Ground State -> Ground State Reactions CEVNS And Coherent π Production

RYAN PLESTID	NTN FELLOW, CALTECH
	ALEXIS NIKOLAKOPOULOS
COLLADORATORS	O.TOMALAK, V. PANDEY, P. MACHADO

PROGRAM 23-86W | INST. NUCL. THEORY | SEATTLE | NOV 2023

Neutrino Theory Network

- Why are coherent reactions simple?
- When do the $GS \rightarrow GS$ transitions dominate?
- How do we profit from kinematics?
- Coherence from limited kinematics.
- Elastic neutrino and electron scattering on nuclei.
- Higher order corrections & their uncertainties.
- Coherent- π production.
- Comparison vs $\nu e \rightarrow \nu e$ & CCQE.
- Proposal for future work + feedback solicitation.

PION PROD.

Coherent Scattering

How Coherence Arises

$\lim_{Q \to 0} dx e^{iQ \cdot x} \langle B | J_{\mu}(x) | A \rangle \propto v_{\mu} \times (\text{some } \#)$

 $v^{\mu}J_{\mu}(x) = \rho(x)$ $dx \ \hat{\rho}(x) = \hat{Q}$ $(\text{some } \#) = \langle A | Q | B \rangle = Q_A \langle B | A \rangle$

How Coherence Arises

- point-like limit.
- An inherently low- q^2 expansion.

• Matrix elements are proportional to the charge of a particle in the

 $\lambda \geq R$

$Q_A \langle B | \tilde{\rho}(q^2) | A \rangle$

• "Static" matrix elements

Ground State -> Ground State

- Matrix elements are simpler in the low- q^2 limit.
- Output Construction Construc Dominates cross section in the relevant phase space.

Coherent Scattering

How Coherence Arises

$\lim_{Q \to 0} dx e^{iQ \cdot x} \langle B | J_{\mu}(x) | A \rangle \propto v_{\mu} \times (\text{some } \#)$

 $v^{\mu}J_{\mu}(x) = \rho(x)$ $dx \ \hat{\rho}(x) = \hat{Q}$ $(\text{some } \#) = \langle A | Q | B \rangle = Q_A \langle B | A \rangle$

How Coherence Arises

- point-like limit.
- An inherently low- q^2 expansion.

• Matrix elements are proportional to the charge of a particle in the

 $\lambda \geq R$

$Q_A \langle B | \tilde{\rho}(q^2) | A \rangle$

• "Static" matrix elements

Ground State -> Ground State

 $\lambda \geq R$

- point-like limit.
- An inherently low- q^2 expansion.

• Matrix elements are proportional to the charge of a particle in the

$Q_A \langle B | \tilde{\rho}(q^2) | A \rangle$

• "Static" matrix elements

COHERENCE

- Why are coherent reactions simple?
- When do the $GS \rightarrow GS$ transitions dominate?
- How do we profit from kinematics?
- Coherence from limited kinematics.
- Elastic neutrino and electron scattering on nuclei.
- Higher order corrections & their uncertainties.
- Coherent- π production.
- Comparison vs $\nu e \rightarrow \nu e \& CCQE$.
- Proposal for future work + feedback solicitation.

PION PROD.

QED Corrections To CEVNS At $O(\alpha)$ ARXIV:2011.05960

Simplest Coherent Process

TREE LEVEL RESULT

 $\nu A_{GS} \rightarrow \nu A_{GS}$

 $\frac{\mathrm{d}\sigma_{\nu_{\ell}}}{\mathrm{d}T} = \frac{\mathrm{G}_{\mathrm{F}}^{2}M_{\mathrm{A}}}{4\pi} \left(1 - \frac{T}{E_{\nu}} - \frac{M_{\mathrm{A}}T}{2E_{\nu}^{2}}\right) \mathrm{F}_{\mathrm{W}}\left(Q^{2}\right)$

IC MATRIX ELEMENT

Simplest Coherent Process

TREE LEVEL RESULT

 $\nu A_{GS} \rightarrow \nu A_{GS}$

 $\frac{\mathrm{d}\sigma_{\nu_{\ell}}}{\mathrm{d}T} = \frac{\mathrm{G}_{\mathrm{F}}^{2}M_{\mathrm{A}}}{4\pi} \left(1 - \frac{T}{E_{\nu}} - \frac{M_{\mathrm{A}}T}{2E_{\nu}^{2}}\right) \mathrm{F}_{\mathrm{W}}\left(Q^{2}\right)$ C MATRIX ELEMENT

 $F_W(Q^2)$

STATIC MATRIX ELEMENT

- Precise predictions available in literature.
- Charge form factor data reproduced extremely well.

