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https://eventhorizontelescope.org/

Calculations and simulations Observation and visualization

THE SUPERMASSIVE BLACK HOLE AT THE CENTRE OF OUR OWN MILKY WAY GALAXY

Images are great tools for science, they 
convey important concepts, and they are 
important for the outreach

“If the photon ring is not perfectly circular but squashed, 

that could tell astronomers the black hole’s spin”



UNRAVELLING THE MYSTERIES OF RELATIVISTIC HADRONIC BOUND STATES
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Parton Distribution Functions provide a fundamental description of the nucleon 
in terms of its partonic structure
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Nucleons provide 98% of the mass of the visible universe
One of the goals of the modern nuclear physics is to study 
details of the structure of the nucleon

Probability density to find a quark with a momentum fraction x
1D snapshot of fundamental constituents
Study of confined quarks and gluons



HADRON’S PARTONIC STRUCTURE
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One large scale (Q) sensitive to particle nature of quark and gluons
One small scale (kT) sensitive to how QCD bounds partons and to the detailed structure at ~fm distances. 
The imprint of the confinement mechanism
TMDs provide detailed information on the spin structure
TMDs contain new insights, e.g. qgq operators rather that just qq or gg and thus include correlations
TMDs encode 3D structure in the momentum space (complementary to Generalized Parton Distributions) 

Transverse Momentum Dependent distributions (TMDs)

To study the physics of the confined motion of quarks and gluons inside of the proton one needs a 
a new type of the “hard probe” with two scales.
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TMDS WITH POLARIZATION
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Quark TMDs
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q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum
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Our understanding of the hadron evolves:

Nucleon emerges as a strongly interacting, 
relativistic bound state of quarks and gluons
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– Orbital motion. Most TMDs would vanish in the ab-
sence of parton orbital angular momentum, and thus
enable us to quantify the amount of orbital motion.

– Spin-orbit correlations. Most TMDs and related ob-
servables are due to couplings of the transverse mo-
mentum of quarks with the spin of the nucleon (or
the quark). Spin-orbit correlations in QCD, akin to
those in hydrogen atoms and topological insulators,
can therefore be studied.

– Gauge invariance and universality. The origin of some
TMDs and related spin asymmetries, at the partonic
level, depend on fundamental properties of QCD, such
as its color gauge invariance. This leads to clear differ-
ences between TMDs in different processes, which can
be experimentally tested.

The “simplest” TMD is the unpolarized function
fq
1 (x, kT ), which describes, in a fast moving nucleon,

the probability of finding a quark carrying the longitu-
dinal momentum fraction x of the nucleon momentum,
and a transverse momentum kT = |kT |. It is related to
the collinear (“integrated”) PDF by

∫
d2kT fq

1 (x, kT ) =
fq
1 (x). In addition to fq

1 (x, kT ), there are two other TMDs:
gq
1L(x, kT ) and hq

1(x, kT ), whose integrals correspond to
the collinear PDFs: the longitudinal polarized structure
function discussed in the previous section and the quark
transversity distribution. The latter is related to the ten-
sor charge of the nucleon. These three distributions can
be regarded as a simple transverse-momentum extension
of the associated integrated quark distributions. More im-
portantly, the power and rich possibilities of the TMD
approach arise from the simple fact that kT is a vector,
which allows for various correlations with the other vectors
involved: the nucleon momentum P , the nucleon spin S,
and the parton spin (say a quark, sq). Accordingly, there
are eight independent TMD quark distributions as shown
in fig. 16. Apart from the straightforward extension of the
normal PDFs to the TMDs, there are five TMD quark
distributions, which are sensitive to the direction of kT ,
and will vanish with a simple kT integral.

Because of the correlations between the quark trans-
verse momentum and the nucleon spin, the TMDs natu-
rally provide important information on the dynamics of
partons in the transverse plane in momentum space, as
compared to the GPDs which describe the dynamics of
partons in the transverse plane in position space. Mea-
surements of the TMD quark distributions provide infor-
mation about the correlation between the quark orbital
angular momentum and the nucleon/quark spin because
they require wave function components with nonzero or-
bital angular momentum. Combining the wealth of infor-
mation from all of these functions could thus be invalu-
able for disentangling spin-orbit correlations in the nu-
cleon wave function, and providing important information
about the quark orbital angular momentum. One partic-
ular example is the quark Sivers function f⊥q

1T which de-
scribes the transverse-momentum distribution correlated
with the transverse polarization vector of the nucleon.
As a result, the quark distribution will be azimuthally
asymmetric in the transverse-momentum space in a trans-

Fig. 17. The density in the transverse-momentum plane for
unpolarized quarks with x = 0.1 in a nucleon polarized along
the ŷ direction. The anisotropy due to the proton polarization
is described by the Sivers function, for which the model of [79]
is used. The deep red (blue) indicates large negative (positive)
values for the Sivers function.

