In-medium parton showers with overlapping emissions

Peter Arnold

University of Virginia

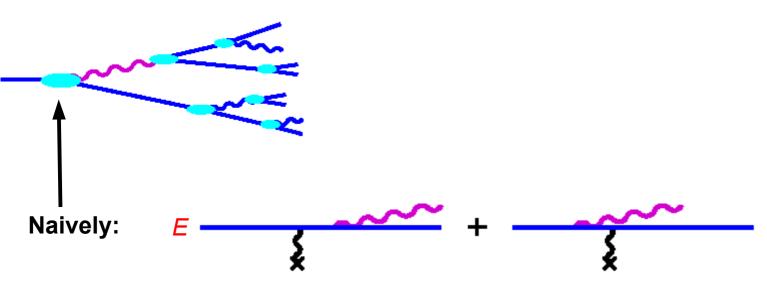
Reporting (eventually) on recent work with

Shahin Iqbal Omar Elgedawy

letter: 2212.08086 details: 2302.10215

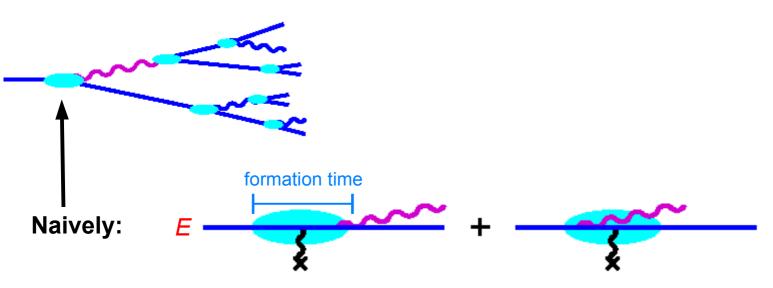
and work in preparation

Medium-induced showering



Prob. of brem $\sim \alpha$ per collision with medium (up to logs)

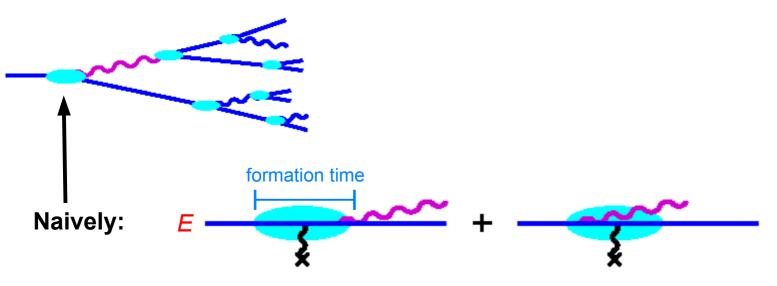
Medium-induced showering



Formation time means quantum <u>duration</u> of splitting process.

Formation time grows with energy *E*.

Medium-induced showering

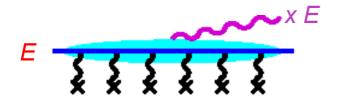


Formation time means quantum <u>duration</u> of splitting process.

Formation time grows with energy *E*.

LPM Effect:

What happens when formation time \gg mean free time between collisions w/ medium?



Prob. of brem $\sim \alpha$ per formation time

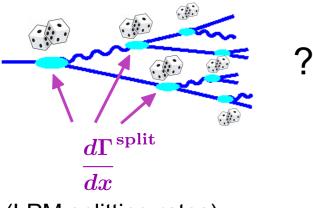
QED (1950s): LPM [Landau-Pomeranchuk & Migdal]