- reproduced extremely well.

Radiative Corrections

$$\frac{\mathrm{d}\sigma_{\nu_{\ell}}}{\mathrm{d}T} = \frac{\mathrm{G}_{\mathrm{F}}^{2}M_{\mathrm{A}}}{4\pi} \left(1 - \frac{T}{E_{\nu}} - \frac{M_{\mathrm{A}}T}{2E_{\nu}^{2}}\right)$$
1-LOOP RESULT

- New matrix element needed at 1-loop.
- But it's the nuclear charge form factor.

ARXIV:2011.05960

 $\Big) \left(\mathrm{F}_{\mathrm{W}} \left(Q^2
ight) + rac{lpha}{\pi} \left[\delta^{
u_{\ell}} + \delta^{\mathrm{QCD}}
ight] \mathrm{F}_{\mathrm{ch}} (Q^2) \Big)^2 ,$

STATIC MATRIX ELEMENTS

Radiative Corrections

$$\frac{\mathrm{d}\sigma_{\nu_{\ell}}}{\mathrm{d}T} = \frac{\mathrm{G}_{\mathrm{F}}^{2}M_{\mathrm{A}}}{4\pi} \left(1 - \frac{T}{E_{\nu}} - \frac{M_{\mathrm{A}}T}{2E_{\nu}^{2}}\right)$$
1-LOOP RESULT

- New matrix element needed at 1-loop.
- But it's the nuclear charge form factor.

ARXIV:2011.05960

 $\left(\mathrm{F}_{\mathrm{W}}\left(Q^{2}
ight)+rac{lpha}{\pi}\left[\delta^{
u_{\ell}}+\delta^{\mathrm{QCD}}
ight]\mathrm{F}_{\mathrm{ch}}\left(Q^{2}
ight)
ight)^{2},
ight.$ STATIC MATRIX ELEMENTS $\langle A'|J_{\mathrm{EM}}|A
angle$ $\langle A'|J_{
m EM}|A
angle$

Radiative Corrections

$$\frac{\mathrm{d}\sigma_{\nu_{\ell}}}{\mathrm{d}T} = \frac{\mathrm{G}_{\mathrm{F}}^{2}M_{\mathrm{A}}}{4\pi} \left(1 - \frac{T}{E_{\nu}} - \frac{M_{\mathrm{A}}T}{2E_{\nu}^{2}}\right)$$
1-LOOP RESULT

- New matrix element needed at 1-loop.
- But it's the nuclear charge form factor.

ARXIV:2011.05960

 $\left(\mathrm{F}_{\mathrm{W}}\left(Q^{2}\right) + rac{lpha}{\pi} \left[\delta^{
u_{\ell}} + \delta^{\mathrm{QCD}} \right] \mathrm{F}_{\mathrm{ch}}(Q^{2}) \right)^{2},$ STATIC MATRIX ELEMENTS $\langle A'|J_{\mathrm{EM}}|A
angle$ $\langle A'|J_{
m EM}|A
angle$

Results For Monoenergetic Neutrino

$E_{\nu}, \text{ MeV}$	$10^{40}\cdot\sigma_{ u_{\mu}},\mathrm{cm}^2$	$10^{40}\cdot\sigma^0_{ u_\mu},\mathrm{cm}^2$
50	34.64(1.36)	32.05
30	15.37(0.25)	14.23
10	1.91(0.01)	1.77

• Big ~ 10% corrections.

Operation Dominated by RG-running.

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$\left 10^{40} \cdot \sigma^0_{ u_\mu}, \mathrm{c} ight.$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

& Taylor series.