versely polarized nucleon. Figure 17 demonstrates the de-
formations of the up and down quark distributions. There
is strong evidence of the Sivers effect in the DIS experi-
ments observed by the HERMES, COMPASS, and JLab
Hall A collaborations [80–82]. An important aspect of the
Sivers functions that has been revealed theoretically in last
few years is the process dependence and the color gauge
invariance [83–86]. Together with the Boer-Mulders func-
tion, they are denoted as naive time-reversal odd (T -odd)
functions. In SIDIS, where a leading hadron is detected
in coincidence with the scattered lepton, the quark Sivers
function arises due to the exchange of (infinitely many)
gluons between the active struck quark and the remnants
of the target, which is referred to as final-state interaction
effects in DIS. On the other hand, for the Drell-Yan lep-
ton pair production process, it is due to the initial-state
interaction effects. As a consequence, the quark Sivers and
Boer-Mulders functions differ by a sign in these two pro-
cesses. This non-universality is a fundamental prediction
from the gauge invariance of QCD [84]. The experimental
check of this sign change is currently one of the outstand-
ing topics in hadronic physics, and Sivers functions from
the Drell-Yan process can be measured at RHIC.

2.3.2 Opportunities for measurements of TMDs at the EIC

To study the transverse-momentum–dependent parton
distributions in high-energy hadronic processes, an addi-
tional hard momentum scale is essential, besides the trans-
verse momentum, for proper interpretation of results. This
hard momentum scale needs to be much larger than the
transverse momentum. At the EIC, DIS processes natu-
rally provide a hard momentum scale: Q, the virtuality
of the photon. More importantly, the wide range of Q2

values presents a unique opportunity to systematically in-
vestigate the strong interaction dynamics associated with
the TMDs. Although there has been tremendous progress
in understanding TMDs, without a new lepton-hadron col-
lider, many aspects of TMDs will remain unexplored —or

SIVERS FUNCTION
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Brodsky, Hwang, Schmidt (2002), Collins (2002) 

Describes unpolarized quarks inside of the transversely polarized nucleon 
Encodes correlation of the orbital motion with the spin

The sign change of the Sivers function is a fundamental consequence of QCD

AP (2010) 

Sivers (1991) 
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– Orbital motion. Most TMDs would vanish in the ab-
sence of parton orbital angular momentum, and thus
enable us to quantify the amount of orbital motion.

– Spin-orbit correlations. Most TMDs and related ob-
servables are due to couplings of the transverse mo-
mentum of quarks with the spin of the nucleon (or
the quark). Spin-orbit correlations in QCD, akin to
those in hydrogen atoms and topological insulators,
can therefore be studied.

– Gauge invariance and universality. The origin of some
TMDs and related spin asymmetries, at the partonic
level, depend on fundamental properties of QCD, such
as its color gauge invariance. This leads to clear differ-
ences between TMDs in different processes, which can
be experimentally tested.

The “simplest” TMD is the unpolarized function
fq
1 (x, kT ), which describes, in a fast moving nucleon,

the probability of finding a quark carrying the longitu-
dinal momentum fraction x of the nucleon momentum,
and a transverse momentum kT = |kT |. It is related to
the collinear (“integrated”) PDF by

∫
d2kT fq

1 (x, kT ) =
fq
1 (x). In addition to fq

1 (x, kT ), there are two other TMDs:
gq
1L(x, kT ) and hq

1(x, kT ), whose integrals correspond to
the collinear PDFs: the longitudinal polarized structure
function discussed in the previous section and the quark
transversity distribution. The latter is related to the ten-
sor charge of the nucleon. These three distributions can
be regarded as a simple transverse-momentum extension
of the associated integrated quark distributions. More im-
portantly, the power and rich possibilities of the TMD
approach arise from the simple fact that kT is a vector,
which allows for various correlations with the other vectors
involved: the nucleon momentum P , the nucleon spin S,
and the parton spin (say a quark, sq). Accordingly, there
are eight independent TMD quark distributions as shown
in fig. 16. Apart from the straightforward extension of the
normal PDFs to the TMDs, there are five TMD quark
distributions, which are sensitive to the direction of kT ,
and will vanish with a simple kT integral.

