Relativistic light-front models of hadrons based on QCD degrees of freedom

W. N. Polyzou

The University of Iowa

Siraj Kuthini Kunhammed - Ph.D. 12/20 WMO Arts & Science College

This Work: Phys. Rev. C 102,065209(2020), arxiv:abs/2007.14892

Research supported by the U.S. Department of Energy, Office of Science, Grant #DE-SC0016457

Outline

- Motivation background
- Degrees of freedom
- Model assumptions
- Relativistic invariance
- Sea quarks
- Scattering
- Decays
- Electromagnetic observables
- To do

Goal:

Explore phenomenological (front-form) relativistic models of hadrons based on QCD degrees of freedom. Construct relativistic light-front wave functions of hadrons including sea-quark degrees of freedom.

Elements:

- QCD degrees of freedom (locally and globally SU(3) invariant).
- All scales set by quark masses, 1 coupling constant, CSB scale (π mass).
- Simple enough to treat sea quark degrees of freedom. Charge carriers visible to EM probes.
- Consistent treatment of scattering, decays, spectra and electromagnetic properties?
- Dual QCD hadronic representations.
- Boosts kinematic.

Inspiration:

- Structure of the model (degrees of freedom/interactions):
 - K. G. Wilson, Phys. Rev. D10, 2445 (1974).
 - J. B. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975).
 - E. Seiler, Lecture Notes in Physics, 159, 1 (1982).

•Treatment of glue DOF:

- O. W. Greenberg and J. Hietarinta, Physics Letters B 86, 309 (1979).
- Scattering in confined systems:
- R. F. Dashen, J. B. Healy, and I. J. Muzinich, Ann. of Phys. 102, 1 (1976).

Model Hilbert space - motivation - degrees of freedom:

 Kogut and Susskind: (Hamiltonian lattice) degrees of freedom are mutually non-interacting global and local SU(3) color invariant connected networks of quarks, anti-quarks and links:

$$H = H_{\text{static}} + H_{\text{dynamic}}$$

- The static energy of a connected network is equal to the sum of the quark masses and the number of links times the energy per link.
- K & S Hilbert space: Basis = locally and globally gauge invariant eigenstates of $H_{\rm static}$.
- In the absence of the remaining interactions the static degrees of freedom are confined. Local gauge invariance means separating quarks requires more links.

Model Hilbert space

 Model connected local and global color singlets by confined systems of quarks and anti-quarks. In general there will be towers of excited interactions.

 Greenberg and Hietarinta: Identical quarks in different connected networks behave like distinguishable particles due to the glue (link) degree of freedom.

$$|\downarrow\uparrow\rangle$$
 $|\rightleftarrows\rangle$ independent

 \to Quarks and anti-quarks confined in different connected singlets are treated as <code>distinguishable</code>. This eliminates Van der Waals forces.

Dynamics

- Covariant derivative and color magnetic interactions allow different connected singlets to move and interact.
- Too many gauge invariant degrees of freedom and too many possible interactions between them to formulate a sensible model of the dynamics.
- Dynamical assumption to test: The physics is dominated by string breaking and the "ground" confining interaction.
- No fundamental QCD justification, except that meson exchange seems to be important in phenomenological hadronic reactions and string breaking is used successfully to model hadronic reactions in PYTHIA.

Question: Does this limited set of model degrees of freedom and interactions result in a consistent picture of spectral properties, lifetimes, cross sections and electromagnetic observables using a limited set of parameters?

Model - meson valence sector - confined singlets:

Mass operator for a quark-anti-quark singlet - scales set by model parameters:

$$M_c = \sqrt{k^2 + V_c + m_q^2} + \sqrt{k^2 + V_c + m_{\bar{q}}^2}$$

$$V_c = -\frac{\lambda^2}{4} \nabla_k^2 + V_0$$

$$M_{nl} \to \sqrt{m_q^2 + \lambda(2n + l + \frac{3}{2}) + V_0} + \sqrt{m_{\bar{q}}^2 + \lambda(2n + l + \frac{3}{2}) + V_0}.$$

 π mass and $\pi - \rho$ splitting (sets the CSB scale)

$$V_{csb} := (\mathbf{a} + \mathbf{b}\mathbf{s}_q \cdot \mathbf{s}_{\bar{q}})\delta_{I0}.$$

 V_0 and the quark masses are essentially the same parameter. This is an arbitrary splitting of a single constant. There are no quark mass eigenstates - there is no way to separate what we call a quark mass from what we call a confining interaction.