• At larger Q^2 we take the largest spread between 8 calculations

• At small Q^2 we use nuclear radii

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$10^{40} \cdot \sigma^{0}_{\nu_{\mu}}, c$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

& Taylor series.

• At larger Q^2 we take the largest spread between 8 calculations

• At small Q^2 we use nuclear radii

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$10^{40}\cdot\sigma^0_{ u_\mu}, { m c}$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

$$\mathbf{G}_{\mathrm{E,M}}^{i}\left(Q^{2}\right) = \mathbf{G}_{\mathrm{E,M}}^{i}\left(0\right) \left[1 - \frac{\left(r_{\mathrm{E,M}}^{i}\right)^{2}}{6}Q^{2} + \mathbf{O}\left(Q^{4}\right)\right]$$

Use uncertainties on charge/magnetic radii

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$\left 10^{40} \cdot \sigma^0_{ u_\mu}, \mathrm{c} ight.$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

$$\mathbf{G}_{\mathrm{E,M}}^{i}\left(Q^{2}
ight) = \mathbf{G}_{\mathrm{E,M}}^{i}\left(0
ight) \left[1 - rac{\left(r_{\mathrm{E,M}}^{i}
ight)^{2}}{6}Q^{2} + \mathbf{O}\left(Q^{4}
ight)
ight]$$

certainties on /magnetic radii

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$10^{40} \cdot \sigma^{0}_{\nu_{\mu}}, c$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

Non-perturbative charge-isospin correlator.

• SU(3) symmetric estimate with large (ad hoc) 20% error

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$\left 10^{40} \cdot \sigma^0_{ u_\mu}, \mathrm{c} ight.$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

Non-perturbative charge-isospin correlator.

• SU(3) symmetric estimate with large (ad hoc) 20% error

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$\left 10^{40} \cdot \sigma^0_{ u_\mu}, \mathrm{c} ight.$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

LOW-SCALE WILSON COEFFICIENTS

$c_{ m L}^{ u_\ell \ell'}, \ \ell = \ell'$	$c_{\rm L}^{\nu_\ell \ell'}, \ \ell \neq \ell'$	$c_{ m R}^{{ u_\ell}{\ell}'}$	$c^u_{ m L}$	$c^u_{ m R}$	$c_{ m L}^d$	$c_{ m R}^d$
2.39818(33)	-0.90084(32)	0.76911(60)	1.14065(13)	-0.51173(38)	-1.41478(12)	0.25617(2
2.412	-0.887	0.763	1.141	-0.508	-1.395	0.254

Variation of input parameters.

• Solve RG eq's.

Add in quadrature.

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$10^{40}\cdot\sigma^0_{ u_\mu},{ m c}$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

$\ \ \left[\begin{array}{c} c_{\mathrm{L}}^{\nu_{\ell}\ell'}, \ \ell = \ell' \end{array} \right.$	$c_{ m L}^{ u_\ell \ell'}, \ \ell eq \ell'$	$c_{ m R}^{{m u}_\ell \ell'}$	$c^u_{ m L}$	$c^u_{ m R}$	$c_{ m L}^d$	$c^d_{ m R}$
2.39818(33)	-0.90084(32)	0.76911(60)	1.14065(13)	-0.51173(38)	-1.41478(12)	0.25617(2
2.412	-0.887	0.763	1.141	-0.508	-1.395	0.254

Variation of input parameters.

Add in quadrature.

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$10^{40}\cdot\sigma^0_{ u_\mu},{ m c}$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

• Vary of renormalization scale.

- Estimate of higher order logarithmic contributions.
- Well established procedure (with good empirical results) in EFT/pQCD literature

 $1 + \alpha(\mu)(\log \mu + \#)$ $+\alpha^{2}(\mu)(\log^{2}\mu + \log\mu + \#)$

$E_{\nu}, \text{ MeV}$	Nuclear	Nucleon	Hadronic	Quark	Pert.	Total	$10^{40} \cdot \sigma_{ u_{\mu}}, \mathrm{cm}^2$	$10^{40} \cdot \sigma^{0}_{\nu_{\mu}}, c$
50	4.	0.06	0.56	0.13	0.08	4.05	34.64(1.36)	32.05
30	1.5	0.014	0.56	0.13	0.03	1.65	15.37(0.25)	14.23
10	0.04	0.001	0.56	0.13	0.004	0.58	1.91(0.01)	1.77

• Vary of renormalization scale.