Because of the correlations between the quark trans-
verse momentum and the nucleon spin, the TMDs natu-
rally provide important information on the dynamics of
partons in the transverse plane in momentum space, as
compared to the GPDs which describe the dynamics of
partons in the transverse plane in position space. Mea-
surements of the TMD quark distributions provide infor-
mation about the correlation between the quark orbital
angular momentum and the nucleon/quark spin because
they require wave function components with nonzero or-
bital angular momentum. Combining the wealth of infor-
mation from all of these functions could thus be invalu-
able for disentangling spin-orbit correlations in the nu-
cleon wave function, and providing important information
about the quark orbital angular momentum. One partic-
ular example is the quark Sivers function f⊥q

1T which de-
scribes the transverse-momentum distribution correlated
with the transverse polarization vector of the nucleon.
As a result, the quark distribution will be azimuthally
asymmetric in the transverse-momentum space in a trans-

Fig. 17. The density in the transverse-momentum plane for
unpolarized quarks with x = 0.1 in a nucleon polarized along
the ŷ direction. The anisotropy due to the proton polarization
is described by the Sivers function, for which the model of [79]
is used. The deep red (blue) indicates large negative (positive)
values for the Sivers function.

versely polarized nucleon. Figure 17 demonstrates the de-
formations of the up and down quark distributions. There
is strong evidence of the Sivers effect in the DIS experi-
ments observed by the HERMES, COMPASS, and JLab
Hall A collaborations [80–82]. An important aspect of the
Sivers functions that has been revealed theoretically in last
few years is the process dependence and the color gauge
invariance [83–86]. Together with the Boer-Mulders func-
tion, they are denoted as naive time-reversal odd (T -odd)
functions. In SIDIS, where a leading hadron is detected
in coincidence with the scattered lepton, the quark Sivers
function arises due to the exchange of (infinitely many)
gluons between the active struck quark and the remnants
of the target, which is referred to as final-state interaction
effects in DIS. On the other hand, for the Drell-Yan lep-
ton pair production process, it is due to the initial-state
interaction effects. As a consequence, the quark Sivers and
Boer-Mulders functions differ by a sign in these two pro-
cesses. This non-universality is a fundamental prediction
from the gauge invariance of QCD [84]. The experimental
check of this sign change is currently one of the outstand-
ing topics in hadronic physics, and Sivers functions from
the Drell-Yan process can be measured at RHIC.

2.3.2 Opportunities for measurements of TMDs at the EIC

To study the transverse-momentum–dependent parton
distributions in high-energy hadronic processes, an addi-
tional hard momentum scale is essential, besides the trans-
verse momentum, for proper interpretation of results. This
hard momentum scale needs to be much larger than the
transverse momentum. At the EIC, DIS processes natu-
rally provide a hard momentum scale: Q, the virtuality
of the photon. More importantly, the wide range of Q2

values presents a unique opportunity to systematically in-
vestigate the strong interaction dynamics associated with
the TMDs. Although there has been tremendous progress
in understanding TMDs, without a new lepton-hadron col-
lider, many aspects of TMDs will remain unexplored —or
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Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can

– 27 –

Caveat: no  is available to determine the OAM⃗r

M. Burkardt, Nucl.Phys.A 735 (2004)
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FIG. 2. The density distribution ⇢ap" of an unpolarized quark with flavor a in a proton polarized along the +y direction and
moving towards the reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down
quark. Upper panels for results at x = 0.1, lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68%
uncertainty band of the distribution at ky = 0 (where the effect of the distortion due to the Sivers function is maximal) while
left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized proton). Results in the contour plots
and the solid lines in the projections correspond to replica 105.

induced distortion is positive along the +x direction for
the up quark (left panels), and opposite for the down
quark (right panels).

At x = 0.1 the distortion due to the Sivers effect is
evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for
up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks,
because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the
distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton effectively
“sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are ap-
proximately (kx)max ⇡ 0.1 GeV for up quarks and �0.15
GeV for down quarks. To have a feeling of the order of
magnitude of this distortion, we can estimate the expres-
sion eq/(kx)max ⇡ 2 ⇥ 10�34C ⇥ m ⇡ 0.6 ⇥ 10�4 debye,

which is about 3 ⇥ 10�5 times the electric dipole of a
water molecule.

The existence of this distortion requires two ingredi-
ents. First of all, the wavefunction describing quarks
inside the proton must have a component with nonvan-
ishing angular momentum. Secondly, effects due to final
state interactions should be present [36], which in Feyn-
man gauge can be described as the exchange of Coulomb
gluons between the quark and the rest of the proton [37].
In simplified models [38], it is possible to separate these
two ingredients and obtain an estimate of the angular
momentum carried by each quark [39]. It turns out that
up quarks give almost 50% contribution to the proton’s
spin, while all other quarks and antiquarks give less than
10% [14]. We will leave this model-dependent study to
a future publication. A model-independent estimate of
quark angular momentum requires the determination of
parton distributions that depend simultaneously on mo-
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Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function
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where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can
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The shift in the transverse plane is generated by the Sivers function
The opposite signs of the shift are consistent with the lattice QCD findings on the 
opposite signs of the OAM for u and d quarks

JAM20: Cammarota et al, Phys.Rev.D 102 (2020) 5, 05400 (2020)

M. Bury, A. Prokudin, A. Vladimirov, Phys.Rev.Lett. 126 (2021) A. Bacchetta, F. Delcarro, C. Pisano, M. Radici Phys.Lett.B 827 (2020)

Miguel G. Echevarria, Zhong-Bo Kang, John Terry JHEP 01 (2021) 126
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– Orbital motion. Most TMDs would vanish in the ab-
sence of parton orbital angular momentum, and thus
enable us to quantify the amount of orbital motion.