Assumption: Quarks and anti-quarks transform like discrete mass m_q spin $\frac{1}{2}$ irreducible representations of the Poincaré group (no fundamental justification).

Bare mesons:

Approximate linear confinement

$$\left\langle \mathit{r}_{\mathit{nls}}^{2} \right
angle^{1/2} = \sqrt{\frac{2}{\lambda}(2\mathit{n} + \mathit{l} + \frac{3}{2})} \qquad \mathit{M}_{\mathit{nls}} \approx \sqrt{2}\lambda \left\langle \mathit{r}_{\mathit{RMS}}^{2} \right
angle^{\frac{1}{2}}.$$

Approximate Regge behavior

$$I pprox rac{1}{4\lambda} M_{nls}^2$$

The oscillator parameter is chosen to fit the Regge slope of the $\rho-a$ mesons.

Table: Regge trajectories, J=L+1, S=1 $m_q=\frac{m_\rho}{2}=.385, \ \lambda=.282$

meson	L	exp mass	exp (mass) ²	J	calc mass	calc (mass) ²
ρ	0	.770	.593	1	.770	.593
a ₂	1	1.320	1.742	2	1.311	1.719
ρ_3	2	1.690	2.856	3	1.687	2.846
a ₄	3	2.040	4.162	4	1.994	3.976
ρ_5	4	2.350	5.522	5	2.259	5.103
a ₆	5	2.450	6.000	6	2.497	6.335

$$\langle r_{\pi}^2 \rangle^{1/2} = .64 \text{ fm}$$

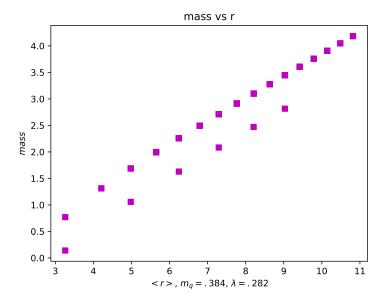


Figure: mass vs $\langle r^2 \rangle^{1/2}$

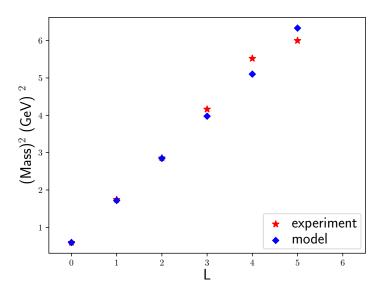


Figure: Regge trajectory for ρ and a mesons

Relativity (unitary representation of the Poincaré group)

CM momentum relativistic:

$$\langle k_{nls}^2 \rangle^{1/2} = \sqrt{\frac{\lambda}{2}(2n+l+\frac{3}{2})}.$$
 $\sqrt{\frac{3\lambda}{4}} \approx .46(GeV)$

Bare hadron wave functions, $\tilde{\mathbf{p}} = (p^+, \mathbf{p}_\perp)$, $\mu = \mathbf{s}_f \cdot \hat{\mathbf{z}}$:

$$\underbrace{\langle \tilde{\mathbf{P}}, j, \tilde{\mu}, k, l, s}_{\mathcal{H}_{q\bar{q}}} | \underbrace{\tilde{\mathbf{P}}', j', \tilde{\mu}', n', l', s'}_{\mathcal{H}_{njls}} \rangle} = \delta(\tilde{\mathbf{P}} - \tilde{\mathbf{P}}') \delta_{\tilde{\mu}\tilde{\mu}'} \delta_{j'j} \delta_{s's} \delta_{l'l} \frac{\tilde{\mathcal{R}}_{n'l'}(k)}{\tilde{\mathcal{R}}_{n'l'}(k)}.$$

Dual representation of the hadronic Hilbert space: $(k \leftrightarrow n)$

$$\mathcal{H}_{qar{q}} \sim \mathcal{H}_H := \oplus \mathcal{H}_{\mathit{njls}}. \qquad \mathit{U}_{qar{q}}(\Lambda, a) = \sum_{\mathit{nile}} \mathit{U}_{\mathit{njls}}(\Lambda, a)$$

Unitary representation of the Poincaré group on $\mathcal{H}_{\textit{njls}}$:

$$\begin{aligned} U_{\textit{njls}}(\Lambda, a) | \tilde{\mathbf{P}}, j, \tilde{\mu}, n, l, s \rangle = \\ e^{ia \cdot \Lambda P_{\textit{nls}}} \sum_{\tilde{\nu}} |\tilde{\mathbf{\Lambda}} P_{\textit{nls}}, j, \tilde{\nu}, n, l, s \rangle \sqrt{\frac{(\Lambda P_{\textit{nls}})^{+}}{P^{+}}} D^{j}_{\tilde{\nu} \tilde{\mu}} [B^{-1}_{f}(\Lambda P_{\textit{nls}}) \Lambda B_{f}(P_{\textit{nls}})] \end{aligned}$$

Summary - bare mesons:

Wave functions are known analytically (harmonic oscillator).