QCD (1990s): BDMPS-Z + many later variations

calculation of splitting rates

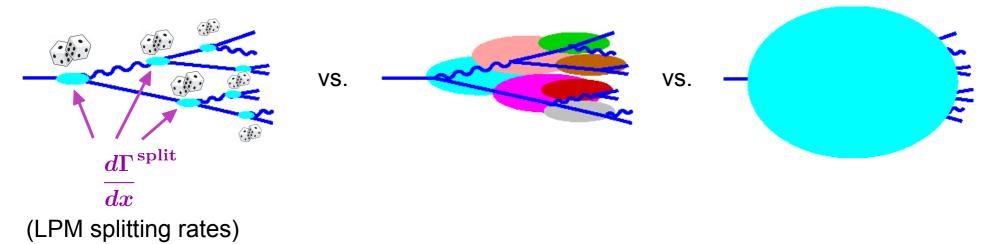
 $\frac{d\Gamma}{dx}^{
m split}$

Can we then describe in-medium shower development by

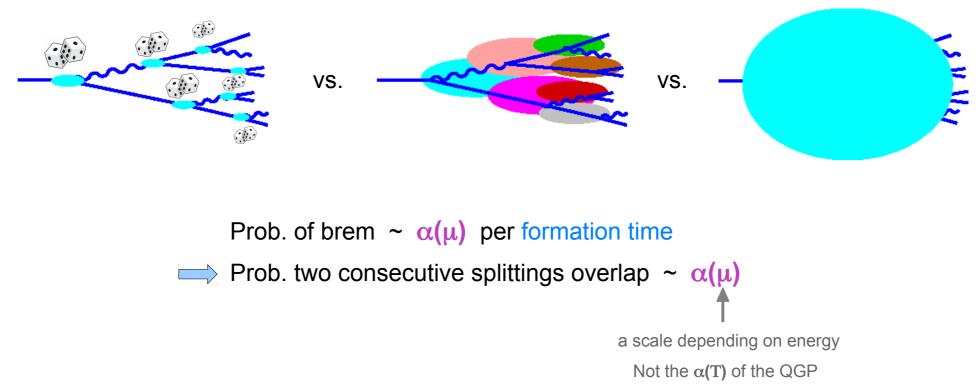


(LPM splitting rates)

Or can splittings overlap?

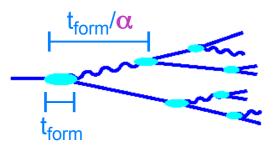


Or can splittings overlap?

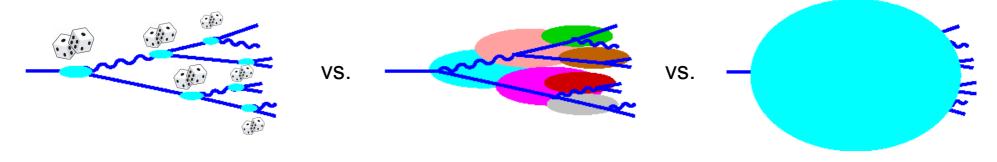


All depends on how big $\alpha(\mu)$ is!

For small α , there is a hierarchy of scales that (typically) separates the splittings:



Summary so far



 $\alpha_s(\mu)$ small

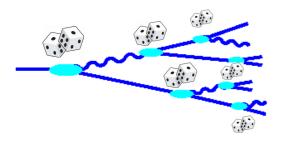
a "standard" picture of a shower

 $\alpha_s(\mu)$ big

HELP!

Turn to AdS/CFT for qualitative insight

How do we tell if



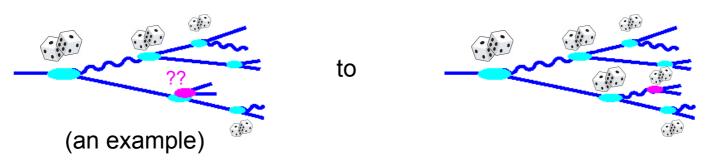
is a good or bad picture for reasonable values of $\alpha_s(\mu)$?

Two approaches

- (1) EXTERNAL VALIDATION: Confront w/ experiment. But.... many confounding factors.
- (2) INTERNAL CONSISTENCY: Test with theory!

Question:

Are the first corrections



small for reasonable values of $\alpha_s(\mu)$?

Perks for theorists:

- May avoid confounding factors by testing in simplified situations.
- Can test on simple shower characteristics not accessible to experiment.

A theorist thought experiment

Simplifying assumptions

• Treat elastic scattering w/ medium in the \hat{q} approximation:

$$\langle (\text{change in } p_{\perp})^2 \rangle = \hat{q} \cdot (\text{distance traveled})$$

A static, homogeneous, "infinite"-size QGP

In that case, the scale
$$\mu$$
 for $lpha_{
m s}(\mu)$ is $\mu \sim (\hat{q}E)^{1/4}$ and formation times are $t_{
m form} \sim \sqrt{E/\hat{q}}$

Start with a parton that is (approx.) on-shell.

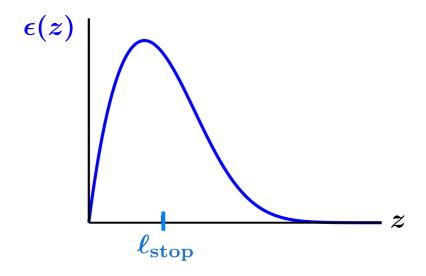
Study gluon-initiated showers in large-N_c limit (w/ N_f fixed for now)

Only g→gg splittings consider (so far!)

A theorist thought experiment

Something theorists could "observe":

(statistically averaged) distribution of energy deposited by shower as a function of distance z



 $\ell_{
m stop} \equiv \langle z
angle \,$ (1st moment of energy deposition distribution) $\ell_{
m stop} \sim rac{t_{
m form}}{lpha} \sim rac{1}{lpha} \sqrt{rac{E}{\hat{m q}}}$

$$\ell_{
m stop} \sim rac{t_{
m form}}{lpha} \sim rac{1}{lpha} \sqrt{rac{E}{\hat{m q}}}$$

Note: $\ell_{ ext{stop}}$ depends on \hat{q}

How big are the overlap corrections to $\varepsilon(z)$?