– Spin-orbit correlations. Most TMDs and related ob-
servables are due to couplings of the transverse mo-
mentum of quarks with the spin of the nucleon (or
the quark). Spin-orbit correlations in QCD, akin to
those in hydrogen atoms and topological insulators,
can therefore be studied.

– Gauge invariance and universality. The origin of some
TMDs and related spin asymmetries, at the partonic
level, depend on fundamental properties of QCD, such
as its color gauge invariance. This leads to clear differ-
ences between TMDs in different processes, which can
be experimentally tested.

The “simplest” TMD is the unpolarized function
fq
1 (x, kT ), which describes, in a fast moving nucleon,

the probability of finding a quark carrying the longitu-
dinal momentum fraction x of the nucleon momentum,
and a transverse momentum kT = |kT |. It is related to
the collinear (“integrated”) PDF by

∫
d2kT fq

1 (x, kT ) =
fq
1 (x). In addition to fq

1 (x, kT ), there are two other TMDs:
gq
1L(x, kT ) and hq

1(x, kT ), whose integrals correspond to
the collinear PDFs: the longitudinal polarized structure
function discussed in the previous section and the quark
transversity distribution. The latter is related to the ten-
sor charge of the nucleon. These three distributions can
be regarded as a simple transverse-momentum extension
of the associated integrated quark distributions. More im-
portantly, the power and rich possibilities of the TMD
approach arise from the simple fact that kT is a vector,
which allows for various correlations with the other vectors
involved: the nucleon momentum P , the nucleon spin S,
and the parton spin (say a quark, sq). Accordingly, there
are eight independent TMD quark distributions as shown
in fig. 16. Apart from the straightforward extension of the
normal PDFs to the TMDs, there are five TMD quark
distributions, which are sensitive to the direction of kT ,
and will vanish with a simple kT integral.

Because of the correlations between the quark trans-
verse momentum and the nucleon spin, the TMDs natu-
rally provide important information on the dynamics of
partons in the transverse plane in momentum space, as
compared to the GPDs which describe the dynamics of
partons in the transverse plane in position space. Mea-
surements of the TMD quark distributions provide infor-
mation about the correlation between the quark orbital
angular momentum and the nucleon/quark spin because
they require wave function components with nonzero or-
bital angular momentum. Combining the wealth of infor-
mation from all of these functions could thus be invalu-
able for disentangling spin-orbit correlations in the nu-
cleon wave function, and providing important information
about the quark orbital angular momentum. One partic-
ular example is the quark Sivers function f⊥q

1T which de-
scribes the transverse-momentum distribution correlated
with the transverse polarization vector of the nucleon.
As a result, the quark distribution will be azimuthally
asymmetric in the transverse-momentum space in a trans-

Fig. 17. The density in the transverse-momentum plane for
unpolarized quarks with x = 0.1 in a nucleon polarized along
the ŷ direction. The anisotropy due to the proton polarization
is described by the Sivers function, for which the model of [79]
is used. The deep red (blue) indicates large negative (positive)
values for the Sivers function.

versely polarized nucleon. Figure 17 demonstrates the de-
formations of the up and down quark distributions. There
is strong evidence of the Sivers effect in the DIS experi-
ments observed by the HERMES, COMPASS, and JLab
Hall A collaborations [80–82]. An important aspect of the
Sivers functions that has been revealed theoretically in last
few years is the process dependence and the color gauge
invariance [83–86]. Together with the Boer-Mulders func-
tion, they are denoted as naive time-reversal odd (T -odd)
functions. In SIDIS, where a leading hadron is detected
in coincidence with the scattered lepton, the quark Sivers
function arises due to the exchange of (infinitely many)
gluons between the active struck quark and the remnants
of the target, which is referred to as final-state interaction
effects in DIS. On the other hand, for the Drell-Yan lep-
ton pair production process, it is due to the initial-state
interaction effects. As a consequence, the quark Sivers and
Boer-Mulders functions differ by a sign in these two pro-
cesses. This non-universality is a fundamental prediction
from the gauge invariance of QCD [84]. The experimental
check of this sign change is currently one of the outstand-
ing topics in hadronic physics, and Sivers functions from
the Drell-Yan process can be measured at RHIC.

