are
important for the outreach

“If the photon ring is not perfectly circular but squashed,

that could tell astronomers the black hole’s spin”

THE SUPERMASSIVE BLACK HOLE AT THE CENTRE OF OUR OWN MILKY WAY GALAXY



UNRAVELLING THE MYSTERIES OF RELATIVISTIC HADRONIC BOUND STATES

© Nucleons provide 98% of the mass of the visible universe
o One of the goals of the modern nuclear physics is to study
detalls of the structure of the nucleon

Parton Distribution Functions provide a fundamental description of the nucleon
iIn terms of its partonic structure
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o Probability density to find a quark with a momentum fraction x
o 1D snapshot of fundamental constituents
o Study of confined quarks and gluons



HADRON'S PARTONIC STRUCTURE

To study the physics of the confined motion of quarks and gluons inside of the proton one needs
a new type of the “hard probe” with two scales.

Transverse Momentum Dependent distributions (TMDs)

» fq/P(ma kT)

longitudinal & transverse

> One large scale (Q) sensitive to particle nature of quark and gluons

> One small scale (kt) sensitive to how QCD bounds partons and to the detailed structure at ~fm distances.
The imprint of the confinement mechanism

o TMDs provide detailed information on the spin structure

- TMDs contain new insights, e.g. qgqg operators rather that just qg or gg and thus include correlations

o> TMDs encode 3D structure in the momentum space (complementary to Generalized Parton Distributions)



TMDS W|TH PULAR'ZAT'UN © Our understanding of the hadron evolves:

Nucleon emerges as a strongly interacting,
# relativistic bound state of quarks and gluons
4

Quark Polarization
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SIVERS FUNCTION
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o Describes unpolarized quarks inside of the transversely polarized nucleon
© Encodes correlation of the orbital motion with the spin Sivers (1991)
X f1 (X, kT, ST)

AP (2010)
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JAMZ20: Cammarota et al, Phys.Rev.D 102 (2020) 5, 05400 (2020)
M. Burkardt, Nucl.Phys.A 735 (2004)
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Caveat: no 7 is available to determine the OAM :



A. Bacchetta, F. Delcarro, C. Pisano, M. Radici Phys.Lett.B 827 (2020)
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JAMZ20: Cammarota et al, Phys.Rev.D 102 (2020) 5, 05400 (2020)

o The shift in the transverse plane is generated by the Sivers function

o The opposite signs of the shift are consistent with the lattice QCD findings on the

opposite signs of the OAM for u and d quarks



DATA ANALYSIS - HOW TRADITIONALLY WE DO IT

Theoretical

model

data




DATA ANALYSIS - RESULTS

JAMZ20: Cammarota et al, Phys.Rev.D 102 (2020) 5, 05400 (2020)
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DAIA ANALYSIS THE NEW WAY
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WHY DO WE WANT IT?

o We would like to not know how fuzzy the image is and what impact new measurements
will have on it.

o We would like to harness rapidly evolving methods of the Artificial Intelligence and
Machine Learning

o We would like to contribute to fostering new generations of nuclear scientists and of the
digital literate workforce

o Last but not least, we would like to open new avenues of studies of the nucleon
structure
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PRELIMINARY STUDIES

A slice of the Sivers function at x = 0.1, @ = 10 (GeV?) as a function of k., kry

Use google colab or jupyter hub at Jefferson Lab, PyTorch [Paszke et al., 2019]
Tomographic scans of the nucleon with a particular pixelization, 64x64
Reproduce the tomographic scans using two ML models: GAN, Normalizing flow

Sample Training Image

13



GENERATIVE ADVERSARIAL NETWORKS (GANS)

S IYU WU . Goodfellow et al (2014)

PHD STUDENT, INFORMATION SCIENCE TECHNOLOGY
PENNSYLVANIA STATE UNIVERSITY

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/pytorch/examples/blob/main/dcgan/main.py
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

SlYU WU

PHD STUDENT, INFORMATION SCIENCE TECHNOLOGY
PENNSYLVANIA STATE UNIVERSITY
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o 465 replicas of the images

o Generator and discriminator, both 4 hidden layers

o Binary Cross Entropy as the loss function (very naive as we have only one class of
images)

o Training for 600 epochs with no early stopping

Generator and Discriminator Loss During Training
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RESULTS
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RESULTS

Generated image

Training




NORMALIZING FLOW

SAHIL KUWADIA

B.S. COMPUTER SCIENCE
PENNSYLVANIA STATE UNIVERSITY

normflows: V. Stimper et al https://arxiv.org/pdf/2302.12014

https://github.com/VincentStimper/normalizing- flows

1x28x28
Normalizing >
Flow
p(2)
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o 100x100 image
o Real-valued non-volume preserving (real NVP) transformations, https://arxiv.org/abs/

1605.08803
o Training for 2000 epochs with no early stopping

0 250 500 750 1000 1250 1500 1750 2000
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RESULTS

Initial guess Final result

Training
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QUESTIONS (IN LIEU OF CONCLUSIONS)

o Which ML method to use?
o How to tune hyper-parameters?

o How to model 3D structure accounting for other dependences, x-dependence
etc?

o How to create multidisciplinary working groups??
o Where to request computer resources?
o If you want to examine our notebooks, just ask!
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