Answer:

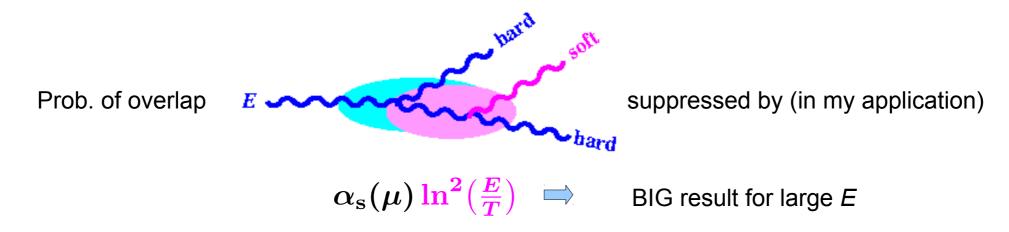
BIG!

... which has been know since

lancu (2014) Blaizot and Mehtar-Tani (2014) Wu (2014)

[building on radiative corrections to \hat{q} found by Liou, Mueller, Wu (2013)]

(1) BIG because there is a double-log enhancement coming from SOFT radiation:



(2) But these BIG soft-radiation effects can be absorbed into an effective value of \hat{q} :

$$\hat{q} \longrightarrow \hat{q}_{ ext{eff}}(E) = \hat{q} \left[1 + \# lpha_{ ext{s}} \ln^2(rac{E}{T})
ight]$$

How big are overlap effects that cannot be absorbed in \hat{q} ?

(1) Need to calculate overlap of two <u>hard</u> splittings:

Extremely difficult calculation.

After lots of QFT and many (!!) years ...

Completed (for gluons) in 2022 with S. Iqbal and

Tyler Gorda

How big are overlap effects that cannot be absorbed in \hat{q} ?

(1) Need to calculate overlap of two <u>hard</u> splittings:

Extremely difficult calculation.

After lots of QFT and many (!!) years ...

Completed (for gluons) in 2022 with S. Iqbal and

Tyler Gorda

Technical note

The drawing above is short-hand for what we call

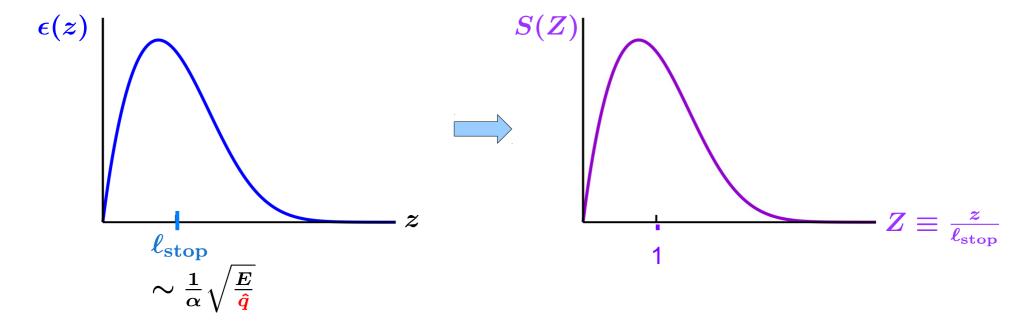
$$\Delta \frac{d\Gamma}{dx \, dy} \equiv \text{ the overlap } \frac{\text{correction}}{\text{to two independent splittings}}$$

$$= \left[\left\langle \left| \int_0^\infty \!\! d(\Delta t) \, \cdots \right|^2 \right\rangle_{\substack{\text{medium} \\ \text{avg}}} \right] - \left[\begin{array}{c} \text{pretending the two splittings} \\ \text{are independent dice roles} \\ \frac{d\Gamma}{dx} \, \text{and} \, \, \frac{d\Gamma}{dy} \end{array} \right]$$

which cancels except for contributions from splittings separated by $\Delta t \lesssim t_{
m form}$

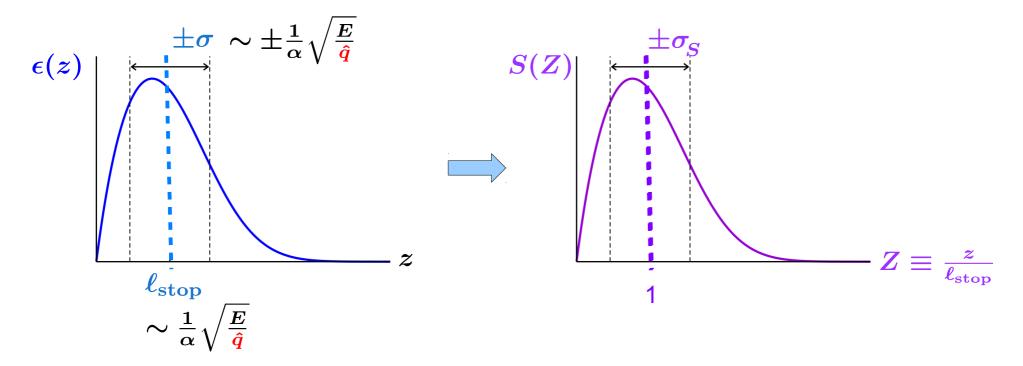
How big are overlap effects that cannot be absorbed in \hat{q} ?