2.3.2 Opportunities for measurements of TMDs at the EIC

To study the transverse-momentum–dependent parton
distributions in high-energy hadronic processes, an addi-
tional hard momentum scale is essential, besides the trans-
verse momentum, for proper interpretation of results. This
hard momentum scale needs to be much larger than the
transverse momentum. At the EIC, DIS processes natu-
rally provide a hard momentum scale: Q, the virtuality
of the photon. More importantly, the wide range of Q2

values presents a unique opportunity to systematically in-
vestigate the strong interaction dynamics associated with
the TMDs. Although there has been tremendous progress
in understanding TMDs, without a new lepton-hadron col-
lider, many aspects of TMDs will remain unexplored —or

Tomography
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FIG. 1. The extracted functions h1(x), f
?(1)
1T (x), and

H
?(1)
1 (z) at Q

2 = 4 GeV2 from our (JAM20) global analy-
sis (red solid curves with 1-� CL error bands). The functions
from other groups [84, 87–89, 92, 102–104] are also shown.

from COMPASS and the weak gauge boson production
data from STAR. For A

Col
SIA we have only included the so-

called A0 asymmetry since this observable has a TMD
factorization theorem. We only include A

⇡

N
data with

PhT > 1 GeV in order to stay within the regime where
the CT3 formalism is applicable. Similarly, we do not
include low-energy SSA data from JLab due to concerns
about the pion production mechanism at relatively low
energies [105–107]. The standard cuts [108] of 0.2 < z <

0.6, Q
2

> 1.63 GeV
2
, and 0.2 < PhT < 0.9 GeV have

been applied to all SIDIS data sets, giving us a total of
517 SSA data points in the fit along with 807 HERMES
multiplicity [99] data points.

The extracted functions [109] and their comparison
to other groups are shown in Fig. 1. We obtain a
good agreement between theory and experiment, as illus-
trated in Figs. 2–4. Specifically we find (�

2
/Npts.)SSA =

520/517 = 1.01 for SSA data alone, and �
2
/Npts. =

1373/1324 = 1.04 for all data, including HERMES mul-
tiplicities.

FIG. 2. Theory compared to experiment for A
Col
SIA.

FIG. 3. Theory compared to experiment for A
Col/Siv
SIDIS .

FIG. 4. Theory compared to experiment for A
⇡
N and A

Siv
DY.

Figure 5 gives our extracted tensor charges of the nu-
cleon. The individual flavor charges �q ⌘

R 1
0 dx [h

q

1(x) �
h

q̄

1(x)] are shown along with the isovector combination
gT ⌘ �u � �d. We compare our results to those from lat-
tice computations at the physical point [110–112], other
phenomenological extractions [84, 87, 102–104, 113, 114],
and a calculation using Dyson-Schwinger equations [115].
One clearly notices the strong impact of including more
SSA data sets in our fit, which highlights the importance
of carrying out a simultaneous extraction of partonic
functions in a global analysis. In going from SIDIS !

Sivers function 

f?(1)
1T (x)
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from other groups [84, 87–89, 92, 102–104] are also shown.

from COMPASS and the weak gauge boson production
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called A0 asymmetry since this observable has a TMD
factorization theorem. We only include A

⇡

N
data with

PhT > 1 GeV in order to stay within the regime where
the CT3 formalism is applicable. Similarly, we do not
include low-energy SSA data from JLab due to concerns
about the pion production mechanism at relatively low
energies [105–107]. The standard cuts [108] of 0.2 < z <

0.6, Q
2

> 1.63 GeV
2
, and 0.2 < PhT < 0.9 GeV have

been applied to all SIDIS data sets, giving us a total of
517 SSA data points in the fit along with 807 HERMES
multiplicity [99] data points.

The extracted functions [109] and their comparison
to other groups are shown in Fig. 1. We obtain a
good agreement between theory and experiment, as illus-
trated in Figs. 2–4. Specifically we find (�

2
/Npts.)SSA =

520/517 = 1.01 for SSA data alone, and �
2
/Npts. =

1373/1324 = 1.04 for all data, including HERMES mul-
tiplicities.

FIG. 2. Theory compared to experiment for A
Col
SIA.

�8

�4

0

4

HERMES p

�+

��

�4

�2

0

2

4

�4

�2

0

2

�8

�4

0

4

A
si

n
(�

h
+

�
s
)

U
T

(%
)

COMPASS p
�2

0

2

�2

0

2

�4
�2

0
2

COMPASS d �2

0

2

4

�4

�2

0

2

0

4

HERMES p
0

4

0

4

0.1 0.2

x

�4

0

4

A
si

n
(�

h
�

�
s
)

U
T

(%
)

COMPASS p

0.3 0.4 0.5

z

�2

0

2

0.3 0.5 0.7

PhT

�2

0

2

0.1 0.2
�5

0

COMPASS d

0.3 0.4 0.5

�2

0

2

0.25 0.50 0.75

�2

0

2

FIG. 3. Theory compared to experiment for A
Col/Siv
SIDIS .

