Bulk Viscous Dissipation in Neutron Star Mergers:

Effect of Magnetic Field

Pranjal Tambe ¹, Debarati Chatterjee ¹, Mark Alford ², Alexander Haber ³

arXiv: 2409.09423, Tambe et. al. 2025 (in prep)

- 1. Inter-University Centre for Astronomy and Astrophysics (IUCAA)
- 2. Washington University in St. Louis
- 3. University of Southampton

Nuclear Physics in Mergers - Going Beyond the Equation of State

9 September 2025, Seattle

Motivation

To consistently compute transport properties in physical conditions relevant for BNS mergers.

 T => a few MeV in the core of the remnant, with max as high as 40 MeV.

B fields amplified in the postmerger to > 10¹⁶ G.

Motivation

- For an estimate of bulk viscous dissipation, we need the isospin equilibration rates.
- Finite T effects cannot be neglected. Finite B field effects on equilibration rates?
- Consistently compute both finite T and B effects on the equilibrating processes.

Isospin equilibrating Processes

- Bulk viscosity arises from isospin equilibrating weak processes.
- For nuclear matter composed of n, p, e-

- DU allowed only if $\Delta k = k_{En} k_{En} k_{Ee} \le 0$, or $x_n \ge 11\%$.
- Below DU threshold, MU processes bring equilibrium, extra nucleon → required momentum for reaction to proceed.
- DU faster than MU.
- For T ≤ 5 MeV, neutrino transparent matter, nd and ec inverses of each other \rightarrow isospin-equilibrium condition is $\mu_n = \mu_p + \mu_e$.

Direct Urca processes (DU)

 $n \rightarrow p + e^- + \overline{\nu}_e$ Neutron decay (nd)

 $p + e^- \rightarrow n + v_e$ Electron capture (ec)

Modified Urca processes (MU)

$$N + n \rightarrow N + p + e^{-} + \overline{\nu}_{e}$$

 $N + p + e^{-} \rightarrow N + n + \nu_{e}$

$$N + p + e^- \rightarrow N + n + v_e$$

Here N can be either n or p

Current State of Research

Effects of finite temperature

c.f. Alford et.al., Universe, 7, 2021

- DU appear below threshold density $(k_{Fn} \le k_{Fp} + k_{Fe})$.
- $\Gamma_{nd} \neq \Gamma_{ec}$ at $(\mu_n = \mu_p + \mu_e) \Rightarrow$ Not the true equilibrium

Finite correction to isospin-equilibrium condition,

$$\mu_{n} = \mu_{p} + \mu_{e} + \delta \mu, \quad \delta \mu > 0.$$

• $\delta \mu > T$ > Cold equilibrium condition no more valid, $\mu_n \neq \mu_p + \mu_e$

Effect of magnetic field (w/o Thermal effects)

- Phase space of charged particles modified.
- The dU threshold condition $\Delta k = k_{Fn} k_{Fp} k_{Fe} \le 0$, becomes less stringent.
- dU processes allowed for, $\Delta k \le (N_{Fp})^{-2/3} \propto (B)^{2/3}$, start to appear even below the direct Urca threshold.

$$\Gamma_{\rm nd} = \Gamma_0(n_B, T)\Theta(k_{F_p} + k_{F_e} - k_{F_n}) \xrightarrow{\mathbf{B}} \Gamma_{\rm nd} = \Gamma_0(n_B, T)R_B^{qc}$$

(Step function)

(Continuous function)

$$R_B^{qc} = \int_{-1}^{1} d\cos\theta_p \, d\cos\theta_e \, k_{F_p} \, k_{F_e} \frac{F_{l,l'}^2(u)}{2b} \Theta(k_{F_n} - |k_{F_p} \cos\theta_p + k_{F_e} \cos\theta_e|)$$

• R_B^{qc} is non-zero below dU threshold.