(2) Choose a theorist observable that is insensitive to \hat{q} : consider the shape S(Z) of the energy deposition distribution:



How big are overlap effects that cannot be absorbed in \hat{q} ?

Example

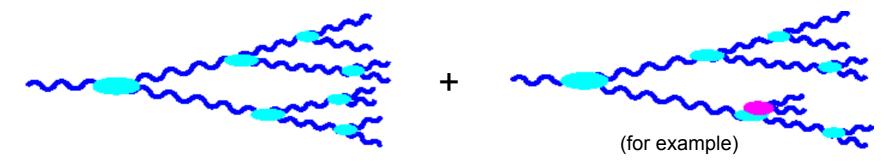


$$\sigma_{\!\!S} = rac{\sigma}{\ell_{
m stop}}$$
 is independent of $\hat{m{q}}$

^{*} Important, interesting, and resolvable caveats that I'll explain later.

How to account for overlaps in showers

Think of



as "standard" shower development with independent splittings but two types of localized, independent vertices:



Then treat these "splitting" probabilities as purely classical.

RESULTS

To start: the width of the shape S(Z) of energy deposition

Large-N_f QED [2018 w/ S. Iqbal]:

charge deposition

S. Iqbal]:
$$\sigma_S = \frac{\sigma}{\ell_{\rm stop}} = \left(\frac{\sigma}{\ell_{\rm stop}}\right)_{\rm LO} \left[1 - 0.87\,N_{\rm f}\alpha(\mu)\right]$$

Large-N_c QCD (gluons only) [2022 w/ S. Iqbal and O. Elgedawy]:

energy deposition
$$\sigma_S = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 + rac{???}{???}N_{
m c}lpha_{
m s}(\mu)
ight]$$
 DRUM ROLL PLEASE

RESULTS

To start: the width of the shape S(Z) of energy deposition

Large-N_f QED [2018 w/ S. Iqbal]:

charge deposition

S. Iqbal]: "LO" means "ignoring over
$$\sigma_S=rac{\sigma}{\ell_{
m stop}}=\left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO}$$
 $\left[1-0.87\,N_{
m f}lpha(\mu)
ight]$

Large-N_c QCD (gluons only) [2022 w/ S. Iqbal and O. Elgedawy]:

$$\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 - 0.02\,N_{
m c}lpha_{
m s}(\mu)
ight]$$

RESULTS

To start: the width of the shape S(Z) of energy deposition

Large-N_f QED [2018 w/ S. Iqbal]:

charge deposition

S. Iqbal]:
$$\sigma_S = \frac{\sigma}{\ell_{\rm stop}} = \left(\frac{\sigma}{\ell_{\rm stop}}\right)_{\rm LO} \left[1 - 0.87\,N_{\rm f}\alpha(\mu)\right]$$

Large-N_c QCD (gluons only) [2022 w/ S. Iqbal and O. Elgedawy]:

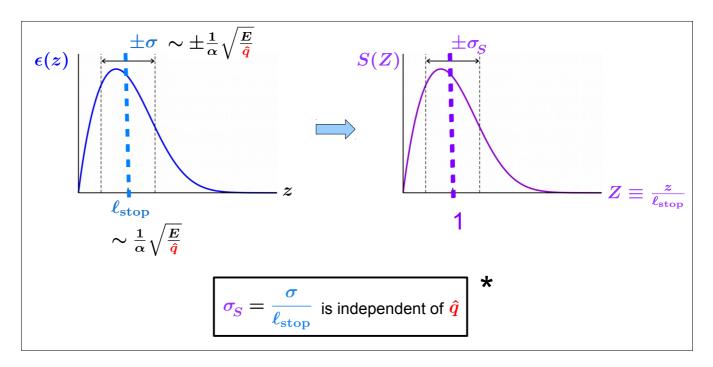
$$\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m IO} \left[1 - 0.02\,N_{
m c}lpha_{
m s}(\mu)
ight]$$

Conclusion for this test

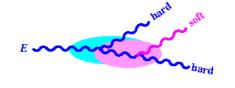
Overlap corrections that cannot be absorbed into \hat{q} are negligible.

I half-lied about something

Remember



and why we did that:



$$\hat{q} \longrightarrow \hat{q}_{ ext{eff}}(E) = \hat{q} \left[1 + \# lpha_{ ext{s}} \ln^2(rac{E}{T})
ight]$$

But then $\hat{q}_{\mathrm{eff}}(E)$ is different $\underline{\textit{here}}$ and $\underline{\textit{there}}$.