- Estimate of higher order logarithmic contributions.
- Well established procedure (with good empirical results) in EFT/pQCD literature

 $1 + \alpha(\mu)(\log \mu + \#)$ $+\alpha^{2}(\mu)(\log^{2}\mu + \log\mu + \#)$

Coulomb Corrections To CEvNS ARXIV:2304.09241

Radiative Corrections For Precision CEVNS

- Separation of scales and point-like expansion offers clean SM prediction.
- OUNT OF COMPARENT A COMPARENTA A CO measurement.
- Natural question: are we missing anything?

Coulomb Corrections & CEvNS

- Nature of observable requires using heavy nuclei with large Z.
- Higher orders in $Z\alpha$ are not necessarily small.
- This is a 3-loop effect. Not included in RG-running etc. of EFT analysis.

Coulomb Corrections & CEVNS

Nature of observable

 $\Pi_{\rm WK}(Q^2, m_f) = \frac{1}{2} \int_0^\infty d\zeta \frac{Q^2}{Q^2 + 4\zeta^2 m_f^2} \frac{1}{\zeta^4}$

included in RG-running etc. of EFT analysis.

Results For CEvNS

- Result is very small.
- Not obvious. Numerical cancellation of large numbers.

$$\lim_{Q \to \infty} \Pi_{\rm WK}(Q/m_{\ell}) = \frac{1}{2} \left[\frac{\pi^2}{6} - \frac{2}{3} \zeta(3) - \frac{1}{2} \right]$$

$$\left[\frac{7}{9}\right] \approx 0.03$$
 .

Results For CEvNS

 Coefficient of (Zα)² turns out to be ~100 times smaller than the 1-loop coefficient.

 Negligible for any realistic analysis.

Q	Asymmetry	$\mathcal{A}^{(0)}_{\ell,\ell'}$	$\mathcal{A}_{\ell}^{(}$
	$\ell=e \ell'=\mu$	3.36	0.0
$1 { m MeV}$	$\ell = e \ell' = au$	5.24	0.0
	$\ell=\mu \ell'= au$	1.88	
	$\ell=e~~\ell'=\mu$	2.12	0.0
$10 {\rm ~MeV}$	$\ell = e \ell' = au$	4.00	0.0
	$\ell=\mu \ell'= au$	1.88	
	$\ell=e \ell'=\mu$	1.40	0.0
$30 { m MeV}$	$\ell = e \ell' = au$	3.28	0.0
	$\ell=\mu \ell'= au$	1.88	

Other Necessities For Precision CEvNS

Radiative Corrections To Neutrino Spectra

- Pion and muon decays also modified by radiative corrections.
- Effects are calculated by O. Tomalak in arXiv:<u>2112.12395</u>.

Inelastic Backgrounds

- Subdominant due to absence of coherence.
- Need to be "invisible" channels.
- See talk by V. Pandey and <u>arXiv:2206.08590</u>

Small effects ~0.5% due to lack of logarithmic enhancements.

- Why are coherent reactions simple?
- When do the $GS \rightarrow GS$ transitions dominate?
- How do we profit from kinematics?
- Coherence from limited kinematics.
- Elastic neutrino and electron scattering on nuclei.
- Higher order corrections & their uncertainties.
- Coherent- π production.
- Comparison vs $\nu e \rightarrow \nu e$ & CCQE.
- Proposal for future work + feedback solicitation.

PART 3

PION PROD.

ARGONEUT PRL 113 261801 (2018)

Coherent Pion Production

$\nu A_{\rm GS} \to \ell \pi A_{\rm GS}$

HADRONIC \rightarrow NAIVELY COMPLICATED

COMPELLING FOR E_{ν}

Pion and muon reconstructable.

 Minimal energy transfer to nucleus.