Effect of magnetic field on rates at finite T

Details of the calculations of direct Urca rates in presence of magnetic field in our paper:

<u>Tambe et. al., PRC 111, 035809</u>

- Effects above and below dU threshold have been studied.
- Two RMF EoS with and without a dU threshold.
 - o TMA: DU threshold at $n_{\rm p}$ ≈ 2.1 $n_{\rm o}$. (H. Toki et.al. Nucl. Phys. A, **588**, 1995)
 - o QMC-RMF3: No DU threshold. (Alford et.al., PRC 106, 2022)

PHYSICAL REVIEW C 111, 035809 (2025)

Effect of magnetic fields on Urca rates in neutron star mergers

Pranjal Tambe , 1,* Debarati Chatterjee , 1,† Mark Alford , 2 and Alexander Haber , 1 Inter University Centre for Astronomy and Astrophysics, Ganeshkind, Pune 411007, India 2 Physics Department, Washington University, Saint Louis, Missouri 63130, USA

(Received 16 October 2024; revised 15 January 2025; accepted 10 March 2025; published 28 March 2025)

Direct Urca processes: Finite T and B

Tambe et. al., PRC 111, 035809

- Rates increase in presence of B below the DU threshold.
- Above dU threshold particles on the fermi-surface have max contribution, B field has no significant effects.
- At higher temperatures B field effects seem to have less significance.

Direct Urca processes: Finite T and B

Tambe et. al., PRC 111, 035809

- No DU threshold within density of interest.
- B field effects much more significant.
- B field effects significant even at higher temperatures with nd rates increasing by orders of magnitude with higher B field.

Isospin equilibrium condition in presence of B

- n-decay rates increase significantly with B compared to e-capture rates.
- Difference b/w ec and nd rates reduce with B

- B fields expected to modify the finite T isospin-equilibrium condition: $\mu_n = \mu_n + \mu_n + \delta \mu$.
- To compute the true equilibrium we need magnetic field effects on total Urca rates.

Nucleon Width Approximation

Modified Urca: First approximation to corrections due to strong interaction b/w reacting nucleons and medium

Alford. M., Haber. A., Zhang. Z., Phys. Rev. C 110, L052801

Traditional approach: Equilibrium → Direct Urca + Modified Urca

Nucleon Width Approximation: Nucleons have finite widths which accounts for correction due to strong interaction with the medium

$$\Gamma^{NWA} = \int_{-\infty}^{\infty} dm_n \, dm_p \, \Gamma^{dUrca}(m_n, m_p) \, R_n(m_n) \, R_p(m_p) \,, \qquad \qquad R_N(m_N) = rac{1}{\pi} rac{W_N/2}{(m_N - M_N^*)^2 + W_N^2/4} \,.$$

Urca rates in NWA at finite T and B

- Below threshold, NWA rates higher by an order of magnitude compared to mUrca.
- Above threshold NWA rates match smoothly to dUrca rates.

- Generalized to include magnetic fields with our previous calculations.
- Gives total Urca rates in the whole region of interest.

Isospin Equilibration at finite T and B

• The correction to isospin equilibrium condition $\delta \mu = \mu_n - \mu_p - \mu_e$ changes with field.

Isospin Equilibration at finite T and B

B field effects wash out at higher T.

Isospin relaxation timescale

Tambe, et al., (2025), in preparation.

- Faster relaxation to equilibrium in presence of magnetic field because of increase in reaction rates.
- Bulk Viscosity maximum when $\tau_1 \approx 1/\omega$, $\omega \rightarrow$ angular frequency of oscillations
- In BNS mergers, relevant frequency of density oscillations \rightarrow 1 kHz. BV max when $\tau_1 \approx 0.2$ ms.

Bulk Viscosity

Tambe, et al., (2025), in preparation.

- Effect of magnetic field on Urca process significant at low n_R and low T.
- BV can be higher by an order of magnitude at temperature below which BV is max.
- In presence of B, BV can reach maximum at low T and n_B.

Key Takeaways

- Computed nd and ec rates to consistently include thermal and magnetic field effects under conditions relevant for NS mergers.
- ♦ Departure from equilibrium $□μ = μ_n μ_p μ_e$ changes with increasing B.

- Increased reaction rates shift the peak of Bulk viscosity to low T and n_B
- Relevant for evaluating the damping of density oscillations triggered during the postmerger evolution.

Thank you

★ Special Thanks to INT, Seattle and IUCAA for support.