Those difference don't quite cancel in $\sigma_S = \sigma/\ell_{\text{stop}}$ and S(Z). They cancel at leading log but leave behind BIG single-log corrections to σ_S and S(Z):

overlap corrections $\sim lpha_{
m s}(\mu) \ln(rac{E}{T})$

Factorization

Remember that soft radiation can be absorbed into \hat{q} .

When factorizing away some IR or UV physics in QFT, we must introduce a factorization scale to do NLO calculations.

Examples

UV divergences absorbed into couplings: renormalization scale μ

Collinear divergences absorbed into PDFs: factorization scale $M_{\rm fac}$

Such factorization scales appear explicitly inside logarithms in NLO results.

- Set them to the appropriate physics scale for the process.
- Check sensitivity to the precise choice of scale.

Our problem

To factorize *all* the soft radiation effects into $\hat{q}_{ ext{eff}}$, we introduce an energy factorization scale

$$\Lambda_{
m fac} \sim \left(ext{min energy of daughters of} \;\;_{\it E}
ight.
ight. \left. ext{hat} \;\;_{\it xE}
ight)$$

The result shown earlier was for

$$\Lambda_{
m fac} \sim \# \, x (1{-}x) E$$
 with $\# = 1$

Now showing dependence on the normalization # of the factorization scale:

$$\sigma_{\!S} = rac{\sigma}{\ell_{
m stop}} = \left(rac{\sigma}{\ell_{
m stop}}
ight)_{
m LO} \left[1 - (0.02 + 0.001 \ln \#) N_{
m c} lpha_{
m s}(\mu)
ight]$$

Extremely weak dependence on factorization scale.

relative size of overlap effect on value of $\,\sigma_{
m S} = \sigma/\ell_{
m stop}\,$

Large-N_f QED:

e- initiated charge deposition

 $-0.85 N_f \alpha$

Large-N_c QCD (gluons only):

g initiated energy deposition

 $-0.02 N_c \alpha_s$

- Accidental cancellation in gluon case?
- Something special about shape of energy deposition?
- Something about absence of fermions?
- ... ??

PREIMIMAN

relative size of overlap effect on value of $\,\sigma_{
m S} = \sigma/\ell_{
m stop}\,$

Large-N_f QED:

e- initiated charge deposition

 $-0.85 N_f \alpha$

Large-N_c QCD (gluons only):

g initiated energy deposition

 $-0.02 N_c \alpha_s$

- Accidental cancellation in gluon case?
- Something special about shape of energy deposition?
- Something about absence of fermions?
- ... ??

relative size of overlap effect on value of $\,\sigma_{
m S} = \sigma/\ell_{
m stop}\,$

Large-N_f QED:

e- initiated charge deposition

e- initiated energy deposition

y initiated energy deposition

 $-0.85 N_f \alpha$

+1.13 $N_{\rm f} \alpha$

+0.98 $N_{\rm f} \alpha$

Large-N_c QCD (gluons only):

g initiated energy deposition

 $-0.02 N_c \alpha_s$

- Accidental cancellation in gluon case?
- Something special about shape of energy deposition?
- Something about absence of fermions?
- ... ??

relative size of overlap effect on value of $\,\sigma_{
m S} = \sigma/\ell_{
m stop}\,$

Large-N_f QED:

e- initiated charge deposition

e- initiated energy deposition

y initiated energy deposition

$$-0.85 N_f \alpha$$

+1.13 $N_{\rm f}\,\alpha$

+0.98 $N_{\rm f} \alpha$

g initiated energy deposition

$$-0.02 N_c \alpha_s$$

- Accidental cancellation in gluon case?
- Something special about shape of energy deposition?
- Something about absence of fermions?
- ... ??

relative size of overlap effect on value of $\,\sigma_{
m S} = \sigma/\ell_{
m stop}$

Large-N_f QED:

- e- initiated charge deposition
- e- initiated energy deposition
- γ initiated energy deposition

-0.85
$$N_f \alpha$$

+1.13 $N_f \alpha$
+0.98 $N_f \alpha$

Large-N_c QCD (gluons only):

g initiated energy deposition

$$N_f >> N_c >> 1 QCD$$
:

- q initiated charge deposition
- q initiated energy deposition
- g initiated energy deposition

$$-0.02 N_c \alpha_s$$

+0.01
$$N_{\rm f} \alpha$$

$$-0.01 N_{\rm f}$$
 o

-0.01
$$N_{\rm f}\,\alpha$$

- Accidental cancellation in gluon case?
- Something special about shape of energy deposition?
- Something about absence of fermions?