Exact unitary light-front representation of the Poincaré group - including transverse rotations - composite systems have a well-defined spin.

Approximate linear confinement.

Approximate linear Regge trajectory - slope fixes λ .

Only flavor dependence is quark masses at this point.

Gauge invariant basis.

String breaking - model assumptions

A quark-anti-quark pair is produced with equal probability at any point on the line between the original quark-anti-quark pair.

Delta functions are replaced by delta-function normalized Gaussians with the width of oscillator ground state (replaces line by a "flux tube" with width determined by oscillator parameter λ).

Spin independent vertex:

$$\langle \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{12} | \mathbf{v}_{2:1} | \mathbf{r} \rangle := g \sqrt{\lambda} \delta(\mathbf{r} - 2\mathbf{r}_{12}) \int_0^1 d\eta \delta_{\sqrt{\frac{\lambda}{2}}}(\mathbf{r}_1 - \eta \mathbf{r}) \delta_{\sqrt{\frac{\lambda}{2}}}(\mathbf{r}_2 - (1 - \eta)\mathbf{r})$$

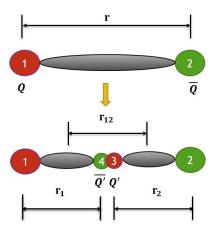
where the Gaussian approximate delta function is

$$\delta_{\sqrt{\frac{\lambda}{2}}}(\mathbf{r}) := (\frac{\lambda}{4\pi})^{3/2} e^{\frac{-\lambda r^2}{4}} \qquad \int \delta_{\sqrt{\frac{\lambda}{2}}}(\mathbf{r}) d\mathbf{r} = 1.$$

The dimensionless coupling constant g must be a constant of order unity. Fixed by ρ lifetime.

Spin dependent part $(q,\bar{q} \text{ have opposite parity})$:

$$Y_{1m}(\hat{\mathbf{r}}_{12})\langle s_3, \mu_3, s_4, \mu_4 | 1, \mu_s \rangle \langle 1, m_l, 1, \mu_s | 0, 0 \rangle.$$



Hadronic representation of vertex: (spin-independent part)

The 9 dimensional integral over the initial and final bare meson states can be computed analytically for any three bare meson states

The string-breaking vertex fixes all hadronic production vertices:

$$\begin{split} \langle n_1, l_1, m_1, n_2, l_2, m_2, \mathbf{r}_{12} | \mathbf{v}_{2:1} | \mathbf{n}, l, m \rangle = \\ \frac{g}{\sqrt{\lambda}} R_{nl} (2r_{12}) (2\lambda)^{3/2} \frac{(\sqrt{\frac{\lambda}{2}} r_{12})^{2n_1 + l_1 + 2n_2 + l_2}}{\sqrt{2n_1! \Gamma(n_1 + l_1 + \frac{3}{2})} \sqrt{2n_2! \Gamma(n_2 + l_2 + \frac{3}{2})}} \times \\ e^{-\frac{\lambda}{4} r_{12}^2} \sum_{k_1 + k_2 = 2r} \frac{(l_1 + 2n_1)! (l_2 + 2n_2)!}{k_1! k_2! (l_1 + 2n_1 - k_1)! (l_2 + 2n_2 - k_2)!} (-)^{k_2} (\frac{1}{2})^{l_1 + 2n_1 + l_2 + 2n_2} \times \\ \frac{1}{2r + 1} M(\frac{1}{2} + r, \frac{3}{2} + r, -\frac{\lambda r_{12}^2}{4}) Y_{lm} (\hat{\mathbf{r}}_{12}) Y_{l_1 m_1}^* (\hat{\mathbf{r}}_{12}) Y_{l_2 m_2}^* (\hat{\mathbf{r}}_{12}). \end{split}$$

Momentum space requires a one-dimensional Fourier Bessel transform of r_{12} .