FIG. 4. Theory compared to experiment for A
⇡
N and A

Siv
DY.

Figure 5 gives our extracted tensor charges of the nu-
cleon. The individual flavor charges �q ⌘

R 1
0 dx [h

q

1(x) �
h

q̄

1(x)] are shown along with the isovector combination
gT ⌘ �u � �d. We compare our results to those from lat-
tice computations at the physical point [110–112], other
phenomenological extractions [84, 87, 102–104, 113, 114],
and a calculation using Dyson-Schwinger equations [115].
One clearly notices the strong impact of including more
SSA data sets in our fit, which highlights the importance
of carrying out a simultaneous extraction of partonic
functions in a global analysis. In going from SIDIS !
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Observable Reactions NP Function(s) Npts. �2
Exp. Refs.

A
Siv
SIDIS e + (p, d)" ! (⇡+

,⇡
�) + X f

?
1T 88 ... [67, 68]

A
Col
SIDIS e + (p, d)" ! (⇡+

,⇡
�
,⇡

0) + X h1, H
?
1 126 ... [68–70]

A
Col
SIA e

+ + e
� ! ⇡

+
⇡
�(UC,UL) + X H

?
1 176 ... [71–74]

A
Siv
DY ⇡

� + p
" ! µ

+
µ
� + X f

?
1T 12 ... [75]

A
Siv
DY p

" + p ! (W+
,W

�
, Z) + X f

?
1T 17 ... [76]

AN p
" + p ! (⇡+

,⇡
�
,⇡

0) + X h1, FFT (= 1
⇡ f

?(1)
1T ), H?(1)

1 , H̃ 60 ... [7, 9, 10, 13]

TABLE I. Summary of the SSAs analyzed in our global fit. There are in total 18 observables when one accounts for the various
initial and final states. This includes the “unlike-charged” (UC) and “unlike-like” (UL) combiniations for A

Col
SIA. For f

?
1T , h1 we

have functions for u and d quarks, while for H
?
1 , H̃ we have functions for favored and unfavored fragmentation. This gives a

total of 8 non-perturbative (NP) functions. We also include the total number of data points Npts. and �
2 for each observable.

order to test universality. SIDIS (after certain data cuts)
covers a region x . 0.6, 0.2 . z . 0.6, and 2 . Q

2 .
40 GeV2. SIA data has 0.2 . z . 0.8 and Q

2 ⇡ 13 GeV2

or 110 GeV2. For DY data, 0.1 . x . 0.35 and Q
2 ⇡

30 GeV2 or (80 GeV)2. Lastly, AN integrates from xmin

to 1 and zmin to 1, where 0.2 . (xmin, zmin) . 0.7, with
1 . Q

2 . 13 GeV2. So within this restricted range we
can strictly test universality.
Methodology. In order to perform our global analysis
of SSAs, we must postulate a functional form for the non-
perturbative functions. Since we do not want to over-
complicate our analysis, and owing to the fact that we
use the lowest order relations between CT3 and TMD
functions, for the TMDs we will employ a Gaussian for
the transverse momentum dependence and only use a
DGLAP-type evolution in Q

2 for the collinear factors.
This is a standard approach within the literature – see,
e.g., Refs. [77–79]. The dependence of the TMDs on the
parton longitudinal momentum fraction is constructed
from the collinear functions that arise in the OPE.

The type of parameterization just outlined does not
have the complete features of TMD evolution, in partic-
ular the broadening of the widths of the TMDs. However,
it was shown that analyses [80, 81] utilizing this param-
eterization are compatible with results using full TMD
evolution [62, 82–84]. In addition, asymmetries are ra-
tios of cross sections and in such ratios evolution effects
may mostly cancel out [84].

For the unpolarized and transversity TMDs we have

f
q(x, kT ) = f

q(x) Gq

f
(k2

T
) , (1)

where the generic function f
q = f

q

1 or h
q

1, and

Gq

f
(k2

T
) =

1

⇡hk2
T
iq

f

exp

"
� k

2
T

hk2
T
iq

f

#
. (2)

The Sivers function reads

f
? q

1T
(x, kT ) =

2M
2

hk2
T
iq

f
?
1T

⇡FFT (x, x) Gq

f
?
1T

(k2
T
) , (3)

where we have used the fact that ⇡FFT (x, x) =

f
?(1)
1T

(x) [56]. The transverse widths hk2
T
iq

f
are in general

flavor dependent, and can be functions of x, although
here we assume there is no x dependence.