NO

• ... ??

relative size of overlap effect on value of $\,\sigma_{
m S} = \sigma/\ell_{
m stop}\,$

Large-N_f QED:

- e- initiated charge deposition
- e- initiated energy deposition
- γ initiated energy deposition

$$-0.85 N_{f} \alpha$$

+1.13 $N_{f} \alpha$
+0.98 $N_{f} \alpha$

Large-N_c QCD (gluons only):

g initiated energy deposition

$$N_f >> N_c >> 1 QCD$$
:

- q initiated charge deposition
- q initiated energy deposition
- g initiated energy deposition

-0.02
$$N_c \alpha_s$$

+0.01
$$N_{\rm f}$$
 α

$$-0.01 N_{\rm f} \alpha$$

-0.01
$$N_{\rm f}\,\alpha$$

- Accidental cancellation in gluon case?
- Something special about shape of energy deposition? NO
- Something about absence of fermions?

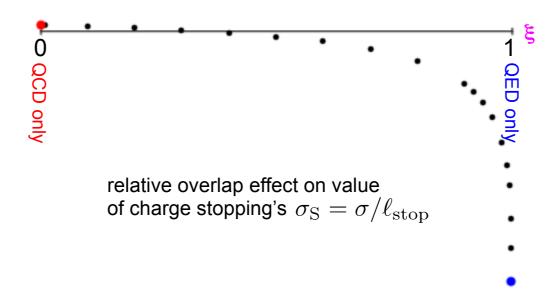
NO

unlikely

Which is the weird one: small QCD results or large QED results?

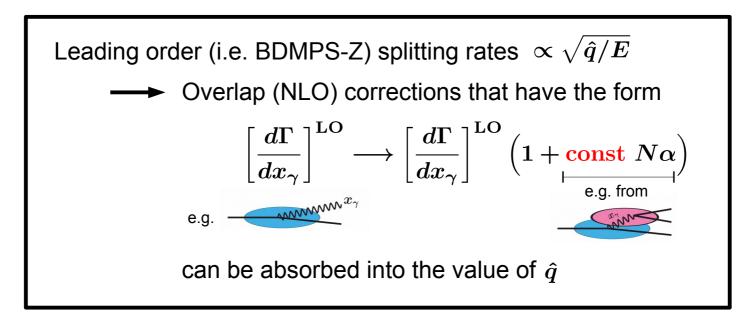
A hybrid model

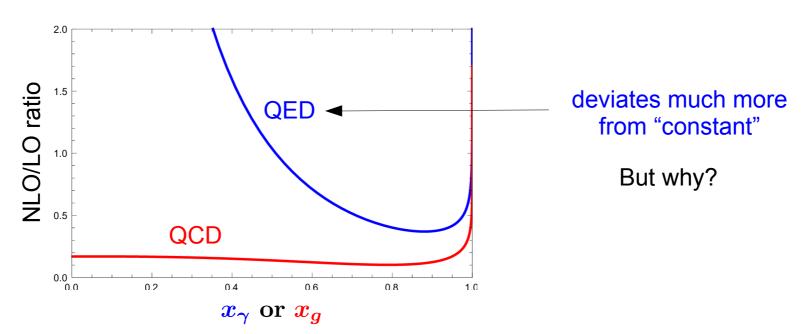
- Give quarks electric charge (all the same)
- Imagine that you could adjust the relative importance " ξ " of QED vs QCD contributions to \hat{q}



The reason QED and QCD are different (we believe)

Explanation: Part 1





a) Because gluons (having color) scatter easily from a QCD medium, but photons (having no charge) do not scatter easily from a QED medium.

Explanation: Part 2

b) Because the LPM effect depends on the collinearity of high-energy splittings.

Soft brem gluons: scatter easily → less collinearity

→ less LPM suppression

→ higher splitting rates

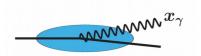
Soft brem photons: none of that

$$\underbrace{\qquad \qquad }_{mm}x_{\gamma}$$

$$\left[rac{d\Gamma}{dx_{\gamma}}
ight]_{
m LO} \sim lpha \sqrt{rac{\hat{q}}{x_{\gamma}E}}$$

QED:
$$\left[\frac{d\Gamma}{dx_{\gamma}}\right]_{\mathrm{LO}} \sim lpha \sqrt{\frac{\hat{q}}{x_{\gamma}E}}$$
 QCD: $\left[\frac{d\Gamma}{dx_{\gamma}}\right]_{\mathrm{LO}} \sim lpha_{\mathrm{s}} \sqrt{\frac{\hat{q}}{x_{g}^{3}E}}$

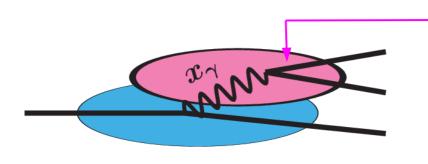
rate grows faster!