The full vertex is defined by including the spin dependent part and embedding it in the full Hilbert space so it commutes with and is independent of P^+ , P_\perp and s_f .

Tweaks:

The structure of the model is constrained because the scales are fixed by the same number of parameters as QCD.

Unable to get a consistent picture of scattering, lifetimes, bare meson spectra due to these constraints.

This was fixed by applying a unitary scale transformation to the vertex that reduced the width of the flux tube by a factor of 2.

$$\langle n_1, l_1, m_1, n_2, l_2, m_2, \mathbf{r}_{12} | v_{2:1} | n, l, m \rangle \rightarrow \textbf{(2)}^{3/2} \langle n_1, l_1, m_1 n_2, l_2, m_2, 2 \frac{\mathbf{r}_{12}}{\mathbf{r}_{12}} | v_{2:1} | n, l, m \rangle$$

This is still consistent with the scale set by the confining interaction.

The up and down quark masses were taken to be half of the ρ mass. The only calculations sensitive to the quark masses were the form factor calculations. Pion form factor calculations ignoring sea quarks were closer to data using $m_q:.385~\text{GeV} \rightarrow .2~\text{GeV}$. These calculations did not include sea quark contributions.

Sea quarks - truncation to 1+2 bare meson subspace:

Model Hilbert space

$$\mathcal{H} = \mathcal{H}_H \oplus (\mathcal{H}_H \otimes \mathcal{H}_H)$$
 Hadronic representation.

$$\mathcal{H} = \mathcal{H}_{q\bar{q}} \oplus (\mathcal{H}_{q\bar{q}} \otimes \mathcal{H}_{q\bar{q}})$$
 Dual QCD DOF representation.

Bare meson unitary representation of the Poincaré group

$$U_0(\Lambda,a) = \left(\begin{array}{cc} U_{q\bar{q}}(\Lambda,a) & 0 \\ 0 & U_{q\bar{q}}(\Lambda,a) \otimes U_{q\bar{q}}(\Lambda,a) \end{array}\right).$$

String breaking dynamics

$$M = M_0 + V = \underbrace{\begin{pmatrix} M_c & 0 \\ 0 & \sqrt{M_{c1}^2 + \mathbf{q}^2} + \sqrt{M_{c2}^2 + \mathbf{q}^2} \end{pmatrix}}_{M_0} + \underbrace{\begin{pmatrix} 0 & v_{1:2} \\ v_{2:1} & 0 \end{pmatrix}}_{V},$$

 $v_{i:j}$ is the string breaking vertex.

Relativistic dynamics including string breaking:

The string breaking vertex is constructed to commute with light-front kinematic subgroup and \mathbf{s}_{f0} (not \mathbf{J}_{0} !).

Diagonalize M in the basis of simultaneous eigenstates of M_0 , P_0^+ , $\mathbf{P}_{0\perp}$, s_0^2 , s_{0fz} and invariant degeneracy quantum numbers, d.

 $U_I(\Lambda, a)$ is defined so these states transform irreducibly

$$U_{I}(\Lambda, a)|(M, s, d)\tilde{\mathbf{P}}, \tilde{\mu}\rangle :=$$

$$e^{ia \cdot \Lambda P_{M}} \sum_{\tilde{\nu}} |(M, s, d)\tilde{\mathbf{\Lambda}}, P_{M}, \tilde{\nu}\rangle \sqrt{\frac{(\Lambda P)^{+}}{P^{+}}} D_{\tilde{\nu}\tilde{\mu}}^{s} [B_{f}^{-1}(\Lambda P_{M})\Lambda B_{f}(P_{M})]$$

This is different than $U_0(\Lambda, a)$. It requires diagonalizing M. The operators M, P_0^+ , $\mathbf{P}_{0\perp}$, s_0^2 , $s_{0\ell z}$ are commuting self-adjoint operators. $U_I(\Lambda, a)$ is defined so simultaneous eigenstates of these operators transform irreducibly.

Hadronic eigenstates can be expressed in terms of current quark spins and momenta using Poincaré Clebsch-Gordon coefficients in a light-front basis.