For the TMD FFs, the unpolarized function is param-
eterized as

D
h/q

1 (z, p
2
?) = D

h/q

1 (z) Gh/q

D1
(p2

?) , (4)

while the Collins FF reads

H
?h/q

1 (z, zp?) =
2z

2
M

2
h

hp2
?ih/q

H
?
1

H
?(1)
1 h/q

(z) Gh/q

H
?
1

(z2
p
2
?) , (5)

where we have explicitly written its z dependence in
terms of its first moment H

?(1)
1 h/q

(z) [62]. The p
2
? depen-

dence of the functions Gh/q

D1
and Gh/q

H
?
1

is in analogy with
(2), with the width hp2

?ih/q likewise independent of z. For
f

q

1 (x) and D
q

1(z) we use the leading order CJ15 [85] and
DSS [86] functions, respectively. The pion PDFs (needed
for the DY data from COMPASS) are taken from [CITE].

Note Eqs. (1), (3), (5) make fully manifest that the
underlying non-perturbative objects, h1(x), FFT (x, x),
H

?(1)
1 (z), that drive the (TMD) SSAs A

Siv
SIDIS, A

Col
SIDIS,

A
Siv
DY, and A

Col
SIA, are the same collinear functions that en-

ter the (twist-3) SSA AN (along with H̃(z)). We generi-
cally parameterize these collinear functions as

F
q(x) =

Nq x
aq (1 � x)bq (1 + �q x

↵q (1 � x)�q )

B[aq+2, bq+1] + �qB[aq+↵q+2, bq+�q+1]
,

(6)
where F

q = h
q

1, F
q

FT
, H

?(1)
1 h/q

, H̃
h/q (with x ! z for the

latter two functions).
For the collinear PDFs h

q

1(x) and F
q

FT
(x, x), we only

allow q = u, d and set anti-quark functions to zero. For
both functions we also set bu = bd. For the collinear
FFs H

?(1)
1 h/q

(z) and H̃
h/q(z), we allow for favored (fav)

⇡
+
/u = ⇡

+
/d̄ and unfavored (unf) ⇡

+
/d = ⇡

+
/ū =

⇡
+
/s = ⇡

+
/s̄ parameters and use charge conjugation to

fix the ⇡
�

/q parameters. The ⇡
0 FFs are set to be the

average of the ⇡
+ and ⇡

� functions.
In the course of our analysis, we found that H̃(z) was

consistent with zero within error bands. Moreover, the
relative error was over 200% (or much larger in some re-
gions of z), indicating that the extracted function was

Theoretical
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data

Fitting 
parameters

JAM20: Cammarota et al, Phys.Rev.D 102 (2020) 5, 05400 (2020)
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– Orbital motion. Most TMDs would vanish in the ab-
sence of parton orbital angular momentum, and thus
enable us to quantify the amount of orbital motion.

– Spin-orbit correlations. Most TMDs and related ob-
servables are due to couplings of the transverse mo-
mentum of quarks with the spin of the nucleon (or
the quark). Spin-orbit correlations in QCD, akin to
those in hydrogen atoms and topological insulators,
can therefore be studied.

– Gauge invariance and universality. The origin of some
TMDs and related spin asymmetries, at the partonic
level, depend on fundamental properties of QCD, such
as its color gauge invariance. This leads to clear differ-
ences between TMDs in different processes, which can
be experimentally tested.

The “simplest” TMD is the unpolarized function
fq
1 (x, kT ), which describes, in a fast moving nucleon,

the probability of finding a quark carrying the longitu-
dinal momentum fraction x of the nucleon momentum,
and a transverse momentum kT = |kT |. It is related to
the collinear (“integrated”) PDF by

∫
d2kT fq

1 (x, kT ) =
fq
1 (x). In addition to fq

1 (x, kT ), there are two other TMDs:
gq
1L(x, kT ) and hq

1(x, kT ), whose integrals correspond to
the collinear PDFs: the longitudinal polarized structure
function discussed in the previous section and the quark
transversity distribution. The latter is related to the ten-
sor charge of the nucleon. These three distributions can
be regarded as a simple transverse-momentum extension
of the associated integrated quark distributions. More im-
portantly, the power and rich possibilities of the TMD
approach arise from the simple fact that kT is a vector,
which allows for various correlations with the other vectors
involved: the nucleon momentum P , the nucleon spin S,
and the parton spin (say a quark, sq). Accordingly, there
are eight independent TMD quark distributions as shown
in fig. 16. Apart from the straightforward extension of the
normal PDFs to the TMDs, there are five TMD quark
distributions, which are sensitive to the direction of kT ,
and will vanish with a simple kT integral.