This Channel Is Worth Pursuing

- In the chiral limit, $m_{\pi}^2 = 0$, amplitude is related to $\pi A_{GS} \rightarrow \pi A_{GS}$ elastic scattering.
- Our Corrections to this limit are controlled by small parameters e.g. m_{π}^2/E_{ν}^2 .
- Amplitude can be systematically expanded (in terms of hadronic matrix elements).

Discalaimer: Work In Progress. No Warranty Implied

This Part Of The Talk Is Propaganda GOALS

- Output for the second secon production is possible within a systematic framework.
- Motivate experimental interest in:
 - 1. Do flux measurements with coherent pion production.
 - 2. Measure elastic pion scattering (differential in Q^2)
- Motivate theory work for necessary hadronic modeling.

1) Kinematics

$p^{\mu}_{\pi\ell} = p^{\mu}_{\pi} + p_{\ell}$

 $m_{\pi\ell}^{2} \& \mathbf{p}_{\pi\ell} \& \mathbf{p}_{\nu}$

FULLY RECONSTRUCTABLE KINEMATICS!

2) Statistics

- A good "standard candle" has two features:
 - 1. Good statistics.
 - 2. "Precision" theory.

Number of events

 $\nu e \rightarrow \nu e$

 $E_{\nu}\sigma \sim 10^{-42} \mathrm{~cm^2~GeV}$ Events $\sim 3 \times 10^3$ /yr DUNE

 $E_{\nu}\sigma \sim 10^{-40} \mathrm{cm}^2 \mathrm{GeV}$ $\sim 3 \times 10^5 / \mathrm{yr}$

 $\sim 10^8$ /yr

3) Chiral Symmetries

- Matrix element dominated by longitudinal axial current
 - $\langle \pi A | J^A_{\mu} | A \rangle \epsilon^{\mu}_{I} = \epsilon^{\mu}_{I} A^{\text{reg}}_{\mu}$
- In chiral limit

$\kappa^{\mu}A_{\mu}^{\text{reg}} = f_{\pi}T_{A\pi}$

• For $|\mathbf{Q}| \ll |\mathbf{p}_{\pi}|$

 $\epsilon_L^{\mu} A_{\mu}^{\mu cg} \approx \kappa^{\mu} A_{\mu}^{reg}$

 $\langle \pi A | J^A_\mu | A \rangle = \frac{f_\pi \kappa_\mu}{\kappa^2} T_{A\pi} + A^{\text{reg}}_\mu$

 $\epsilon_I^{\mu}\kappa_{\mu}=0$

ADLER (1964), RHEIN & SEHGAL (1983), KARTAVTSEV, PASCHOS & GOUNARIS (2006)

Elastic Pion Nucleus Scattering

- At leading order in m_{π}^2/E_{ν}^2 we need data-driven input.
- Therefore need pion-nucleus elastic scattering data.
- Must match relevant experimental targets.

USE NEW DATA FROM EMPHATIC & NA61/SHINE

M. Barbi and N. Kolev University of Regina, Department of Physics, Regina, Saskatchewan, Canada

EXPRESION OF INTEREST

Measurements of kaon and pion scattering in the WCTE facility at CERN

S. Bacca Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany

Safe Vs Dangerous Phase Space

 $\sigma_{\rm safe}(E_{\nu}) \leq \sigma(E_{\nu})$

$\Phi(E_{\nu}) = N_{\text{safe}}(E_{\nu})/\sigma_{\text{safe}}(E_{\nu})$

SAFE := WHERE APRROX. WORK

Safe Phase Space

- Both lepton and pion should be forward going.
- Small opening angles.

 $E_{\pi}^2 \gg m_{\ell\pi}^2 \gg Q^2$

Small momentum transfers.

$\theta_{\ell\pi} \lesssim \frac{(200 \text{ MeV})}{E_{\nu}}$

Summary Of The Propaganda

- A *bonafide* prediction of coherent pion production is possible within a systematic framework.
- I think there should be experimental interest in:
 - 1. Flux measurements with coherent pion production.
 - 2. Measure elastic pion scattering (differential in Q^2).
- More theory work is needed.