Mass eigenvalue problem - sea quarks:

$$|\Psi\rangle = \left(\begin{array}{c} |\Psi_1\rangle \\ |\Psi_2\rangle \end{array} \right)$$

Coupled eigenvalue equations

$$(\lambda - M_c)|\Psi_1\rangle = v_{1:2}|\Psi_2\rangle \ (\lambda - \sqrt{M_{c1}^2 + \mathbf{q}^2} + \sqrt{M_{c2}^2 + \mathbf{q}^2})|\Psi_2\rangle = v_{2:1}|\Psi_1\rangle$$

These decouple

$$\begin{split} |\Psi_1\rangle &= (\lambda - M_c)^{-1} v_{12} (\lambda - \sqrt{M_{c1}^2 + \mathbf{q}^2} + \sqrt{M_{c2}^2 + \mathbf{q}^2}))^{-1} v_{2:1} |\Psi_1\rangle \\ |\Psi_2\rangle &= (\lambda - \sqrt{M_{c1}^2 + \mathbf{q}^2} + \sqrt{M_{c2}^2 + \mathbf{q}^2}))^{-1} |\Psi_1\rangle \end{split}$$

Normalization:

$$1 = \langle \Psi_1 | \Psi_1 \rangle + \langle \Psi_2 | \Psi_2 \rangle$$

 $\langle \Psi_2 | \Psi_2 \rangle =$ sea quark probability

Equation still has an infinite number of channels - it requires a truncation.

Mass eigenvalues are real zeroes of $F(\lambda)$ between 0 and the two bare meson threshold:

$$F(\lambda) = \det \left(I - (\lambda - M_c)^{-1} v_{1:2} (\lambda - \sqrt{M_{c1}^2 + \mathbf{q}^2} + \sqrt{M_{c2}^2 + \mathbf{q}^2}))^{-1} v_{2:1} \right).$$

Results:

Model calculation keeping 2 $q\bar{q}$ channels with n \leq 4:

Table: Parameters

λ	.282 (GeV) ²
g	5.44
$m_q=m_{ar q}$.385 GeV
m_{π_0}	.160 GeV
$m_{ ho 0}$.882 GeV

Table: Results

bare pion mass	.1600 GeV
m_{π} - 2^{nd} order perturbation theory $(n \leq 4)$.1327 GeV
m_{π} exact $(n \leq 4)$.1329 GeV
valence quark probability	82%
sea quark probability	18%

Scattering of bare mesons:(*s*-channel case)

Wave operators exist with infinite number of bare mesons. Time-dependent methods result in coupled equations

$$T^{22}(e+i0^+) = 0 + v_{2:1}(e-M_1+i0^+)^{-1}T^{12}(e+i0^+)$$

$$T^{12}(e+i0^+) = v_{1:2} + v_{1:2}(e-M_2+i0^+)^{-1}T^{22}(e+i0^+).$$

These equations can expressed in terms of the solution of

$$T^{12}(e+i0^+) = v_{1:2} + v_{1:2}(e-M_2+i0^+)^{-1}v_{2:1}(e-M_1+i0^+)^{-1}T^{12}(e+i0^+).$$

This equation has an infinite number of poles in the continuum. These are spurious and can be eliminated by defining

$$\Gamma_{12}(e+i0^{+}) := (e-M_{1}+i0^{+})^{-1}T^{12}(e+i0^{+})$$

$$\Gamma_{12}(e+i0^{+}) = (e-M_{1}-v_{1:2}(e-M_{2}+i0^{+})^{-1}v_{2:1})^{-1}v_{1:2}$$

$$T^{22}(e+i\epsilon^{+}) = v_{2:1}\frac{1}{e-M_{1}-v_{1:2}(e-M_{2}+i0^{+})^{-1}v_{2:1}}v_{1:2}$$

This has no spurious singularities in the continuum.

Note that there are no long-range Van der Waals forces because the quarks in different singlets are treated as distinguishable.

Data: Phys. Rev. D7,1279(1973), Phys. Rev. D12,681(1975).

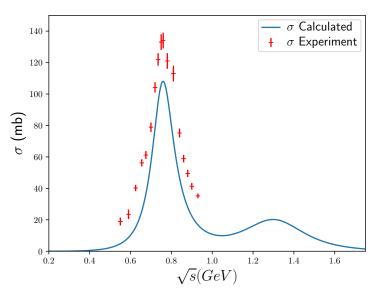


Figure: $\pi - \pi$ scattering cross section (s-channel)

Unstable particles

When

$$M_{n_1,n_2,0} < M_{n_0}$$

 $M_{n_1,n_2,q_{120}}=M_{n_0}$ has solutions for real q_{120}^2 that depend on n_1 and n_2 :

$$q_{120}^2 = \frac{\textit{M}_{n_1}^4 + \textit{M}_{n_2}^4 + \textit{M}_{n_0}^4 - 2\textit{M}_{n_1}^2\textit{M}_{n_2}^2 - 2\textit{M}_{n_1}^2\textit{M}_{n_0}^2 - 2\textit{M}_{n_2}^2\textit{M}_{n_0}^2}{4\textit{M}_{n_0}^2}$$