Because of the correlations between the quark trans-
verse momentum and the nucleon spin, the TMDs natu-
rally provide important information on the dynamics of
partons in the transverse plane in momentum space, as
compared to the GPDs which describe the dynamics of
partons in the transverse plane in position space. Mea-
surements of the TMD quark distributions provide infor-
mation about the correlation between the quark orbital
angular momentum and the nucleon/quark spin because
they require wave function components with nonzero or-
bital angular momentum. Combining the wealth of infor-
mation from all of these functions could thus be invalu-
able for disentangling spin-orbit correlations in the nu-
cleon wave function, and providing important information
about the quark orbital angular momentum. One partic-
ular example is the quark Sivers function f⊥q

1T which de-
scribes the transverse-momentum distribution correlated
with the transverse polarization vector of the nucleon.
As a result, the quark distribution will be azimuthally
asymmetric in the transverse-momentum space in a trans-

Fig. 17. The density in the transverse-momentum plane for
unpolarized quarks with x = 0.1 in a nucleon polarized along
the ŷ direction. The anisotropy due to the proton polarization
is described by the Sivers function, for which the model of [79]
is used. The deep red (blue) indicates large negative (positive)
values for the Sivers function.

versely polarized nucleon. Figure 17 demonstrates the de-
formations of the up and down quark distributions. There
is strong evidence of the Sivers effect in the DIS experi-
ments observed by the HERMES, COMPASS, and JLab
Hall A collaborations [80–82]. An important aspect of the
Sivers functions that has been revealed theoretically in last
few years is the process dependence and the color gauge
invariance [83–86]. Together with the Boer-Mulders func-
tion, they are denoted as naive time-reversal odd (T -odd)
functions. In SIDIS, where a leading hadron is detected
in coincidence with the scattered lepton, the quark Sivers
function arises due to the exchange of (infinitely many)
gluons between the active struck quark and the remnants
of the target, which is referred to as final-state interaction
effects in DIS. On the other hand, for the Drell-Yan lep-
ton pair production process, it is due to the initial-state
interaction effects. As a consequence, the quark Sivers and
Boer-Mulders functions differ by a sign in these two pro-
cesses. This non-universality is a fundamental prediction
from the gauge invariance of QCD [84]. The experimental
check of this sign change is currently one of the outstand-
ing topics in hadronic physics, and Sivers functions from
the Drell-Yan process can be measured at RHIC.

2.3.2 Opportunities for measurements of TMDs at the EIC

To study the transverse-momentum–dependent parton
distributions in high-energy hadronic processes, an addi-
tional hard momentum scale is essential, besides the trans-
verse momentum, for proper interpretation of results. This
hard momentum scale needs to be much larger than the
transverse momentum. At the EIC, DIS processes natu-
rally provide a hard momentum scale: Q, the virtuality
of the photon. More importantly, the wide range of Q2

values presents a unique opportunity to systematically in-
vestigate the strong interaction dynamics associated with
the TMDs. Although there has been tremendous progress
in understanding TMDs, without a new lepton-hadron col-
lider, many aspects of TMDs will remain unexplored —or

Tomography
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We would like to not know how fuzzy the image is and what impact new measurements 
will have on it.
We would like to harness rapidly evolving methods of the Artificial Intelligence and 
Machine Learning 
We would like to contribute to fostering new generations of nuclear scientists and of the 
digital literate workforce
Last but not least, we would like to open new avenues of studies of the nucleon 
structure
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A slice of the Sivers function at  as a function of 
Use google colab or jupyter hub at Jefferson Lab, PyTorch [Paszke et al., 2019]
Tomographic scans of the nucleon with a particular pixelization, 64x64
Reproduce the tomographic scans using two ML models: GAN, Normalizing flow

x = 0.1, Q2 = 10 (GeV2) kTx, kTy
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https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://github.com/pytorch/examples/blob/main/dcgan/main.py

SIYU WU

PHD STUDENT, INFORMATION SCIENCE TECHNOLOGY

PENNSYLVANIA STATE UNIVERSITY

I. Goodfellow et al (2014)
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SIYU WU

PHD STUDENT, INFORMATION SCIENCE TECHNOLOGY

PENNSYLVANIA STATE UNIVERSITY
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465 replicas of the images 
Generator and discriminator, both 4 hidden layers
Binary Cross Entropy as the loss function (very naive as we have only one class of 
images)
Training for 600 epochs with no early stopping



RESULTS
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Training

Noise



NORMALIZING FLOW

19

normflows: V. Stimper et al https://arxiv.org/pdf/2302.12014

SAHIL KUWADIA

B.S. COMPUTER SCIENCE

PENNSYLVANIA STATE UNIVERSITY

https://github.com/VincentStimper/normalizing- flows
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SET UP
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100x100 image 
Real-valued non-volume preserving (real NVP) transformations, https://arxiv.org/abs/
1605.08803
Training for 2000 epochs with no early stopping



RESULTS
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Initial guess Final result
Training



QUESTIONS (IN LIEU OF CONCLUSIONS)
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Which ML method to use?
How to tune hyper-parameters?
How to model 3D structure accounting for other dependences, x-dependence 
etc? 
How to create multidisciplinary working groups?
Where to request computer resources?
If you want to examine our notebooks, just ask!