QED:
$$\left[rac{d\Gamma}{dx_{\gamma}}
ight]_{
m LO} \sim lpha \sqrt{rac{\hat{q}}{x_{\gamma}E}}$$

QCD:
$$\left[rac{d\Gamma}{dx_{\gamma}}
ight]_{
m LO} \sim lpha_{
m s} \sqrt{rac{\hat{q}}{x_g^3 E}}$$

But, in QED, if you have overlapping



Now the γ has converted to an e^+e^- pair, which can effectively scatter from medium

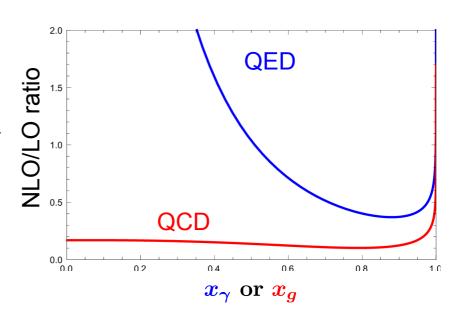
- → less collinearity
- → less LPM suppression
- → higher overall splitting rate

QED and QCD:
$$\left[\frac{d\Gamma}{dx_{\gamma, \mathbf{g}}}\right]_{\mathrm{NLO}} \sim lpha^2 \sqrt{\frac{\hat{q}}{x_{\gamma, \mathbf{g}}^3 E}}$$

But then the ratio (for small x_{y})

$$rac{ ext{NLO}}{ ext{LO}} \sim egin{cases} rac{lpha}{x_{\gamma}} & ext{QED} \ lpha & ext{QCD} \end{cases}$$

This explains part of



Explanation: Part 3

so that

$$rac{ ext{NLO}}{ ext{LO}} \sim egin{cases} rac{lpha}{x_{oldsymbol{\gamma}}} \ln x_{oldsymbol{\gamma}} & ext{QED} \ lpha & ext{QCD} \end{cases}$$

More specifically,

$$\begin{array}{ll} \mathsf{QCD:} & \left[\frac{d\Gamma}{dx_g}\right]_{\mathrm{NLO}} & \overset{\simeq}{\underset{x_{\gamma} \ll 1}{\simeq}} & \frac{N_{\mathrm{f}}\alpha}{2\pi} \left[\frac{d\Gamma}{dx_g}\right]_{\mathrm{LO}} \left\{\# + O(\sqrt{x_g})\right\} \end{array}$$

Explanation: Part 3

The _____

rate is actually

so that

$$rac{ ext{NLO}}{ ext{LO}} \sim egin{cases} rac{lpha}{x_{m{\gamma}}} \ln x_{m{\gamma}} & ext{QED} \ lpha & ext{QCD} \end{cases}$$

More specifically,

$$\begin{array}{ll} \mathsf{QED:} & \left[\frac{d\Gamma}{dx_{\gamma}}\right]_{\mathrm{NLO}} & \overset{\sim}{\underset{x_{\gamma} \ll 1}{\sim}} & \frac{N_{\mathrm{f}}\alpha}{2\pi} \left[\frac{d\Gamma}{dx_{\gamma}}\right]_{\mathrm{LO}} \left\{\frac{\frac{3}{4} \ln x_{\gamma}}{x_{\gamma}} + \frac{\# + O(\sqrt{x_{\gamma}})}{x_{\gamma}}\right\} \end{array}$$

$$\begin{array}{ll} \mathsf{QCD:} & \left[\frac{d\Gamma}{dx_g}\right]_{\mathrm{NLO}} & \overset{\simeq}{\underset{x_{\gamma} \ll 1}{\simeq}} & \frac{N_{\mathrm{f}}\alpha}{2\pi} \left[\frac{d\Gamma}{dx_g}\right]_{\mathrm{LO}} \left\{\# + O(\sqrt{x_g})\right\} \end{array}$$

This term accounts for 92% of the difference between QED and QCD overlap effects for $\sigma_{\rm S} = \sigma/\ell_{\rm stop}$

Where does it come from?

Explanation: Part 3

The _____

rate is actually

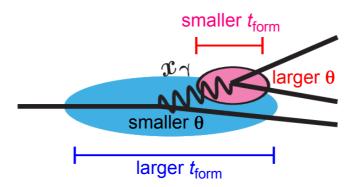
so that

$$rac{ ext{NLO}}{ ext{LO}} \sim egin{cases} rac{lpha}{x_{m{\gamma}}} \ln x_{m{\gamma}} & ext{QED} \ lpha & ext{QCD} \end{cases}$$

This term accounts for 92% of the difference between QED and QCD overlap effects for $\sigma_{\rm S} = \sigma/\ell_{\rm stop}$

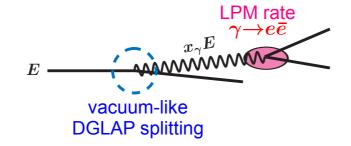
Where does it come from?