The decay width is

$$\Gamma = \sum_{\mathbf{n}_1 \mathbf{n}_2} 2\pi \frac{q_{120} \omega_{n1}(q_{120}) \omega_{n2}(q_{120})}{\omega_{n1}(q_{120}) + \omega_{n2}(q_{120})} |\langle n_1, n_2, q_{120} | v_{21} | n_0 \rangle|^2$$

The sum is over the open decay channels.

Table: Results

bare $ ho$ mass	.882 GeV
position ρ resonance (fixes g)	.770 GeV
shift	122 GeV
calculated width of $ ho$ resonance	.134 GeV
experimental width of ρ resonance	.150 GeV

Pion Form factor - including sea quark contributions

$$\begin{split} F_{\pi}(Q^2) &= \langle \pi, \tilde{\mathbf{p}}' | I^+(0) | \pi, \tilde{\mathbf{p}} \rangle \\ F_{\pi}(Q^2) &= \\ & {}_{1} \langle \pi, \tilde{\mathbf{p}}' | I^\mu(0) | \pi, \tilde{\mathbf{p}} \rangle_{1} + \\ & {}_{1} \langle \pi, \tilde{\mathbf{p}}' | I^\mu(0) | \frac{1}{m_{\pi} - M_2} v_{2:1} \frac{1}{m_{\pi} - M_1} | \pi, \tilde{\mathbf{p}} \rangle_{1} + \\ & {}_{1} \langle \pi, \tilde{\mathbf{p}} | \frac{1}{m_{\pi} - M_1} v_{12} \frac{1}{m_{\pi} - M_2} | I^\mu(0) | \pi, \tilde{\mathbf{p}} \rangle_{1} + \\ & {}_{1} \langle \pi, \tilde{\mathbf{p}} | \frac{1}{m_{\pi} - M_1} v_{12} \frac{1}{m_{\pi} - M_2} | I^\mu(0) | \frac{1}{m_{\pi} - M_2} v_{2:1} \frac{1}{m_{\pi} - M_1} | \pi, \tilde{\mathbf{p}}' \rangle_{1} \end{split}$$

Calculations below do not include sea quark contribution ($m_{\pi} = \text{eigenvalue}$).

FF data from: Nuclear Physics B 277, 168 (1986), Phys. Rev. Lett. 86, 1713 (2001), Phys. Rev. D 17, 1693 (1978)

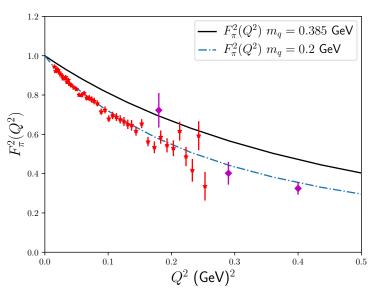


Figure: Pion Form Factor

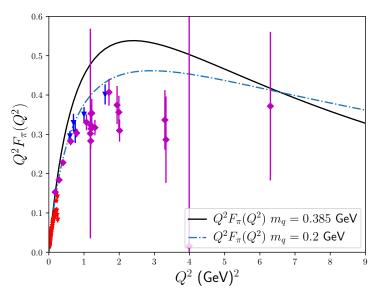


Figure: Pion Form Factor

Conclusions/Outlook:

- Simple models with the same # of parameters as QCD and dynamics given by string breaking gives a qualitatively consistent picture of spectral properties, lifetimes, cross sections and electromagnetic properties.
- Model gives analytic expressions for fully relativistic wave functions, including explicit sea quark degrees of freedom, for any mesons.
- One string breaking vertex gives all $1\leftrightarrow 2$ meson vertices.
- Boosts kinematic; focus is on charge carriers that are sensitive to E&M probes.
- Method can be directly applied to baryons and exotics assuming that they can be represented using quark-diquark singlet degrees of freedom.

To do:

 Include one-body currents in the sea contribution to the pion form-factor calculations.

 Calculate relativistic proton wave function including sea quark contributions using quark-diquark-singlet degrees of freedom.

- Nucleon-form factors, structure functions including sea quark contributions.
- Mass spectrum and wave functions for exotics.