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PREX is a fascinating experiment that uses parity

violation to accurately  determine the neutron

radius in 208Pb. This has broad applications to

astrophysics, nuclear structure, atomic parity non-

conservation and tests of the standard model.  The

conference will begin with introductory lectures

and we encourage new comers to attend.

For more information contact horowit@indiana.edu

Topics

Parity Violation

Theoretical descriptions of neutron-rich nuclei and

bulk matter

Laboratory measurements of neutron-rich nuclei

and bulk matter

Neutron-rich matter in Compact Stars / Astrophysics

Website: http://conferences.jlab.org/PREX
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Challenges and Opportunities

“My” Morning Speakers 

50+20 minute overview talks that address 
some of the most important developments 
in constraining the dynamics of neutron-
rich matter from laboratory experiments. 
Please place these developments in the 
larger context of the equation of state of 

neutron-rich matter and its impact on 
neutron-star observables, particularly those 

of interest to the electromagnetic- and 
gravitational-wave communities.

Afternoon Speakers 

Short presentations, discussions and 
interactions, with each consisting of a 10-

minute presentation (no more than 3 
slides please!) plus up to 20 minutes of 

discussion. The speaker will lead the 
discussion, focusing on topics that are well 
aligned with the theme of the program; e.g., 

what can you offer, what are some of the 
main challenges and how can the “other” 

communities help mitigate them.

The INT-22-2a program on “Neutron Rich Matter on Heaven and Earth” is truly multidisciplinary 

as it addresses fundamental questions in fields as diverse as astrophysics, gravitational physics,  
nuclear physics, and particle physics.


We hope that all participants — especially students and early career scientists — be fully engaged. 
We ask everyone that asks a question for the first time, to identify themselves, to mention their  
home institution, and their main research area.



The Nuclear Equation of State

Nuclear EOS Density Ladder 

The EOS ladder has “rungs” of objects with 
certain properties that let scientists 

confidently measure the EOS. Jumping to 
each subsequent rung relies on methods 

for measuring objects that are ever denser, 
the next step often piggybacking on the 

previous one.
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measurement of the weak mixing angle:
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Many communities working  
towards a common goal!



 GW170817: first detection of Gravitational  
 Waves from a binary neutron-star merger 
    (A gold-plated event!)

 GW190425: second detection of BNS 
    (Hanford offline; no sky localization)

 GW190814: BNS or NSBH merger? 
    (2.6 Msun heaviest NS or lightest BH?) 

 J0740+6620: Most massive star (2019) 
    (2.14 Msun — Thankful Cromartie et al) 

 J0030+0451: NICER aboard the ISS (2019)  
   (First ever mass-radius determination) 

 PREX-II: Neutron-skin thickness of 208Pb 
(Suggests the skin is large and the EOS stiff)

GW

EM

Terrestrial experiments

ultimate determination of the neutron-skin 
thickness of 208Pb 

(some people call it „P2“)

P2:
measurement of the weak mixing angle:
10000 hours (= 417 days)
measurement of the weak charge of 12C
2500 hours (= 105 days)

The Quest for the EOS: Status After GW170817

Powerful synergy 
developing  

between terrestrial 
experiments, 

electromagnetic 
observations,  

and gravitational-
wave detections:


A brand new era of  
Multimessenger 

Astronomy!

Heaven and Earth



The dawn of the golden era in neutron-star physics 

Tantalizing Possibility
• Laboratory Experiments suggest large neutron radii for Pb

• Gravitational Waves suggest small stellar radii

• Electromagnetic Observations suggest large stellar masses


Exciting possibility: If all are confirmed, this tension may be evidence of a 
softening/stiffening of the EOS (phase transition?)
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Neutron Stars as Nuclear Physics Gold Mines
Neutron Stars are the remnants of massive stellar explosions

Are bound by gravity NOT by the strong force
Satisfy the Tolman-Oppenheimer-Volkoff equation (vesc/c⇠1/2)

Only Physics sensitive to: Equation of state of neutron-rich matter
EOS must span about 11 orders of magnitude in baryon density

Increase from 0.7!2M� must be explained by Nuclear Physics!

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryondensity of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.746 0.15)3 1015 g cm23, or ,10ns.
Evolutionary models resulting in companion masses.0.4M[ gen-

erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period.8ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exoticmatter; green, strange quarkmatter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.976 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases themaximum possiblemass for each EOS. For a 3.15-ms spin period,
this is a=2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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Extraordinary claims require 
extraordinary evidence!  

Need to understand the “ins-and-
outs” of the extraction and 

uncertainty quantification of the 
tidal deformability!  



PREX Constraints on the  
EOS of Neutron Rich Matter
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PREX suggests that L is large — suggesting 

(at lease in some models!) that neutron-star  

radii should also be large!
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Parity Violating e-Nucleus Scattering

Correlating the neutron skin to the EOS

Electroweak experiments will provide fundamental anchors 
for future campaigns at FRIB and other exotic beam facilities; 

so we better work hard on solving the riddle …  
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What can I offer:

Predictions of neutron-star 

properties derived from 
accurately-calibrated models


What is the challenge:

Apparent inconsistency of 

PREx and CREX


How can the challenge be 
mitigated:


Determination of stellar radii 
with a precision of 0.5 km