For small x_{γ} :



Larger θ disrupts LPM more

 \Rightarrow think of $\gamma \to e \bar{e}$ as the "underlying" process and think of $e \to e \gamma$ as an initial-state DGLAP-like correction



$$egin{aligned} \left[rac{d\Gamma}{dx_{\gamma}}
ight]_{ ext{NLO}} &pprox rac{lpha}{2\pi}\,P_{e
ightarrow\gamma}(x_{\gamma})\,\ln\!\left(rac{\Delta E_{ ext{max}}}{\Delta E_{ ext{min}}}
ight) imes \Gamma_{ ext{LPM}}^{\gamma
ightarrow ear{e}}(x_{\gamma}E) \ &pprox rac{lpha}{2\pi}\,P_{e
ightarrow\gamma}(x_{\gamma})\,\ln\!\left(rac{1/t_{ ext{form}}^{ ext{LPM}}(\gamma
ightarrow ear{e})}{1/t_{ ext{form}}^{ ext{LPM}}(e
ightarrow e\gamma)}
ight) imes \Gamma_{ ext{LPM}}^{\gamma
ightarrow ear{e}}(x_{\gamma}E) \ & \qquad \qquad \qquad \qquad \qquad \end{aligned}$$

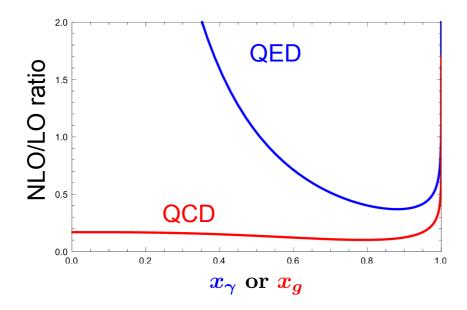
QCD: No logarithm. Because gluon has color, $t_{
m form}^{
m LPM}(g{
ightarrow} qar q) \sim t_{
m form}^{
m LPM}(q{
ightarrow} qg)$

Review of why QED different from QCD

$$rac{ ext{NLO}}{ ext{LO}} \sim egin{cases} rac{lpha}{x_{oldsymbol{\gamma}}} \ln x_{oldsymbol{\gamma}} & ext{QED} \ lpha & ext{QCD} \end{cases}$$

More specifically,

$$\begin{array}{ll} \mathsf{QCD:} & \left[\frac{d\Gamma}{dx_g}\right]_{\mathrm{NLO}} & \overset{\sim}{\underset{x_{\gamma} \ll 1}{\sim}} & \frac{N_{\mathrm{f}}\alpha}{2\pi} \left[\frac{d\Gamma}{dx_g}\right]_{\mathrm{LO}} \left\{\# + O(\sqrt{x_g})\right\} \end{array}$$



This term accounts for 92% of the difference between QED and QCD overlap effects for $\sigma_{\rm S} = \sigma/\ell_{\rm stop}$

Summary

- Overlap effects that cannot be absorbed into \hat{q} appear negligible for in-medium QCD showers.
- We understand why QED gave a <u>much(!)</u> larger result (for the same value of $N\alpha$).

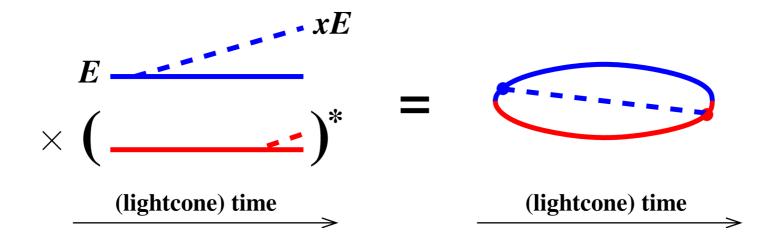
Caveats:

- Our tests were restricted to studying energy and charge deposition distributions.
- Our tests were restricted to infinite volume, on-shell particles initiating the shower, and measurements that do not depend on tracking p_{\perp} evolution.
- We've only tested the large- N_f and N_f =0 (pure glue) limits.
- We only have (complete) results in the limit $N_c >> 1$.

Backup Slides

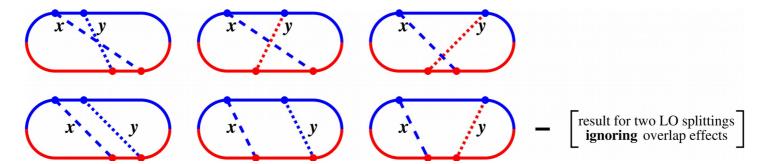
Examples of Diagrams

Leading-order (BDMPS-Z) $g \rightarrow gg$

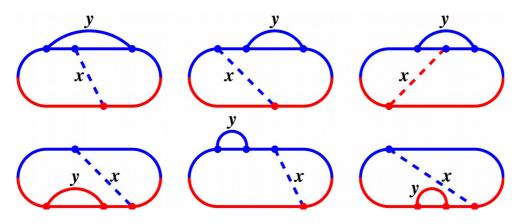


Examples of Diagrams

Overlapping double splitting $g \rightarrow gg \rightarrow ggg$



Virtual corrections to single splitting $g \rightarrow gg$



Some other examples contributing to above

